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Abstract The introduction of the linear slip-weakening friction law permits the
solution of the elastodynamic equation for a rupture that develops on a fault by
removing the singularity in the components of stress tensor, thereby ensuring a finite
energy flux at the crack tip. With this governing model, largely used by seismologists,
it is possible to simulate a single earthquake event; but, in the absence of remote tec-
tonic loading, it requires the introduction of an artificial procedure to initiate the rup-
ture (i.e., to reach the failure stress point). In this article, by studying the dynamic
rupture propagation and the solutions on the fault and on the free surface, I system-
atically compare three conceptually and algorithmically different nucleation strategies
widely adopted in the literature: the imposition of an initially constant rupture speed,
the introduction of a shear stress asperity, and the perturbation to the initial particle
velocity field. My results show that, contrary to supershear ruptures, which tend to
forget their origins, subshear ruptures are quite sensitive to the adopted nucleation
procedure, which can bias the runaway rupture. I confirm that the most gradual tran-
sition from imposed nucleation and spontaneous propagation is obtained by
initially forcing the rupture to expand at a properly chosen, constant speed (0.75 times
the Rayleigh speed). I also numerically demonstrate that a valid alternative to this
strategy is an appropriately smoothed, elliptical shear stress asperity. Moreover, I eval-
uate the optimal size of the nucleation patch where the procedure is applied; the
simulations indicate that its size has to equal the critical distance of Day (1982)
in the case of supershear ruptures and to exceed it in the case of subshear ruptures.

Introduction

Overview

A large quantity of information about physical processes
occurring during an earthquake event can be inferred from the
results of dynamic models of seismic sources. In these mixed
boundary condition problems, the slip is assigned outside the
region experiencing the rupture (typically assumed at rest or in
a stable sliding regime), and the traction components are
assigned inside this region. The rupture occurrence at a point
on the surface (or in the volumetric region) of discontinuity of
the medium (the fault) is determined by a fracture criterion,
expressed in terms of maximum frictional resistance or in
terms of energy. The singularities (in components of stress
tensor and energy) at the tip of the rupture are removed by
the introduction of a governing law which relates the magni-
tude of traction on the fault surface to some physical observ-
ables, such as the slip, the slip velocity, etc. This makes it
possible to obtain a nonsingular solution of the elastodynamic
equation in a discontinuous medium.

In the recent literature, there is a lively debate about the
most reasonable and realistic (from a physical point of view)

analytical formulation of a fault governing law (Bizzarri and
Cocco, 2006; Rice and Cocco, 2007) and the issue is still
open (Bizzarri, 2010). The most widely adopted (see for in-
stance Harris et al., 2009) constitutive model is the slip-
weakening (SW) law, which prescribes that the magnitude
τ of fault traction decreases for increasing cumulative fault
slip (Ida, 1972). The SW law, motivated by the cohesive zone
models developed for tensile fractures by Dugdale (1960),
Barenblatt (1962), and Bilby et al. (1963), is conceptually
simple, and its incorporation within the numerical codes is
straightforward compared to other more elaborated friction
laws, such as rate-dependent and state-dependent friction
laws (e.g., Dieterich, 1979). Moreover, it contains perhaps
the most physically reasonable feature of a constitutive mod-
el, that the stress on the fault decreases (due to abrasion of
surface asperities) as the rupture propagates and the fault
slip accumulates. This attribute has been clearly recognized
(Cocco and Bizzarri, 2002) also in the laboratory-derived
rate- and state-dependent friction laws.

Contrary to rate- and state-dependent friction laws, by
assuming the linear SW law, it is impossible to simulate
repeated ruptures on the same fault (i.e., to model the whole
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seismic cycle); and, more interestingly for the present matter,
it is impossible to numerically reproduce the spontaneous
rupture nucleation unless external, time variable loading is
inserted in the model (e.g., the tectonic load). As a matter
of fact, the linear SW law does not contain any hardening
effect (i.e., the strength increase for increasing slip; see
for instance Matsu’ura et al., 1992), and it prescribes that
the fault remains locked into its initial equilibrium state until
the static level of friction is reached. Therefore, the fault fric-
tion has to be increased, in some way, from the initial value
(τ 0, the stress distribution prior to the rupture) up to the static
level. Evidently, in the specific case of a single dynamic rup-
ture controlled by a linear SW law, the artificial increase of
fault friction previously described is not a physical but rather
a purely numerical procedure necessary to produce the
desired rupture, which expands on the fault in a dynamic
fashion. Obviously, the dynamic models resulting from the
application of this procedure have to satisfy some criteria,
which will be described in the Quantitative Criteria for
the Evaluation of the Nucleation Strategy section.

Critical Lengths for Nucleation

Two of the crucial aspects of the introduction of the arti-
ficial nucleation are the size and the shape of the fault patch
where the nucleation procedure is applied. In the remainder
of this article, I will use Inucl to denote this region, named the
initialization (or nucleation) area, having border ∂Inucl
(Fig. 1). In the literature, several critical lengths have been
introduced to quantify the size of Inucl; in this article, I will

quantify the dimensions of Inucl by referring to these quan-
tities and to their mutual relationships.

Starting from energy balance considerations, Andrews
(1976b) analytically derived an expression for the half-length
that a 2D, purely inplane (i.e., mode II), bilateral crack has to
reach in order to be able to spontaneously propagate farther:

L�II�
c � 2

π
G

λ�G

λ� 2G

τu � τf
�τ0 � τf�2

d0: (1)

Equation (1) has its counterpart in the case of a 2D,
purely antiplane (i.e., mode III), bilateral crack (Andrews,
1976a):

L�III�
c � G

π

τu � τf
�τ 0 � τf�2

d0: (2)

In equations (1) and (2), λ andG are the Lamé constants;
τu (which equals μuσeff

n ) is the static stress in the SW model
(where σeff

n is the effective normal stress); τf (which equals
μfσeff

n ) is the kinetic level of traction; and d0 is the charac-
teristic SW distance (defining the breakdown—or cohesive—
zone, where the stress drop is realized).

By considering an initially circular, uniformly expanding
3D crack and by balancing the strain energy release rate and
the energy dissipation rate at the crack edge, Day (1982) es-
timated the critical fundamental length scale for the
dynamic solution as:

r�D�
c � 7π

24
G

τu � τf
�τ0 � τf�2

d0; (3)

which, for a Poissonian medium (i.e., when λ � G), is sys-
tematically greater (for the same parameters) than L�II�

c .
Because of its theoretical derivation, the length scale defined
in equation (3) appear to be appropriate tomy fault model (see
the Fault Model and Numerical Method section). Even if the
dynamics of some large strike-slip earthquakes can be under-
stood by considering them as mode II ruptures (because they
are dominated by the inplane sliding), in general it is well
known that 3D problems are not simply a combination of
modes II and III (e.g., Bizzarri and Cocco, 2005). In the fol-
lowing sections of this article, I also will consider the critical
length scales defined by equations (1) and (2) because there
are some attempts to quantify the extension of the initializa-
tion zone in 3D geometries in terms of L�II�

c and L�III�
c .

