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Abstract The single-body mass-spring analog model has been largely used to
simulate the recurrence of earthquakes on faults described by rate- and state-
dependent rheology. In this paper, the fault was assumed to be governed by the clas-
sical slip-weakening (SW) law in which the frictional resistance linearly decreases as
the developed slip increases. First, a closed-form fully analytical solution to the 1D
elastodynamic problem was derived, expressing the time evolution of the slip and its
time derivative. Second, a suitable mechanism for the recovery of stress during the
interseismic stage of the rupture was proposed, and this stress recovery was shown
quantitatively to make possible the simulation of repeated instabilities with the SW
law. Moreover, the theoretical predictions were shown to be compatible with the
numerical solutions obtained by adopting a rate and state constitutive model. The ana-
lytical solution developed here is, by definition, dynamically consistent and nonsin-
gular. Moreover, the slip velocity function within the coseismic time window found
here can be easily incorporated into slip inversion algorithms.

Scientific Rationale

There are two concepts that have been strongly empha-
sized in the mechanics of earthquake faulting: (1) it is not
possible to obtain a closed-form analytical solution to the
spontaneous dynamic rupture problem (i.e., without a prior
imposed rupture velocity) for an extended fault (2D or 3D
problems), and (2) there is no consensus on the expression
of the fault friction (i.e., on the governing law that describes
the various phenomena occurring during an earthquake
instability; Bizzarri, 2009).

As discussed in Bizzarri (2011b), many different friction
models have been proposed in the literature. The most large-
ly employed models are the slip-dependent laws, where the
frictional resistance is a function of the displacement discon-
tinuity (slip) across the sliding interface, and the more elab-
orate nonlinear rate- and state-dependent (RS) friction laws,
which are mainly dependent on the slip velocity and on some
state variables, thereby accounting for the memory of the pre-
vious slip episodes (Ruina, 1983; Marone, 1998 and refer-
ences cited therein).

Studies of dynamic models of extended, fully dynamic,
and spontaneous ruptures showed that the classical (i.e.,
linear) slip-weakening (SW) equation (Ida, 1972) is able to
reproduce all of the main features of a single instability
event, as rate and state laws do (Okubo, 1989; Cocco and
Bizzarri, 2002): the stress release and the consequent excita-
tion of seismic waves in the medium surrounding the fault, a
finite energy flux at the crack tip, and the breakdown pro-
cesses occurring over a finite distance. In addition, the

numerical implementation of the SW model is straightfor-
ward, and this law has the fundamental advantage of allow-
ing the modeler to clearly define and assign a priori (i.e., as
input parameters) all of the levels of stress and the scale dis-
tance over which the stress release is accomplished (and thus
of the so-called fracture energy, required for the rupture to
advance; Bizzarri, 2010b).

The most severe physical limitation attributed to the
classical SW model is that, contrary to the RS laws (Gu et al.,
1984; Bizzarri, 2010c, among many others), in its canonical
formulation it is not able to reproduce further instabilities on
the same seismogenic structure; that is, it is unable to simu-
late the stress recovery during the interseismic period that
leads to subsequent slip failures. This is the reason why the
classical SW model has never been implemented in mass-
block models of faults. Aochi and Matsu’ura (2002) pre-
sented numerical solutions to a spring-slider model by adopt-
ing a more complicated friction law, in particular, a nonlinear
slip-dependent constitutive equation with an additional ex-
plicit dependence on the time, which accounts for adhesion
and abrasion effects.

The main objectives of the present study were twofold:
(1) to find an analytical solution to the dynamic problem in
the case of a single-body (1D) mass-spring analog fault
model and (2) to propose a suitable modification to the
SW law that would lead to the interseismic stress recovery.
Therefore, I show that it is possible to simulate the whole
seismic cycle with repeated earthquake ruptures on the same
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fault even in the framework of the simple SW friction gov-
erning model, which is in general agreement with the results
from the RS friction law.

The Adopted Constitutive Model

In the present paper, the frictional resistance τ was as-
sumed to be a linear function of the slip �u developed during
an instability:

τ �

8><
>:
�
μu � �μu � μf� �u

d0

�
σeff
n ; �u < d0

μfσeff
n � f��t�; �u ≥ d0; τ < τu

; (1)

where μu and μf define the yield and the residual levels of
stress, respectively (τu � μuσeff

n and τf � μfσeff
n ), d0 is the

characteristic SW distance over which τ decreases (τ � τf
when �u � d0), σeff

n is the effective normal stress (which
can account for possible temporal variations due to the ther-
mal pressurization of pore fluids; Bizzarri and Cocco, 2006),
and f��t� is a function of the time �t elapsed after the comple-
tion of the stress release that occurs during an instability
event. The function f represents the assumed time history of
the stress during the interseismic period in a sequence of
stick–slip events. In this paper, the following was assumed:

f��t� � Rkvload �t; (2)

where R is a dimensionless tuning parameter controlling the
stress recovery and kvload � _τ load is the loading rate of tec-
tonic origin. The function f��t� is responsible for the stress
recovery because it causes an increase in τ up to τu; at this
instant, another instability occurs. (Recall here that, in the
SW framework, a dynamic instability is realized when τ first
reaches τu.) As will be discussed in the remainder of the pa-
per, the recurrence interval is not simulated by the model, as
in the case of the RS laws (Rice and Tse, 1986), but it is
imposed through the choice of f��t�. In light of this knowl-
edge, the physical interpretation of the parameter R is the
following: a zero value for R gives zero stress recovery so
that the stress on the fault never reaches the yield strength
and no subsequent seismic events occur, meaning that all
deformation is accommodated by slow aseismic creep either
on the fault or on some subsidiary structure occurring at a
rate equal to the plate velocity. If R is 1, all tectonic loading
is accommodated by seismicity on the fault, and when R is
between 0 and 1, some creep is occurring, in effect lengthen-
ing the cycle time of the seismic events.

Interestingly, within the coseismic time window (per-
taining to the stress release process and having a duration
of tens of seconds), the function f��t� is negligible with
respect to τf, and therefore the governing model described
in equation (1) reduces to the canonical formulation of Ida
(1972), in which τ remains equal to τf. Note that f��t� be-
comes important in the interseismic stage of the rupture.

Fully Analytical Solution to the 1D
Elastodynamic Equation

The spring-slider model with one degree of freedom,
which has been largely employed to describe the whole his-
tory of a seismogenic fault (Rice and Tse, 1986, among
others), was used here. For this analog fault system, the equa-
tion of motion is that of a harmonic oscillator:

m �u � kvloadt � ku � τ � c _u; (3)

where the overdots indicate the time derivatives, m is the
mass equivalent of the fault (per unit surface; m �
k�T=�2π��2, where T is the vibration period of the frictionless
oscillator), k is the elastic constant of the spring (accounting
for the elastic medium cut by the fault interface), and vload is
the imposed loading velocity at the end of the spring (phy-
sically interpreted as the speed of a tectonic plate loading the
seismogenic region under study). The fault stiffness can be
associated with the static stress drop and the total slip devel-
oped during the failure event (Walsh, 1971). The load ap-
plied to the system, kvloadt, gives the tectonic loading rate
_τ load � kvload appearing in equation (2). The last term in
equation (3), where the constant c depends on the parameters
of the medium in which the fault is embedded, expresses the
so-called radiation damping (Rice, 1993), introduced to
simulate the energy lost as propagating seismic waves. In
equation (3), which of course is a proxy of the true behavior
of an extended fault embedded in a continuous medium, τ
represents the frictional resistance; in particular, τ is assumed
to follow equation (1).

For a graphical illustration of this model, see figure S1
of the auxiliary material in Bizzarri (2010c).

First Weakening Episode

As is well known, within the SW framework, the fault is
locked until the frictional resistance reaches the upper yield
stress τu. This occurs at the time tfirst � τu=�kv0�, which
corresponds to the onset time of the first instability (v0
is the initial velocity of the loading point), and therefore
u�t0� � 0, ∀ t0 ≤ tfirst. For the sake of simplicity, in the re-
mainder of the paper, the time elapsed since tfirst is
denoted by the symbol t (tfirst is the origin of times). Let
us also assume that v0 � vload.

By construction, at t � 0, the loading point displace-
ment is uload � τu=k, v�0� � v0, and τ�0� � τu; after the
slider moves (i.e., for t > 0), the frictional resistance is
described by equation (1), with �u � u because u�0� � 0.
It was also observed that, during a coseismic instability, uload
can be considered to be constant and the function f��t� can be
neglected so that the constitutive model (1) reduces to the
classical SW law, as discussed in The Adopted Constitutive
Model section. Consequently, the solutions to equation (3)
are
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u�t� � mv0
C2

�
exp

�
� �c � C2�t

2m

�
� exp

�
� �c� C2�t

2m

��
(4)

and

v�t� � v0
2C2

�
��c � C2� exp

�
� �c � C2�t

2m

�

� �c� C2� exp
�
� �c� C2�t

2m

��
; (5)

where the following quantities, constant through time, have
been introduced:

Δτb ≡ τu � τf; C1 ≡ d0k �Δτb;

and C2 ≡
����������������������������
c2d0 � 4mC1

d0

s
: (6)

Note that equations (4) and (5) are real-valued functions
when the following condition holds:

C1 ≤ c2d0
4m

or equivalently Δτb ≥ d0
4m

�4km � c2�:
(7)

The previous solutions (4) and (5) hold up in the instant
when u first reaches d0; let this instant be denoted by the sym-
bol tf (in particular, tf � Tb, whereTb is the breakdown time,

expressing the time required for τ to complete the breakdown
stress dropΔτb � τu � τf; Bizzarri et al., 2001). Now uf ≡
u�tf� � d0 by definition and vf ≡ v�tf�, which is known
from equation (5). Also in this case, for a time window that
is small with respect to the interseismic stress recovery pro-
cess, uload � τu=k and τ � τf. For typical values of the pa-
rameters (see Table 1), c2 � 4km < 0; therefore, a solution
to the elastodynamic problem is sought in the form
g�~t� � exp�� c~t

2m��c1 cos�ω~t� � c1 sin�ω~t��, where g is a func-
tion of ~t and

~t≡ t � tf; ω≡
��������������������
4km � c2

p

2m
: (8)

(Again, note that ω is constant through time.) By applying the
initial conditions (at t � tf) discussed before equation (8), g is
found to be a constant (g � Δτb

k ) so that finally the following
are obtained:

u�t� � Δτb
k

� exp�� c~t
2m�

2kmω
�2C1mω cos�ω~t�

� �2kmvf � cC1� sin�ω~t�� (9)

and

v�t� � exp�� c~t
2m�

4km2ω
�4km2ωvf cos�ω~t�

� �2ckmvf � c2C1 � 4C1m
2ω2� sin�ω~t��: (10)

Solutions (9) and (10) hold for t > tf and therefore comple-
ment equations (4) and (5), respectively,which hold for t < tf.
They represent the solution within the coseismic time

Table 1
Adopted Constitutive Parameters

Value

Parameter Configuration A Configuration B

Model Parameters
Loading velocity, vload 3:17 × 10�10 m=s 3:17 × 10�10 m=s
Machine stiffness, k 10 MPa=m 10 MPa=m
Tectonic loading rate, _τ0 � kvload 3:17 × 10�3 Pa=s 3:17 × 10�3 Pa=s
Period of the analog freely slipping system, T � 2π

���������
m=k

p
5 s 5 s

Radiation damping constant, c 4:5 MPa ·s=m 4:5 MPa· s=m
Fault Constitutive Parameters
Effective normal stress, σeff

n 30 MPa 30 MPa
Initial slip velocity, v0 3:17 × 10�10 m=s�� vload� 3:17 × 10�10 m=s�� vload�

RS Friction Law (Equation 18) Parameters
Logarithmic direct effect parameter, a 0.008 0.012
Evolution effect parameter, b 0.016 0.016
Characteristic scale length, L 0.01 m 0.01 m
Reference value of the friction coefficient, μ� 0.56 0.56
Reference value of the sliding velocity, v� 3:17 × 10�10 m=s�� v0� 3:17 × 10�10 m=s�� v0�
Cycle time, Tcycle 52.00 yr 31.40 yr

SW Model (Equation 1) Parameters
Upper yield stress, τu 17.3 MPa 17.2 MPa
Kinetic friction level, τf 13.8 MPa 15.3 MPa
Breakdown stress drop, Δτb � τu � τf 3.5 MPa 1.9 MPa
Characteristic SW distance, d0 0.1 m 0.1 m
Parameter controlling the interseismic stress recovery, R 0.673 0.605
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window, and they do not depend on any physical assumptions
regarding the interseismic stage of the rupture.

Interseismic Phase

Equation (10) predicts that at a certain time, denoted
by the symbol th, the slip velocity first falls to zero:
vh ≡ v�th� � 0. Correspondingly, the slip reaches its maxi-
mum value, uh ≡ u�th�; at this instant, the slider stops. For
times greater than th, the load pushing the slider is then
expressed as τu � kv0 �t and the frictional resistance is now
τf � R_τ load �t, where �t≡ �t � th�. Equation (3) can still be
analytically solved with the initial conditions u��t � 0� �
uh and v��t � 0� � vh � 0. The solution exhibits a damped
behavior, characterized by a time velocity that reaches the
asymptotic value of �1 � R�v0. This value is then maintained
for the whole interseismic phase, during which τ increases
according to equations (1) and (2).

