Sezione di Bologna, main banner


News in evidenza:

FROM DEEP SPACE TO DEEP EARTH: THE EXPERIMENTAL NETWORK IN SARDINIA
FROM DEEP SPACE TO DEEP EARTH: THE EXPERIMENTAL NETWORK IN SARDINIA
6-10 ottobre 2025
Orosei NU

Workshop Internazionale promosso dal progetto PNRR MEET e coordinato da INGV

La Sardegna, e in particolare la Barbagia, è considerata area ideale per studi geofisici e astronomici grazie al silenzio sismico e al basso impatto umano.
Parteciperanno esperti nazionali e internazionali che dialogheranno con 30 giovani ricercatori su infrastrutture, servizi e progetti scientifici.

L’apertura è affidata ai sindaci di Nuoro, Lula ed Orosei, seguiti dall’intervento di Raffaele Marras sul progetto Einstein Telescope, candidato a sorgere a Sos Enattos.

Il workshop si chiuderà con la visita al sito nuragico di Romanzesu.

Per maggiori informazioni consultate il programma completo del Workshop (pdf).

SETTIMANA DEL PIANETA TERRA
SETTIMANA DEL PIANETA TERRA
9 ottobre 2025, dalle ore 17:00 alle 19:00
DAMSlab, p. p. Pasolini 5/b - Bologna

UN VIAGGIO TRA GLI EVENTI NATURALI CHE ANIMANO LA TERRA: UNO ZOOM SULL'ITALIA

Nell'ambito degli eventi del festival Scientifico "Settimana del Pianeta Terra", che si svolge dal 5 al 12 ottobre in varie località di tutta Italia, ricercatrici e ricercatori incontrano grandi e piccoli per parlare della fisica delle eruzioni vulcaniche, dei terremoti, di processi atmosferici e correnti oceaniche; perché imparare a leggere i segnali della natura grazie alla scienza ci rende più consapevoli del territorio in cui viviamo e aiuta a proteggerci meglio dai suoi rischi.

La sezione di Bologna partecipa in collaborazione con il DIFA (Dipartimento di Fisica e Astronomia) - Unibo, mostrando exhibit e giochi.

Per maggiori informazioni è disponibile il sito dell'evento



La sezione INGV di Bologna

Già sede INGV dal 2002, la Sezione di Bologna dell’Istituto Nazionale di Geofisica e Vulcanologia viene istituita nel 2005. Forte di un organico di circa 80 persone, la Sezione si distingue per l’ampia varietà dei temi di ricerca scientifica, che abbracciano i tre Dipartimenti dell’INGV: AMBIENTE, TERREMOTI e VULCANI.

I Servizi Amministrativi della Sezione sostengono la ricerca in tutti i suoi aspetti e contribuiscono alla gestione di attività e progetti.

La ricchezza di competenze e profili professionali stimola l’approccio interdisciplinare e favorisce lo sviluppo di ricerche su temi trasversali ai tre Dipartimenti. Ad esempio: la ricerca storica ricostruisce e cataloga eventi sismici, vulcanici o climatici del passato; e lo studio del cambiamento climatico, integra informazioni ricavate dalla sismicità di origine glaciale.

Ci dedichiamo volentieri alla comunicazione della scienza, organizzando eventi e proponendo percorsi didattici dedicati alle Scienze della Terra e alla mitigazione dei rischi naturali.

Partecipiamo a diversi gruppi operativi che intervengono sul territorio in emergenze sismiche o vulcaniche

La Sezione collabora con le Università e accoglie studenti per tirocini, tesi di laurea e dottorati





Alcuni articoli scientifici recenti:
24/09/2025
Effetti diretti e indiretti del terremoto di Siena del 1467

Gli studi archeosismologici sulle città storiche rivelano gli effetti dei terremoti sugli edifici e sulla società, scoprendo prove spesso perse o non registrate per scritto. Il progetto PROTECT, finanziato dal programma Horizon 2020 dell’UE, applica questi metodi al centro storico di Siena per migliorare la comprensione del rischio sismico e la tutela del patrimonio. Integrando dati umanistici e scientifici, mira a sviluppare un protocollo trasferibile ad altre città europee. Questo studio analizza il terremoto di Siena del 1467, mettendo in discussione le narrazioni esistenti con registri fiscali del 1468 che suggeriscono danni più estesi del previsto. Nuove prospettive emergono rivalutando eventi storici con nuove fonti.