Uenishi and Rice (2004) generalized the case of an in-
finite, homogeneous, elastic space from the 2D analysis made
by Uenishi and Rice (2003) to a 3D geometry and analyti-
cally found universal nucleation lengths for fault instability,
which are the major and minor semi-axes of an elliptical ini-
tialization zone. In the case of Poisson’s ratio ν � 0:25, they
are expressed as

a�UR�c ≅1:299G
d0

τu � τf
(4)

Figure 1. Geometry of the considered seismogenic model. The
star denotes the imposed hypocenter H and Inucl is the initialization
zone, with border ∂Inucl. The light gray plane indicates the fault
x2 � xf2 , oriented through its normal unit vector n̂ and having as-
pect ratio Lf=Wf. The dotted gray box marks the portion of the
computational domain where calculations are performed, due to
the exploitation of the symmetry about H and about the fault plane.
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and

b�UR�c ≅0:9755G
d0

τu � τf
; (5)

respectively. Interestingly, the ratio a�UR�c =b�UR�c � 1:33

equals the ratio L�II�
c =L�III�

c for a Poissonian medium. When
these critical nucleation lengths are reached, the quasi-static
regime no longer exists; the instability is then dynamically
controlled by the friction law, and the rupture grows spon-

taneously. Contrary to the other critical lengths, a�UR�c and

b�UR�c are independent on the prestress τ 0. The Uenishi and
Rice (2004) model additionally includes a condition specify-
ing the shape of slip and traction; in this article, I will not
directly compare my results with the Uenishi and Rice model
but will simply consider the critical lengths defined in equa-
tions (4) and (5) when evaluating the size of Inucl.

Finally, for a Poissonian medium, note that if
�1� S�2 > 3:06 (where S�

df

τu�τ0
τ0�τf is the strength parameter;

Andrews, 1976b), it results in a�UR�c < L�II�
c < r�D�

c and
b�UR�c < L�III�

c < r�D�
c .

Goals of the Present Study

The study of the nucleation process is an extremely chal-
lenging problem from a numerical point of view (see Lapusta
et al., 2000, for a discussion), and the efforts spent are
motivated by several reasons. First, nucleation has a funda-
mental importance in the physics of earthquakes per se.
Second, it has immediate practical implications (e.g., Iio,
1995; Lapusta and Rice, 2003). Finally, because the relation
between strength of its initiation (i.e., the nucleation size)
and the ultimate size of the ensuing earthquake event has
been the matter of an animated debate (Ellsworth and Ber-
oza, 1995; Kilb and Gomberg, 1999).

A detailed study of the nucleation process that accounts
for the underlying physics (describing the evolution of slip
on a pre-existing main frictional surface or in an increasing
coalescence of distributed microcracks in a rock volume,
solicited by progressive loading) is beyond the purposes
of the present paper. (For some connections between nuclea-
tion phase and properties of a dynamic rupture, see Festa and
Villotte [2006] and Shi and Ben–Zion [2006].) On the con-
trary, the aim of the present study is to provide a methodo-
logical tutorial on algorithmic issues associated with the
problem of the initiation of a synthetic rupture. I emphasize
that without a systematic comparison of the different nuclea-
tion strategies it is impossible to establish a priori how much
the resulting rupture propagation is biased by the nucleation
procedure and what optimal parameters should be used (size
and shape of initialization patch, inherent parameters of each
nucleation algorithm).

As will be discussed in the Different Nucleation Strate-
gies section, different nucleation strategies have been used in
the various implementation of SW law presented in the litera-
ture (Day, 1982; Andrews, 1985; Ionescu and Campillo,

1999; Bizzarri and Cocco, 2005; and Dunham and Bhat,
2008, among many others), but they have not been rigorously
and systematically compared. This article aims to fill this gap.

The scientific objectives of the present paper can be
summarized as follows: (1) to explore and quantify, through
numerical experiments representative of typical crustal earth-
quakes, the effects of the different nucleation procedures on
the further rupture propagation and on the synthetic signals on
the free surface; and (2) to try to establish the parameters that
have to be used in the various strategies to obtain the desired
solution of the dynamic problem. In the comparison of the
results of the numerical experiments I will rely on the quan-
titative criteria described in the Quantitative Criteria for the
Evaluation of the Nucleation Strategy section.

Fault Model and Numerical Method

In this article, I consider an isolated, planar, strike-slip
fault embedded in a perfectly elastic, isotropic half–space,
initially at rest and subjected only to stress perturbations
excited by the earthquake source. The considered fault
geometry is reported in Figure 1. The elastodynamic problem
is numerically solved by neglecting body forces, by using the
conventional grid, finite difference code described in Bizzarri
and Cocco (2005), which is second-order accurate in space
and in time and is OpenMP parallelized. The rupture devel-
oping on the fault is fully dynamic because I include full
account of inertial effects (see also Bizzarri and Belardinelli,
2008) and is truly 3D because the equations of motion are
solved independently for both the components of physical
observables, allowing rake rotation. Each component of the
solutions (slip, slip velocity, and traction) depends on both of
the two on–fault spatial coordinates (x1 and x3) and on time
(t). Because identical material properties on both sides of the
fault plane are considered, I exploit the existing symmetries
in order to reduce computational effort, as described in detail
in Bizzarri (2009a).

The fault is subjected to the linear SW governing law in
the following form (Ida, 1972):

τ �
�
τu � �τu � τf� u

d0
; u < d0

τf ; u ≥ d0
; (6)

where u is the magnitude of the fault slip. In the interest
of simplicity, I neglect here the possible changes in pore
fluid pressure, pfluid; moreover, uniform material properties
guarantee a constant value of the normal stress of tectonic
origin, σn, and therefore σeff

n �� σn � pfluid� also is constant
through time.

Different Nucleation Strategies

As previously pointed out, in the case of linear SW law
and in absence of tectonic load or stress perturbations com-
ing from other neighboring faults, the nucleation procedure
is a numerical artifact needed to induce the rupture to spon-
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taneously propagate; that is, to enlarge without prior assigned
rupture velocity (vr is itself a solution of the problem and,
depending on fault rheology, it can potentially assume a very
complicated distribution; see, for instance, figure 11e in Biz-
zarri and Spudich, 2008). In all the numerical experiments
presented and discussed in the remainder of this article,
the earthquake hypocenter H (see Fig. 1) is imposed (it is
located in (xH1 , x

f
2 , x

H
3 ), and it is in the center of the initializa-

tion zone Inucl. In the next three subsections, I will describe
the various nucleation strategies considered in this study,
schematically illustrated in Figure 2.

Initially Nonspontaneous Rupture Propagation

I assume that the rupture is initially nonspontaneous, in
that it propagates with a constant rupture velocity,
vr � vforce, as in Andrews (1985). Namely, the fault friction
is specified as follows (see Fig. 2a):

τ �
�
τnucl � minfτ �SW�; τ �TW�g ;∀ �x1; x3�∈Inucl
τ �SW� ;∀ �x1; x3�∉Inucl ; (7)

where τ �SW� is expressed as in equation (6) and τ �TW�, given
by (Bizzarri et al., 2001), is

τ �TW� �
8<
:
h
μu � �μu � μf� �t�tforce�t0

i
σeff
n ; t � tforce < t0

μfσeff
n ; t � tforce ≥ t0

:

(8)

Formally, equation (8) can be regarded as a constitutive
model, the linear time-weakening (TW) law, in which
the fault friction explicitly depends on time, instead of
on slip, as in the SW model. In equation (8), tforce ��������������������������������

�x1�xH1 �2��x3�xH3 �2
p

vforce
is the instant of time at which a rupture

propagating at the forcing velocity vforce reaches the point
�x1; x3�, and t0 is a characteristic time (the temporal counter-
part of d0). At a certain time (which depends on the adopted
frictional parameters), the SW law takes over, and then the
rupture begins to propagate spontaneously. To briefly illus-
trate this strategy, let us consider, for the sake of simplicity,
the hypocenter H; here, at t � 0, the fault traction has mag-
nitude τ 0, and fault strength is defined by τ �TW� and equals
τu (because u � 0). Then the fault strength diminishes lin-
early through time, accordingly to the τ �TW� function in equa-
tion (8). When it reaches τ0, the sliding begins, and it causes
a stress redistribution in the surrounding fault points, which
are loaded. This load can be such that the upper-yield stress

Figure 2. Schematic representation of the three nucleation strategies compared in this article. (a) Initially TW-driven rupture (see Initially
Nonspontaneous Rupture Propagation section). (b) Initial shear stress asperity (see Introduction of an Initial Shear Stress Asperity section).
(c) and (d) Perturbation to the initial particle velocity (see Perturbation to the Initial Particle Velocity section); (c) V1=v0 as a function of on-
fault coordinates; (d) V1=v0 as a function of x1 and x2. In all panels, the imposed hypocenter and the initialization zone are indicated.
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τu is reached, and therefore these points also start to slip. The
additional parameters that come into the model as a conse-
quence of the implementation of this nucleation strategy are
vforce and t0.

Introduction of an Initial Shear Stress Asperity

Starting from the hypothesis of Benioff (1951) and Reid
(1910) that a fracture occurs when the stress in a volume
reaches the rock strength and from the concept of asperity
in the sense of Kanamori (1981), it is physically reasonable
to assume that, within a region close to the hypocenter, the
shear stress is higher than in the remaining portions of the
fault and that here the rupture is prone to start to propagate.
In accordance to its conceptual simplicity, the numerical
implementation of this nucleation strategy is rather trivial;
at t � 0, the fault traction is (see Fig. 2b)

τ �
�
τ nucl � τu �Δτnucl ;∀ �x1; x3�∈Inucl
τ 0 ;∀ �x1; x3�∉Inucl ; (9)

whereΔτnucl, the additional parameter inserted into the mod-
el by the introduction of this nucleation strategy, is a (small)
perturbation to τu (namely it is a static overshoot). In the
remainder of this article (see Results for Subshear Rupture
Propagation), I will discuss a possible refinement in this
strategy, consisting of tapering τnucl from τu �Δτnucl to
τ 0 over a finite distance instead of having an abrupt transition
between τu �Δτnucl and τ 0 at ∂Inucl.

Perturbation to the Initial Particle Velocity

It is well known that stress redistribution following an
earthquake corresponds to a propagation of seismic waves in
the medium surrounding the earthquake source (e.g., Bizzarri
and Belardinelli, 2008, among many others). This wave ex-
citation causes perturbations of the particle velocity in the
medium that can lead to dynamic triggering, which in some
situations can even be relatively abrupt. Starting from this
physical basis, the third type of artificial nucleation I consid-
er assumes that, in a volume surrounding the imposed hypo-
center, the particle velocity V is non-null. Formally,
following Ionescu and Campillo (1999) and Badea et al.
(2004) with appropriate modifications, I prescribe that at
t � 0 the components of V are expressed as

V

8><
>:

1

2

3

9>=
>;�x1; x2; x3; 0�

� 1

2
sign

�
x2 � xf2

�
v0

8<
:
cosφ

0

sinφ

9=
;e

�x1�x H1 �2
�x1�x H1 �2�l21e

�x3�x H3 �2
�x3�x H3 �2�l22e

�x2�x f2�2
�dnucl�2

×Θ�l21 � �x1 � xH1 �2�Θ�l22 � �x3 � xH3 �2�; (10)

where v0 is the modulus of the initial fault slip velocity in H;
φ is the rake angle; l1 and l2 parameterize Inucl in the x1
and x3 direction, respectively; dnucl is a sensitivity factor,
controlling how rapidly the perturbation to Vi decreases
to the reference value of 0 while moving in the direction per-
pendicular to the fault plane x2 � xf2 (see Fig. 2d; because
the medium is initially at rest, V � 0 is the reference state of
the elastic medium), and Θ�:� is the Heaviside function. In
the framework of the traction-at-split-nodes numerical tech-
nique (see Bizzarri and Cocco, 2005, and references therein
for further details), the components of the initial fault slip
velocity are expressed as

vi�x1; x3; 0� � V�
1 �x1; x3; 0� � V�

1 �x1; x3; 0�;

where V�
i �x1; x3; 0� and V�

i �x1; x3; 0� are the components of
V in the positive and negative parts of the medium separated
by the fault, respectively (see Fig. 1), and i � 1, 2, 3. From
equation (10), I have that, in H,

V�
1 �xH1 ; xH3 ; 0� � V�

1 �xH1 ; xH3 ; 0� � v0 cosφ;

V�
2 �xH1 ; xH3 ; 0� � V�

2 �xH1 ; xH3 ; 0� � 0; and

V�
3 �xH1 ; xH3 ; 0� � V�

3 �xH1 ; xH3 ; 0� � v0 sinφ;

in agreement with the formal definition of v0. This nuclea-
tion strategy causes fault points within Inucl to move at t � 0

with a velocity that is maximum in H (where it is v0, as pre-
viously noticed) and is exponentially tapered to 0 at the bor-
der ∂Inucl (see Fig. 2c). The difference between V�

i and V�
i

induces a differential force between the split nodes, which in
turn will cause a differential acceleration, ultimately leading
to a readjustment in the fault traction. When a fault point is
slipping, the fault friction is then determined by the govern-
ing law (equation (6)). The basic difference of this nucleation
strategy with respect to those described in the Initially Non-
spontaneous Rupture Propagation and Introduction of an
Initial Shear Stress Asperity subsections is that the previous
strategies change the reference state of the variables only
on the fault plane (fault strength and prestress, respectively),
while the current strategy introduces a modification in V
in a volume surrounding the hypocenter. The additional
parameters inserted into the model with this nucleation strat-
egy are dnucl and v0.