Autori: Andrea Arrighetti, Barbara Gelli et Viviana Castelli


DOI
02/06/2025
3‐D Mantle Flow and Structure of the Mediterranean From Combined P‐Wave and Splitting Intensity Anisotropic Tomography

We present a novel three‐dimensional anisotropic seismic tomography model of the Mediterranean region, achieved through the simultaneous inversion of P‐wave travel‐times and SKS splitting intensity. This dual approach has allowed us to obtain a comprehensive tomographic model that not only delineates the primary structural features of the area but also sheds light on its tectonic evolution. Our findings reveal that the isotropic component of the model is dominated by fast anomalies associated with retreating, stagnant, and detached slab segments including the Alboran, Apennine, and Alpine slabs in the central and western Mediterranean, and the Dinaric, Carpathian, and Hellenic slabs in the east. Slower mantle structures are associated with slab windows and back‐arc basin formation, such as those observed in the Tyrrhenian, Apennine and Hellenic regions. The recovered anisotropic patterns provide crucial insights into the tectonic history of the Mediterranean, highlighting periods of collision and tectonic relaxation. Notably, we observe a range of plunge angles, with both near‐horizontal and steeply dipping anisotropic fabrics present in different regions, reflecting the influence of horizontal and vertical asthenospheric flow. By interpreting the high‐velocity zones as subducting lithosphere, we construct a detailed 3‐D model of the main slabs and analyzed the surrounding P‐ wave anisotropic patterns. This work represents the first comprehensive anisotropic tomography study of the entire Mediterranean region.

Autori: Rappisi, F., Lo Bue, R., Vanderbeek, B. P., Confal, J. M., Erman, C., Baccheschi, P., Pondrelli, S. , Eken, T., Yolsal‐Çevikbilen, S., Faccenda., M.
Articolo PDF

DOI
26/05/2025
Pressurized magma storage in radial dike network beneath Etna volcano evidenced with P-wave anisotropic imaging

Investigating crustal stress beneath volcanoes is critical to understanding the dynamics of eruptions. To this end, seismology represents a powerful monitoring tool. The opening of fluid-filled fractures due to the interplay of different stress sources produces elastic anisotropy within the crust, affecting the propagation of seismic waves. Here we use probabilistic imaging for the inversion of P-wave travel times to map elastic anisotropy of the magmatic system beneath Mt. Etna (Italy). These images provide localized information about fracture orientations and stress below this active volcano. Comparing inferred stress with independent observations and geodynamic modeling, we show evidence of a pressurized magma storage in a radial dike network between 6 and 16 km depth under the volcano. The radial network of vertical dikes constitutes a system of oriented pathways for the upward migration of magma from the depths, leading to eruptive activity from the summit craters and lateral vents at Mount Etna.

Autori: Gianmarco Del Piccolo, Brandon P. VanderBeek, Manuele Faccenda, Rosalia Lo Bue, Ornella Cocina, Marco Firetto Carlino, Elisabetta Giampiccolo, Luciano Scarfí, Francesco Rappisi, Taras Gerya & Andrea Morelli
Articolo PDF

DOI
16/05/2025
The unprecedented Md = 4.4, 2024, Campi Flegrei earthquake highlights the fluids contribution to the ongoing unrest

The Campi Flegrei caldera has been experiencing volcanic unrest since 2005, rising concern in the population and in local and national authorities. On May 20, 2024, the largest local earthquake ever instrumentally recorded up to that time produced substantial damage, forcing the evacuation of tens of buildings west of the epicenter. At Campi Flegrei, M > 4 earthquakes are rare and their analysis is crucial to understand the unrest dynamics and the relation between rupture and ground shaking pattern, which is essential to mitigate the damage of future earthquakes. We analyse seismic waveforms at local to regional distances to reconstruct the source geometry and kinematics. We estimate millimetric to submillimetric coseismic surface subsidence– below the sensitivity of any standard geodetic technique– which, compared to the general uplift, highlights the crucial role of deep pressurized fluids in earthquakes’ generation. Our results also indicate that rupture directivity and local amplification determined the damage distribution.

Autori: Pino N.A., Danesi S., Rapagnani G., De Rubeis V., Cesca S.
Articolo PDF

DOI
11/05/2025
Precursory velocity changes prior to the 2019 paroxysms at Stromboli volcano, Italy, from coda wave interferometry

Open-conduit basaltic volcanoes are susceptible to sudden transitions from mild activity to violent explosive eruptions with little to no warning. Such was the case at Stromboli in the summer of 2019, when two paroxysmal explosions occurred within approx- imately two months (July 3 and August 28). We apply coda wave interferometry to identify possible transitions in behavior in the build-up to these events, computing seismic velocity changes using five broadband seismic stations on the volcano between 2013–2022. This timeframe encompasses a range of volcanic activity including effusive activity, major explosions and parox- ysms. Cross-correlation functions are computed both between pairs of stations and single-station cross-components in multiple frequency bands that allow the sampling of different depths (between approximately 100–1000 m) within the plumbing system. Shallow velocity changes (1–2 Hz and 2–4 Hz) reveal mid-to-long term precursors prior to the paroxysms in 2019. For example, we observe that 2–4 Hz velocities recorded at the station closest to the active crater show an increase of 0.2–0.3 % relative to velocities recorded at other stations. This increase is largely accumulated from mid-2017, coinciding with previously observed heightened activity at the volcano, peaking approximately one month prior to the first paroxysm. A long-term decrease is also observed in deeper velocity changes (0.5–1.0 Hz) during the same time interval. It is hypothesized that these changes represent greater magma overpressure from increased volatile input from depth. The different response in the shallow subsurface may reflect a local response due to the same source within the vicinity close of the crater terrace. These findings illustrate how coda wave interferometry can provide meaningful insights into the evolving dynamics of open-conduit basaltic volcanoes.

Autori: Alexander S. Yates, Corentin Caudron, Aurélien Mordret, Philippe Lesage, Andrea Cannata, Flavio Cannavo, Thomas Lecocq, Virginie Pinel, and Lucia Zaccarelli
Articolo PDF

DOI
13/06/2025
Estimating the mass of tephra accumulated on roads to best manage the impact of volcanic eruptions: the example of Mt Etna, Italy

Explosive eruptions release significant quantities of tephra, which can spread and settle on the ground, potentially leading to various types of damage and disruption to public infrastructure, including road networks. The quantification of the tephra load is, therefore, of significant interest to evaluate and reduce environmental and socio-economic impact, as well as for managing crises. Tephra dispersal and deposition is a function of multiple factors, including the mass eruption rate (MER), tephra characteristics (size, shape, density), top plume height (HTP), grain size distribution (GSD), and local wind field. In this work, we quantified the tephra mass deposited on the main road network on the east-southeast flanks of Mt Etna (Italy) during lava fountains that occurred in 2021, which reached heights of hundreds of metres. We focused on road connections of municipali- ties significantly affected by these events such as Milo, Santa Venerina, and Zafferana Etnea. First, we analysed a sequence of 39 short-lasting and intense lava fountains detected by the X-band weather radar, applying a volcanic ash radar retrieval approach that permits us to compute the main eruption source parameters (ESPs), such MER, HTP, and GSD. When radar measurements were unavailable for a specific event, we analysed images acquired both by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) radiometer and by the visible and/or thermal infrared camera of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Catania), to derive the main ESPs. Second, we used the computed ESPs as inputs to run two different numerical models, Tephra2 and Fall3D, and to reproduce tephra dispersal and accumulation on the road network. Finally, we produce, for the first time, geo-referenced estimates of tephra mass deposited on the whole road network of three municipalities, allowing us to identify the main roads which have been mostly impacted by tephra accumulation, as well as to estimate the total mass of primary tephra that has been removed from roads. Such in- formation represents a valuable input for planning and quick management of the short-term tephra load hazard for future explosive events on Mt Etna.

Autori: Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Articolo PDF

DOI
05/07/2025
Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope

Strapdown gravity systems are increasingly employed in airborne geophysical exploration and geodetic studies due to advantages such as ease of installation, wide dynamic range, and adaptability to various platforms, including airplanes, helicopters, and large drones. This study presents results from an airborne gravity survey conducted over the northeastern sector of Sardinia (Italy), using a high-resolution strapdown gravity ensuring an accuracy of approximately 1 mGal. Data were collected at an average altitude of 1800 m with a spatial resolution of 3.0 km. The survey focused on the Sos Enattos area near Lula (Nuoro province), a candidate site for the Einstein Telescope (ET), a third-generation gravitational wave observatory. The ideal site is required to be geologically and seismically stable with a well-characterized subsurface. To support this, we performed a new gravity survey to complement existing geological and seismic data aimed at characterizing the mid-to-shallow crustal structure of Sos Enattos. Results show that the strapdown system effectively detects gravity anomalies linked to crustal sources down to ~3.5 km, with particular emphasis within the 1–2 km depth range. Airborne gravity data reveal higher frequency anomalies than those resolved by the EGM2008 global gravity model and show good agreement with local terrestrial gravity data. Forward modeling of the gravity field suggests a crust dominated by alternating high-density metamorphic rocks and granitoid intrusions of the Variscan basement. These findings enhance the geophysical understanding of Sos Enattos and support its candidacy for the ET site.