Quantitative Criteria for the Evaluation
of the Nucleation Strategy

Because the spontaneous, fully dynamic rupture prob-
lem does not have a closed-form analytical solution (even
in homogeneous conditions), there is no theoretical solution
of the problem that can be taken as a reference against which
to compare the different solutions obtained numerically by
adopting the various nucleation strategies. In the evaluation
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of the solutions obtained with different nucleation strategies,
I will consider the following criteria that have to be satisfied.

1. As previously noted, the inertia is always considered (i.e.,
I do not use the quasi-static approximation to solve the
elastodynamic equation).

2. The transition between the early stages of the rupture
(primarily controlled by the nucleation strategy) and the
further spontaneous dynamic rupture propagation (con-
trolled by the adopted constitutive law) has to be gradual
in both space and time, without abrupt discontinuities in
rupture velocity, stress drop, etc.

3. The rupture speed of the ongoing dynamic rupture has to
satisfy the rules based on the value of the strength param-
eter (see for instance Dunham, 2007); for example, a low-
strength fault (like configurationAdescribed in theResults
from Numerical Experiments: Supershear Rupture Propa-
gation section) would accelerate up to supershear speeds,
while a high-strength fault (like configuration B in the
Results for Subshear Rupture Propagation section) would
remain subshear.

4. The extension of the initialization zone has to be as small
as possible; and, once nucleated, the rupture has to prop-
agate spontaneously and dynamically outside Inucl.

5. At fault nodes located outside Inucl, the rupture has to
reproduce the imposed SW law, with its constitutive
parameters.

A solution that better satisfies all these criteria charac-
terizes what I select as the desired solution.

Results from Numerical Experiments: Supershear
Rupture Propagation

In this article, I consider a set of parameters that is re-
presentative of a typical crustal earthquake occurring at a
depth of 5 km. In particular, I adopt the same parameteriza-
tion of the medium surrounding the fault adopted in Version 3
of the Southern California Earthquake Center (SCEC) bench-
mark problem (e.g., Harris et al., 2004); the other frictional
parameters are listed in Table 1. I consider the idealized si-
tuation of homogeneous rheology; that is, frictional hetero-
geneities on the fault (except for Inucl) are neglected. Of
course, this might not represent a realistic assumption for
natural faults (e.g., Rivera and Kanamori, 2002), but here
I am interested in the effects of the nucleation on the rupture
propagation and therefore wanted to disregard any compli-
cation arising from a potentially complex fault rheology,
such as local transitions to supershear regimes (Liu and La-
pusta, 2008; Bizzarri et al., 2010). I consider two different
sets of parameters that are representative of two distinct
classes of rupture regimes: configuration A is a low-strength
fault (S � 0:4), which can produce supershear ruptures,
while configuration B is a high-strength fault (S � 2), where
ruptures remain subshear. If not otherwise explicitly men-
tioned, the parameters of various nucleation strategies are
those tabulated in Table 2.

Figure 3a shows the distribution on the fault plane of the
rupture times (tr�x1; x3�) for the three nucleation procedures
described in the Different Nucleation Strategies section. In
the case of initial shear asperity, I consider three shapes: a
circle (as suggested by the meaning of the critical radius
r�D�
c of Day, 1982), an ellipse (as suggested by the two crit-
ical lengths L�II�

c and L�III�
c of Andrews, 1976a, and 1976b, as

well as by a�UR�c and b�UR�c of Uenishi and Rice, 2004),
and a square (as in SCEC benchmarks; Harris et al., 2009).
The rupture time tr at a generic fault point is defined as the
instant at which the slip velocity at that point exceeds
vl � 0:01 m=sec, a threshold value that appropriately cap-
tures the initiation of dynamic slip (see Bizzarri and Spudich,
2008 and references therein). I then calculate the rupture ve-
locity (vr�x1; x3� as the inverse of slowness: vr�x1; x3� �

1
k∇�x1 ;x3�tr�x1;x3�k

. Recall that, in the case of configuration A,
the maximum allowable rupture speed (Burridge et al.,
1979) is vrmax

� vP (where vP is the P-wave speed), which
is in fact attained in my models, and is in accord with pre-
vious studies (e.g., Bizzarri and Cocco, 2005; Liu and La-
pusta, 2008) and with laboratory experiments (e.g., Xia
et al., 2004). In Figure 3b, I superimpose the boundary lines
separating the fault points experiencing supershear rupture
velocities (points on the left of each line) from those remain-
ing subshear (points on the right of each line). From these
two panels, the overall behavior of the rupture is nearly the
same; the shapes of the rupture, at a given time level, are
similar, and all solutions satisfy all the criteria (1–5) in
the Quantitative Criteria for the Evaluation of the Nucleation
Strategy section. By looking at the details of each numerical
experiment, it emerges that there is a temporal difference in
the arrival of rupture front. This delay is also viewable from
the time evolutions of the fault slip velocity (Fig. 3c) and
those of particle velocity components (Fig. 4). The peaks
are nearly the same, even if particle velocity perturbation
(magenta curve) produces differences in V1 (Fig. 4a). The
numerical oscillations are practically the same in all models;
this indicates that the accuracy of the simulated rupture is
primarily controlled by the spatiotemporal discretization
and not by the choice of the nucleation procedure.

In all previous simulations the size (radius, major
semi-axis, side) of Inucl was the same and equal to r�D�

c , a
conservative choice. On the other hand, by imposing an
elliptical asperity having ra � L�II�

c and rb � L�III�
c , respec-

tively, the rupture initially starts to propagate, but very rapidly
dies (therefore criteria 4 and 5 are not satisfied). This is not
surprising, given the fact that L�II�

c and L�III�
c have been theo-

retically derived for purely 2D problems. The same occurs by
setting ra � 1:36L�II�

c and rb � 1:36L�III�
c , respectively; this

suggests that the multiplicative factor of 1.36 suggested by
Galis et al. (2010) for supershear ruptures is not universal
but strongly depends on the adopted frictional parameters
and in particular is not correct in the case of configuration
A. I have extensively explored the parameters’ space and
found that the minimum value of this multiplicative factor,
guaranteeing spontaneous rupture propagation, is 1.45.
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However, as apparent in the synoptic comparison between
elliptical shear asperities reported in Figure 5, the dynamic
propagation is significantly delayed as the size of the shear
asperity is reduced (i.e., as the multiplicative factor of L�II�

c

and L�III�
c decreases). Just for an example, at the hypocentral

depth the rupture tip arrives at a strike distance from H of
roughly 5 km at t � 1:5 sec for ra � 2:2L�II�

c (� r�D�
c for

my parameters) and at t � 2:5 sec for ra � 1:45L�II�
c . This

indicates that, in the latter case, the rupture takes more time
to be able to propagate on its own outside Inucl.

By construction, the TW-driven rupture is that which
better satisfies criteria (2) and (4) and can be regarded as
the desired solution. Among the other possibilities pre-

sented previously, the case that better agrees with it is
the rupture forced with an elliptical asperity (with a static
overshoot Δτnucl � 0:5%τu in the initial shear stress) with
semi-axes ra � r�D�

c (� 2:2L�II�
c for my parameters) and

rb � 2:2L�III�
c .

Results for Subshear Rupture Propagation

The differences between the nucleation strategies be-
come significant in the case of configuration B, the subshear
rupture, for which the maximum allowable rupture speed is
vrmax

� vR. The behavior of the rupture is quite sensitive
(definitely more than in the case of the supershear rupture

Table 1
Model Discretization and Constitutive Parameters Adopted in This Study

Value

Parameter Configuration A Configuration B

Medium and Discretization Parameters
Lamé constants, λ � G 32 GPa
Rayleigh velocity, vR 3:184 km=sec
S-wave velocity, vS 3:464 km=sec
Eshelby velocity, vE � ���

2
p

vS 4:899 km=sec
P-wave velocity, vP 6 km=sec
Maximum allowed rupture velocity, vrmax

vP vR
Cubic mass density, ρ 2670 kg=m3

Fault length, Lf 30 km*

Fault width, Wf 10 km*

Spatial grid sampling, Δx1 � Δx2 � Δx3 ≡Δx 25 m
Time step, Δt 1:2 × 10�3 sec
Courant–Friedrichs–Lewy ratio, ωCFL � vSΔt=Δx 0.166
Critical frequency for spatial grid dispersion, f�s�acc � vS=�6Δx� 23.1 Hz
Location of the fault, xf2 4.975 km
Coordinates of the imposed hypocenter, H ≡ �xH1 ; xf2 ; xH3 � (15,4.975,5) km
Domain boundary conditions x1 � 0: ABC†; x1 � xH1 : symmetry‡

x2 � 0: ABC†; x2 � xf2 : symmetry§

x3 � 0: free surface; x3 � x3end: ABC
†

Fault Constitutive Parameters
Initial rake angle, φ0 0° ∥

Magnitude of the initial shear stress, τ0 73.8 MPa 63.88 MPa
Magnitude of the effective normal stress, σeff

n 120 MPa
Static level of friction coefficient, μu 0.677 (↔τu � 81:24 MPa)
Kinetic level of friction coefficient, μf 0.46 (↔τf � 55:2 MPa)
Dynamic stress drop, Δτd�

df
τ0 � τf 18.6 MPa 8.68 MPa

Strength parameter, S 0.4 2
Characteristic slip-weakening distance, d0 0.4 m#

*Dimensions of the fault guarantee the transition up to supershear speeds in the case of a low-strength fault;
extrapolating results from Dunham (2007; his figures 5 and 10) yields Lf > Lc ≡ 1

4α�S�
Gd0
τu�τf � 3:072 km and Wf >

Wc≅0:4Lc � 1:229 km.
†The absorbing boundary conditions are described in detail in Bizzarri and Spudich (2008; their appendix A).
‡The symmetry about the strike location of the hypocenter (x1 � xH1 ) is exploited as described in Bizzarri (2009a):

�i; j; k� denotes the triplet identifying a node in the Ox1x2x3 Cartesian coordinate system (see also Fig. 1). The
components of the particle velocity will satisfy the following rules: V1��i; j; k� � V1��i; j; k�; V2��i; j; k� �
�V2��i; j; k�; V3��i; j; k� � �V3��i; j; k�, where minus and plus signs in front of the i-index denote a point with
x1 coordinates less than and greater than xH1 , respectively.

§The symmetry about the fault (x2 � xf2 ) is exploited as described in Bizzarri (2009a): the components of the particle
velocity will satisfy the following rules: V1�i;�j; k� � �V1�i;�j; k�; V2�i;�j; k� � V2�i;�j; k�; V3�i;�j; k� �
�V3�i;�j; k�, where minus and plus signs in front of the j–index denotes a point with x2 coordinates lower and
greater than xf2 , respectively.∥Initial shear traction is aligned along x1 and defines a left-lateral strike-slip fault.

#With this value, I obtain a sufficiently good resolution of the cohesive zone (see Bizzarri and Cocco, 2005). A larger
value would imply that rupture will take several kilometers to get started on its own.
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presented in previous section) to the parameters of each
nucleation procedure (see Table 2), as discussed in depth in
the Appendix. In the present section, I compare the best cases
for the three nucleation strategies described in the Different
Nucleation Strategies section.

First, I have verified that, for all the considered nuclea-
tion procedures, a nucleation patch with a dimension along
x1 (radius, major semi-axis, or side) equal to L�II�

c is not large
enough to produce a dynamic instability that is able to
spontaneously propagate over the whole fault. Because in

Table 2
Optimal Parameters for the Nucleation Strategies Considered in This Article

Value*

Parameter Configuration A (S � 0:4) Configuration B (S � 2)

Initially Nonspontaneous Rupture Propagation
Initially constant rupture velocity, vforce 0:75vR (� 2:4 km=sec)
Weakening time, t0 0.1 sec
Nucleation patch, Inucl Circle Circle
Dimension of the nucleation patch r � r�D�

c r � 1:57r�D�
c

Introduction of an Initial Shear Stress Asperity
Static overshoot, Δτnucl 0.5% τu (� 0:4062 MPa)
Nucleation patch, Inucl Ellipse Smoothed ellipse
Dimensions of the nucleation patch along x1 and x3 axes ra � r�D�

c

rb � r�D�
c �L�III�

c =L�II�
c �

ra � r�D�
c

rb � r�D�
c �L�III�

c =L�II�
c �, ltaper � 2:6 km

Perturbation to the Initial Particle Velocity
Initial fault slip velocity in H, v0 20 μm=sec
Sensitivity parameter for tapering of Vi in the x2 direction, dnucl 20 m
Nucleation patch, Inucl Circle Circle
Dimensions of the nucleation patch along x1 and x3 axes l1 � l2 � r�D�

c l1 � l2 � r�D�
c

*Numerical values inside parentheses are calculated in the case of the adopted models parameters (listed in Table 1).

Figure 3. Comparison between solutions for ruptures developing on a low-strength fault (S � 0:4) obtained by using different nucleation
strategies. (a) Contours of rupture times plotted every 0.5 sec, with rupture times equal to 2 sec reported with thick lines for better clarity.
(b) Boundary between supershear and subshear regimes: fault points located on the right of each line experience subshear rupture velocities.
(c) Slip velocity time histories. (d) Phase portrait in a fault point located at hypocentral depth and at a distance of 7 km from H.
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this case a�UR�c < L�II�
c (see Table 3), the same is true when

Inucl extends a
�UR�
c along x1. Again, this is physically reason-

able because L�II�
c and L�III�

c were derived in 2D.
In Figure 6a there is a comparison between rupture times

obtained for a TW-driven rupture (Inucl of equation 7 is now a
circle with radius 1:57r�D�

c ; blue curve), for two smoothed
asperities (circular, green line; elliptical, red line), and for
the case of perturbation of particle velocity (magenta line).
In the case of smoothed asperities, I assume that τ nucl of
equation (9) overcomes (by the overshoot Δτnucl) τu only
in an inner portion of Inucl, and it is cosine-tapered to τ 0
at ∂Inucl over the length ltaper � 2:6 km. In the case of the
smoothed circular asperity, τ nucl exceeds τ 0 in a circular
region of radius r � r�D�

c (see Fig. 6b,c); in the case of the
smoothed elliptical asperity, τ nucl exceeds τ0 in an elliptical
region with ra � r�D�

c (� 2:2L�II�
c for my parameters) and

Figure 4. Time histories of the resulting particle velocity for the
five models of Figure 3 on a free surface receiver located at a strike
distance of 7 km from the epicenter and at a distance of 1 km from
the fault trace. (a) Fault-parallel component of V (namely V1).
(b) Fault-normal component of V (namely V2). (c) Vertical compo-
nent of V (namely V3).