Autori: Muccini, F., Greco, F., Cocchi, L., Marsella, M., Zanutta, A., Borghi, A., Cagnizi, M., Carbone, D., Coltelli, M., Contrafatto, D., D’Aranno, P. J. V., Frasca, L., Messina, A. A., Mirabella, L. T., Negusini, M., & Rivalta, E.
Articolo PDF

DOI
04/05/2025
Volcanic Radiative Power Retrieval From Moderate‐to‐Low‐Temperature Features Using a Single TIR Band: Validation Using Volcanic Crater Lakes and Hydrothermal Systems

Assessing Radiative Power (RP) output is essential for monitoring and understanding volcanic systems. While Mid‐Infrared channels are used to assess thermal outputs at volcanoes exhibiting effusive activity, Thermal Infra Red (TIR) bands are better suited for measuring moderate‐to‐low‐temperature(≲600K) features, such as those associated with hydrothermal activity. However, failure to meet key assumptions in TIR‐based calculations results in up to a ∼90% RP underestimation of ≲600 K sources. We thus introduce theTIR‐ based Volcanic Radiative Power (VRPTIR) method to accurately retrieve RP from single‐band TIR (10.5–12 μm) spectral radiance at systems dominated by surface temperatures of ≲600 K, that is, crater lakes and fumarole fields, achieving an uncertainty of ±35%. Comparison with ground truth for Ruapehu, El Chichón, Taal, Vulcano, Puracé, Poás, and White Island demonstrates the accuracy of VRP TIR in quantifying thermal output and detecting subtle variations in volcanic activity. This exportable method will facilitate compilation ofglobal RP inventories for moderate‐to‐low‐temperature volcanic systems.

Autori: Simone Aveni, Sophie Pailot‐Bonnétat, Dmitri Rouwet, Andrew J. L. Harris, Diego Coppola
Articolo PDF

DOI
02/07/2025
Examples of Rupture Patterns of the 2023, Mw 7.8 Kahramanmaraş Surface-Faulting Earthquake, Türkiye

Field surveys focused on detailed mapping and measurements of coseismic surface ruptures along the causative fault of the 6 February 2023, Mw 7.8 Kahramanmaraş earthquake. The aim was filling gaps in the previously available surface-faulting trace, validating the accuracy of data obtained from remote sensing, refining fault offset estimates, and gaining a deeper understanding of both the local and overall patterns of the main rupture strands. Measurements and observations confirm dominating sinistral strike-slip movement. An integrated and comprehensive slip distribution curve shows peaks reaching over 700 cm, highlighting the near-fault expressing up to 70% of the deep net offset. In general, the slip distribution curve shows a strong correlation with the larger north-eastern deformation of the geodetic far field dislocation field and major deep slip patches. The overall rupture trace is generally straight and narrow with significant geometric complexities at a local scale. This results in transtensional and transpressional secondary structures, as multi-strand positive and negative tectonic flowers, hosting different patterns of the mole-tracks at the outcrop scale. The comprehensive and detailed field survey allowed characterizing the structural framework and geometric complexity of the surface faulting, ensuring accurate offset measurements and the reliable interpretation of both morphological and geometric features.

Autori: Pucci, S.; Caciagli, M.; Azzaro, R.; Di Manna, P.; Blumetti, A.M.; Poggi, V.; De Martini, P.M.; Civico, R.; Nappi, R.; Ünsal, E.; et al.
Articolo PDF

DOI

INGV_extended_logo

Contatti:
Telefono: 051 415 1411
PEC: aoo.bologna@pec.ingv.it
Privacy
Disclaimer
Codice Fiscale: 06838821004
Partita Iva: 06838821004
I contenuti pubblicati su queste pagine dall'Istituto Nazionale di Geofisica e Vulcanologia sono distribuiti sotto licenza Creative Commons Attribution 4.0 International License. © 2025