Figure 5. (a) Comparison between rupture times (contour lines
plotted every 0.5 sec) for low-strength ruptures nucleating with the
imposition of an initial shear asperity of elliptical shape and having
different values of the major and minor semi-axes: ra � αL�II�

c and
rb � αL�III�

c . Thevalues of themultiplicative factor ofα are indicated
in the legends. The case α � 1:5 roughly corresponds to having
semi-axes equal to critical values of Uenishi and Rice (2004; see
equations (4) and (5). (Namely, ra � a�UR�c when α � 1:56). To em-
phasize the different locations of the rupture tip in the various numer-
ical experiments, the curves corresponding to 2 sec are displayed
with thick lines. (b) Time evolution of the slip velocity in the same
fault point of Figures 3c and 3d. The result of the initially TW-driven
rupture (blue line) is reported in both panels for comparison.
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rb � 2:2L�III�
c . Fig. 6a clearly shows a delay in the rupture

times and also a significant difference in the peaks of the
resulting fault slip velocity (Fig. 6d). On the contrary, in
the case of configuration A, the peaks in fault slip velocity
were substantially the same (see Fig. 3c).

The comparison of the free surface velocity histories
(Fig. 7) shows that the nucleation obtained by imposing a
perturbation in the initial particle velocity (magenta lines)
causes the solutions to be more oscillating for early times
(t < 3 sec for this receiver); such high frequency oscillations
are spurious artifacts that are absent in the solutions obtained
by using the other nucleation strategies. These oscillations
are present also in the distributions of the rupture velocity
(see Figs. A3a and A3b in the Appendix) and are in contrast
with criterion (2).

Among the different solutions, the TW-driven nucle-
ation over a region of radius r > r�D�

c and with vforce �
0:75vR and t0 � 0:1 s is that which better satisfies criteria
in the Quantitative Criteria for the Evaluation of the Nuclea-
tion Strategy section and therefore can be regarded as the
desired solution. The other solution that better approaches
this behavior corresponds to the smoothed elliptical shear
stress asperity, with semi-axes ra � r�D�

c , rb � r�D�
c

L�III�
c

L�II�
c

, and
ltaper � 2:6 km. The specific values of r (in the case of
TW-driven rupture) and ltaper (when asperity is imposed)
can depend on the adopted constitutive parameters; their
optimal values might have to be numerically obtained by
a trial-and-error approach.

Discussion and Concluding Remarks

The numerical simulation of rupture dynamics is funda-
mental in the attempt to understand earthquake physics and
in strong ground-motion prediction. Coherent modeling of
earthquake rupture requires the description of the several
space and time scales involved in the rupturing process, such
as the nucleation (an initial, aseismic slippage, where inertial
effects are negligible), the rapid propagation of the rupture
(seismically detectable and associated with the emission
of seismic waves and with the stress redistribution in the sur-

roundings of the fault), and the rupture arrest. Space and time
steps are numerically controlled by the smallest scale; the
nucleation therefore requires very small computational grids
as compared to the rest of the process and drastically in-
creases the computation time, even if the nucleation zone
is very small compared to the surface which fails. Moreover,
the time duration of the nucleation is very much longer than
that of cosesimic processes. As indicated previously, my
main interest here is not on the physical details of the nuclea-
tion process, which can be modeled by considering a tecto-
nically driven fault (see for instance Liu and Lapusta, 2008).
Because my focus is on the dynamic rupture propagation, it
is computationally convenient to introduce artificial pro-
cesses that allow the rupture to spontaneously propagate.
Nevertheless, the correct modeling of the nucleation is fun-
damental to properly retrieve the slip and rupture time dis-
tribution on the fault plane, as well as to model the energy
content of the radiation and its distribution in the frequency
domain.

In this article, I have considered 3D dynamic ruptures
spontaneously spreading on a planar fault, which obey the
linear slip-weakening (SW) law (equation 6) and which
are embedded in a homogeneous, elastic medium, free from
external tectonic loading. I have considered various nuclea-
tion strategies, largely employed in the literature, that are
conceptually and algorithmically different: the initially non-
spontaneous, time-weakening (TW)–driven rupture propaga-
tion (the Initially Nonspontaneous Rupture Propagation
section); the introduction of an asperity in the initial shear
stress (the Introduction of an Initial Shear Stress Asperity
section); and the perturbation to the initial particle velocity
(the Perturbation to the Initial Particle Velocity section). I
have systematically compared the resulting solutions by con-
sidering the agreement with respect to a desired solution, and
the latter is the solution that better satisfies all the criteria
described in the Quantitative Criteria for the Evaluation of
the Nucleation Strategy section. I have also tested the
effects of the size and of the shape of the initialization zone,
Inucl. In the comparison of the solutions, I have considered
the rupture times (tr), the rupture velocities (vr), the solutions

Table 3
Values of the Critical Nucleation Lengths for the Model Parameters listed in Table 1

Value

Parameter Equation in Article Text
Configuration A

(S � 0:4)
Configuration B

(S � 2)

L�II�
c Critical nucleation in the inplane (x1) direction,

following Andrews (1976b)
(1) 409 m 1880 m

L�III�
c Critical nucleation in the antiplane (x3) direction,

following Andrews (1976a)
(2) 307 m 1410 m

r�D�
c Critical nucleation radius, following Day (1982) (3) 884 m 4058 m
a�UR�c Critical nucleation major semi-axis, following

Uenishi and Rice (2004)
(4) 639 m 639 m

b�UR�c Critical nucleation minor semi-axis, following
Uenishi and Rice (2004)

(5) 480 m 480 m

min
n
L�II�
c ; r�D�

c ; a�UR�c

o
L�II�
c a�UR�c
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on the fault, and the synthetic motions on the free surface of
the resulting dynamic ruptures.

One interesting conclusion is that, in the case of super-
shear ruptures, the previouslymentioned nucleation strategies
produce results not dramatically dissimilar one from the
others (see the Results from Numerical Experiments: Super-
shear Rupture Propagation section). Basically, different stra-
tegies lightly change the time occurrence of the transition to
supershear rupture speeds (see Fig. 3b), in agreement with the
results of Festa and Villotte (2006) and Liu and Lapusta
(2008). Interestingly, my results indicate that supershear rup-
tures tend to forget their origins more than subshear ruptures
do. In fact, in the case of ruptures that develop with a speed
equal to a fraction of the shear wave velocity, which seem to
represent the majority of real-world earthquake events (e.g.,
Heaton, 1990), the modeler has to carefully tune the param-

eters of each individual nucleation strategy (see theResults for
Subshear Rupture Propagation section and the Appendix).

My results also demonstrate that, among the different
critical nucleation lengths introduced in the literature (see the
Critical Lengths for Nucleation section), the key parameter to
be used to quantify the extension of Inucl is r

�D�
c (equation 3).

For Inucl having a length along the inplane direction less than
r�D�
c , the rupture does not spontaneously propagate outside
the nucleation patch or quickly dies a few fault nodes outside
Inucl (contradicting criterion 4). I know that there is a con-
ceptual problem in applying the critical length theoretically
derived for 2D geometries to 3D problems. I have performed
these tests to numerically verify this because some authors
(e.g., Galis et al., 2010) claim that even in 3D the size of Inucl
has to be quantified trough multiples of L�II�

c and L�III�
c for

both subshear and supershear ruptures.

Figure 6. (a) Comparison between rupture times (lines plotted every second) obtained in the case of ruptures developing on a high-
strength fault (S � 2). Blue line refers to an initially TW-driven event (Inucl of equation 7 is a circle with r � 1:57r�D�

c , t0 � 0:1 sec, and
vforce � 0:75vR [� 2:4 km=sec for my parameters]). Green line refers to a solution where a smoothed circular asperity is applied, as reported
in panels (b) and (c): τ nucl > τ 0 in a circular region with r � r�D�

c and τ nucl � τu �Δτnucl only in an inner portion of Inucl, and it is cosine-
tapered to τ 0 at ∂Inucl over the length ltaper � 2:6 km. Red line refers to the case of a smoothed elliptical asperity (analogous to previous case

but now with major semi-axis ra � r�D�
c and minor semi-axis rb � r�D�

c
L�III�
c

L�II�
c

). (d) Comparison between fault slip velocity histories at the a fault

point located at hypocentral depth and at a distance of 8 km from H.
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The numerical simulations presented in this article con-
firm that the TW-driven nucleation strategy, with vforce �
0:75vR and t0 � 0:1 sec, produces the desired solution when
the size of Inucl along the inplane direction (namely where
the condition of equation 7 is evaluated) is r�D�

c for supershear
ruptures and greater than r�D�

c in the case of subshear ones.

Moreover, I found that the desired solution is ap-
proached when a smoothed elliptical asperity in the initial
shear stress is adopted. While the smoothing of the asperity
(i.e., the portion of Inucl where τnucl is gradually tapered from
τu �Δτnucl to τ0) is of secondary importance in the case of
supershear ruptures, I have shown that the smoothing dis-
tance ltaper in the case of subshear ruptures is important
(see Appendix). I found that the optimal parameters are a
static overshoot Δτnucl equal to 0.5% of τu (in agreement
with Liu and Lapusta, 2008, who use 1% of τu) and major
and minor semi–-axes of Inucl given by ra � r�D�

c and
rb � r�D�

c
L�III�
c

L�II�
c

, respectively. Numerical results indicate that
the optimal value of ltaper is 2.6 km, but its specific value
might change by varying the models parameters; therefore,
it has to be found by a trial-and-error procedure. I want to
emphasize that, within Inucl, these two nucleation strategies
(TW-driven and asperity) have different Kostrov energies
(Kostrov and Das, 1988): in the first case, when the rupture
propagates at the fixed velocity vforce, the Kostrov term is
�τ 0 � τf�u, while in the second case, because the initial trac-
tion is raised up to τu, it is �τu � τf�u.

The third type of nucleation strategy is conceptually
interesting because it consists of the introduction of a pertur-
bation of the initial reference state of the fault system (the
static equilibrium) within a volume surrounding the fault.
This is particularly appealing because I have various evi-
dence of the complexity of a fault structure and am aware
that a plane is only a mathematical approximation of the
volume where nonelastic processes take place (see Bizzarri,
2009b and references therein for a comprehensive discus-
sion). In spite of this, the adoption of this nucleation strategy
produces results close to the “desired” solution for super-
shear ruptures but not for subshear ones. In the latter config-
uration, the results are in conflict with criterion (2) because
they are affected by large, high frequency, spurious oscilla-
tions (see Fig. 7) that can not be removed even with a careful
exploration of the parameter space.

Different nucleation procedures potentially have differ-
ent stress drops within the initialization zone. A quantitative
estimate of the significant differences caused by the various
strategies and, for the same numerical procedure, by the
adoption of different values of the nucleation parameters,
is represented by the temporal evolution of the (dynamic)
seismic moment, M�t�, which accounts for the cracked area
and for the developed cumulative fault slip during the con-
sidered time window. It is expressed as

M�t� �
���������������������������������������
M21�t�2 �M23�t�2

q
;

being

M2i�t��
df

ZZ
Σ
Gui�x1; x3; t�dx1dx3;

where i � 1 and 3, Σ is the fault, and u1 and u3 are two
components of fault slip (see Bizzarri and Belardinelli,

Figure 7. The same as in Figure 4 but for configuration B.
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2008 for further details). A synoptic comparison between
M�t� pertaining to the whole ensemble of the numerical
experiments presented in this article is reported in Fig. 8.
In panels (a) and (b) of that figure the thick lines refer to
the optimal cases for each nucleation strategy, that is, the
configurations that, for that nucleation strategy, better
approaches the desired solution (marked as DS in the legend
and plotted with the thickest blue line). In the case of con-
figuration B (subshear ruptures), the tuning of the nucleation
parameters reduces the large differences between the results
obtained with the various nucleation strategies and the
desired solution. While in the case of configuration A (super-
shear ruptures), the maximum of the absolute value of the
difference between the seismic moment obtained with
TW-driven nucleation and elliptical shear asperity is of the
order of 10%; in the case of configuration B, it increase up to
80% (Fig. 8c). After about 1 sec, the solutions are very
similar in the supershear case, while they differ by nearly
30% after about 2 sec in the subshear case.

Finally, I want to highlight that the results of a
dynamic model of a synthetic earthquake can be potentially
affected and biased from the adoption of a nucleation strat-
egy for linear slip-weakening governing law. This can be
due, for instance, to an improper size or shape of the
initialization patch, to an excessively high static overshoot,
or to an incorrect forcing rupture velocity. This is true
especially in the case of high-strength faults; in some con-
figurations, I have found that a huge initial shear stress as-
perity can lead to the crack front bifurcation at depth and to
the transition to supershear rupture speeds, contradicting
criterion (3).

As an overall conclusion, I point out that the modeler
has to carefully check the obtained numerical solution,
compare it against other results and painstakingly tune the
nucleation parameters. In this article, I have presented some
practical recipes with the aim to serve as guidance in per-
forming these efforts.

Data and Resources

All data sources are taken from published works listed in
the References. OpenMP may be accessed at http://openmp
.org/wp/.
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Appendix

Sensitivity to the Nucleation Parameters

While the differences between ruptures forced to develop
using dissimilar nucleation strategies are relatively small in
the case of supershear ruptures (see the Results from Numer-
ical Experiments: Supershear Rupture Propagation section),
they become more significant in the case of subshear ruptures
(see the Results for Subshear Rupture Propagation section).
Moreover, the nucleation parameters (listed in Table 2) have
important effects on the further dynamic rupture propagation;
and, therefore, a thorough tuning of them is required in order
to cause a dynamic propagation consistent with all the criteria
listed in the Quantitative Criteria for the Evaluation of the Nu-
cleation Strategy section, as discussed in the remainder of this
appendix.

The Case of TW-Driven Ruptures

In Figure A1, I compare the solutions obtained by vary-
ing the parameters of the TW-driven nucleation. The
behavior of the dynamic rupture at a radial distance greater
than 1:5r�D�

c from H is practically identical in all cases.
The most important differences appear at lower hypocentral
distances, where the rupture velocity is forced to equal
vforce. In the cases plotted in Figures A1a to A1d, vr has large
fluctuations near ∂Inucl, which are in contrast with criter-
ion (2) (see the Quantitative Criteria for the Evaluation of
the Nucleation Strategy section) and are very difficult to
justify physically. When the rupture becomes spontaneous,
vr increases; soon it decreases a lot (blue annular region
in Figs. A1a to A1d); and it finally increases again up to
its limiting velocity. This indicates that even if the SW
law takes over, the solution is still affected by the imposed
nucleation. This behavior becomes more evident as t0 in-
creases (compare Figs. A1a and A1c); from the rupture times
reported in Figure A1f, for t0 > 0:1 sec the rupture is af-
fected by a significant delay. The resulting vr for the desired
solution, which better satisfies all criteria in the Quantitative
Criteria for the Evaluation of the Nucleation Strategy section,
is reported in Figure A1d (corresponding to the blue curve in
Figs. 6a, 6d, and 7), in which the radius of Inucl where the
condition of equation (6) is evaluated is greater that r�D�

c . The
specific value of r � 1:57r�D�

c might depend on the adopted

governing parameters, and, therefore, it might have to be
found numerically by a trial-and-error procedure.

The Case of Initial Stress Asperity

Figure A2 summarizes the comparison between different
types of asperities introduced in the initial shear stress field. I
first emphasize that, by forcing the rupture by assuming a

circular asperity with radius r � r�D�
c , the rupture hits the free

surfacewith somuch energy as to cause the birth of a sustained
supershear pulse, which is in contrast with criterion (3).
Moreover, in all cases presented in the previous section,
the supershear patch was noticeably smaller, and the super-
shear pulse died very soon (see Figs. A1 and A3), while in
the present case it continues to propagate up to the boundary
of the computational domain. These results clearly indicate
that, in the case of configuration B, the initial shear stress as-
perity as defined in equation (9) has to be modified in order to
obtain the desired solution. I therefore consider a smoothed
asperity as described in the Results for Subshear Rupture

Propagation section (see also Fig. 6b,c); I set Inucl with r �
r�D�
c and progressively increase ltaper. As a consequence of this
variation, I also decrease the size of the inner region (having

radius r�D�
c � ltaper), where τ nucl ≥ τu. Results for two cases

are reported in Figures A2b and A2c. By progressively in-
creasing ltaper, the supershear patch is reduced. The result that
better agrees with the desired solution (that reported in
Fig. A1d) corresponds to the smoothed elliptical asperity

(Fig. A3d), having ra � r�D�
c , rb � r�D�

c
L�III�
c

L�II�
c

, and ltaper �
2:6 km; a further increase of ltaper will cause the rupture to
die and to not propagate dynamically outside the initialization
zone (and this is barely in contrast with criterion 4). A similar
result is obtainedwith a smoothed circular asperity (Fig.A2c).
From the comparison of the rupture times (Fig. A2e), the best
agreement is between the configurations of panels (c) and (d),
as expected.

Finally, I note a small, semicircular patch at the hypocen-
tral depth that is slightly supershear. This small numerical ar-
tifact (which tends to be against criterion 2) becomes larger
andmore pronounced as the static overshootΔτnucl increases.

The Case of the Perturbation to the Initial
Particle Velocity

My numerical simulations indicate that the prominent
parameter in this nucleation procedure is dnucl, which con-
trols the extension of the volume in the direction perpen-
dicular to the fault, where V is perturbed at t � 0. If this
region is too wide (dnucl > 50 m), the rupture is not able
to dynamically propagate outside Inucl, even for large values
of v0; this contradicts criterion 4). In Figure A3 compares the
resulting normalized rupture velocities for two of the
numerical simulations performed. The rupture decelerates
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Figure A1. Effects of the nucleation parameters in the case of TW-driven rupture in case of high strength ruptures. Normalized rupture
velocity distributions (namely, vr=vS) are shown in panel (a) for t0 of equation (8) equal to 0.05 sec; (b) for t0 � 0:1 sec; (c) for
t0 � 0:5 sec; and (d) for t0 � 0:1 sec and vforce � 1:2 km=sec. In all these numerical experiments, r � r�D�

c . (e) Refers to a case with t0 �
0:1 sec and r � 1:57r�D�

c . (f) Resulting rupture times for all tests reported in previous panels, where the curves corresponding to 3.5 sec are
displayed with thick lines for a better comparison. In panels (a) to (e), fault patches where vr is locally supershear are indicated, as well as the
extension of Inucl.
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Figure A2. Effects of the nucleation parameters when an asperity in initial shear stress is imposed in the case of high strength fault.
Ratios vr=vS when at t � 0 are applied (a) a circular asperity of radius r � r�D�

c ; (b) a smoothed circular asperity with r � r�D�
c and

ltaper � 1:5 km; (c) a smoothed circular asperity with r � r�D�
c and ltaper � 2:6 km; and (d) a smoothed elliptical asperity with

ra � r�D�
c and rb � r�D�

c
L�III�
c

L�II�
c

. The extension of Inucl and the fault patches where vr is locally supershear are indicated. (e) Comparison between

resulting rupture times; the curves corresponding to 3.5 sec are displayed with thick lines.
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just outside Inucl. This behavior, which is in contrast with
criterion (2), is more evident as dnucl increases. Within the
annular blue region enclosing Inucl, the rupture velocity is
highly oscillatory; this region is modulated by the value
of dnucl and in extreme cases (dnucl > 50 m) inhibits the
dynamic rupture propagation.
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Figure A3. Effects of the nucleation parameters when a perturbation in particle velocity is assumed in the case of high-strength fault.
Ratio vr=vS when a perturbation to the particle velocity is applied at t � 0 within a fault patch parameterized by l1 � l2 � r�D�

c in the case of
(a) dnucl � 20 m and (b) dnucl � 40 m. (c) Comparison between the resulting rupture times; the curves corresponding to 3.5 sec are displayed
with thick lines.
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