Subsequent Instabilities

Because of the recovery function f��t�, the frictional
resistance can again reach the upper value τu; this will occur

at the time tu � tf � trec, where tf is known from the pre-
vious instability (see the First Weakening Episode section)
and trec is the recovery time. Therefore, trec can be implicitly
expressed by the condition f�trec� � Δτb; for the specific
choice of f��t� as in equation (2), trec is

trec �
Δτb
Rkv0

: (11)

At t � tu, uu ≡ u�tu� � uh � �1 � R�v0�trec � �th � tf��≅
uh � �1 � R�v0trec, because �th � tf� ≪ trec, and vu≡
v�tu� � �1 � R�v0, as discussed in the section Interseismic
Phase. Therefore, for times greater than tu, the solution to
equation (3) can be obtained exactly as was done previously
in the sections First Weakening Episode and Interseismic
Phase:

u�t� � uu �
m�1 � R�v0

C2

�
exp

�
� �c � C2�~~t

2m

�

� exp
�
� �c� C2�~~t

2m

��
(12)

and

v�t� � �1 � R�v0
2C2

�
��c � C2� exp

�
� �c � C2�~~t

2m

�

� �c� C2� exp
�
� �c� C2�~~t

2m

��
; (13)

where

~~t≡ t � tu: (14)

For slips u � uu ≥ d0, following the procedure dis-
cussed in the First Weakening Episode section again yields
solutions in the form of equations (9) and (10) with the actual
value of vf (now given by equation 13) and the proper shift
in u, which is given by uu. Then, after the rupture stops, a
new interseismic stage is started again, where the solution is
the same as that discussed in the Interseismic Phase section.

In conclusion, except for the first instability where the
solution was expressed by equations (4) and (9) and their
time derivatives, for all of the subsequent instabilities, the
following relations hold:

u�t� �

8>><
>>:
u�n�u � m�1�R�v0

C2

�
exp

�
� �c�C2�~~t�n�

2m

�
� exp

�
� �c�C2�~~t�n�

2m

��
; u�t� � u�n�u < d0

u�n�u � Δτb
k � exp��c~t�n�

2m �
2kmω �2C1mω cos�ω~t�n�� � �2kmv�n�f � cC1� sin�ω~t�n���; u�t� � u�n�u ≥ d0

t ≤ t�n�h

: (15)

In equation (15), the superscript n denotes the values pertain-
ing to the actual instability n (n ≥ 2),

~~t
�n� ≡ t � t�n�u � t � t�n�1�f � trec;

~t�n� ≡ t � t�n�f ;

u�n�u ≡ u�n�1�h � �1 � R�v0trec; (16)

and all of the other quantities have been already defined.
This iterative procedure is possible because the levels of

stress are prescribed in the SW model, and therefore the
recovery time (required to again reach τu) is always the same
(see equation 11) if the variations of the effective normal
stress are not considered (Bizzarri, 2010c). More interest-
ingly, the value of vu is the same for all of the subsequent
instabilities; v�n�u � �1 � R�v0, ∀ n ≥ 2.

This result brings to mind the concept of the stable limit
cycle reached by a spring slider obeying the RS friction laws
(Gu et al., 1984; see also Bizzarri, 2010c). In the rate and
state framework, the interevent time (i.e., the cycle time
Tcycle modulating the permanently sustained oscillations) de-
pends on many factors: the constitutive parameters, the ana-
lytical formulation of the governing model, and the presence
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of different phenomena, such as the fluid thermal pressuriza-
tion (Mitsui and Hirahara, 2009; Bizzarri, 2010c), the por-
osity evolution (Mitsui and Cocco, 2010; Bizzarri, 2012),
and thewear processes (Bizzarri, 2010c). From equation (11),
it emerges that the tuning of the parameter R makes it pos-
sible to obtain a given cycle time Tcycle:

R � Δτb
kv0Tcycle

: (17)

Example of the Behavior of the System

In this section, the time evolution of the spring-slider
analog fault model subject to the governing model described
in equation (1) is evaluated. The solution is compared to
numerical results for a system governed by the nonlinear
Ruina–Dieterich (RD; Ruina, 1983) rate and state law:

8>><
>>:
τ �

�
μ� � a ln

�
v
v�

�
�Θ

�
σeff
n

d
dtΘ � � v

L

�
Θ� b ln

�
v
v�

�� ; (18)

where a, b, and L are constitutive parameters, Θ is the state
variable accounting for previous slip episodes, and v� and μ�
are reference values for the sliding velocity and friction coef-
ficient, respectively. The numerical comparison was realized
as follows: First, the RD parameters were set by assuming
values of a, b, and L (see Table 1) that pertain to two rather
different configurations, the first one being representative of
a more unstable fault (configuration A) and the second one
being representative of a moderately unstable fault (config-
uration B). It is well known that a and b are material proper-
ties in that they depend on the pressure, temperature, and so

on. This leads to significant variations in their values, also
with time, and this can have significant effects on the recur-
rence time, as discussed elsewhere (Bizzarri, 2011a). More-
over, there is the problem of scaling the values inferred in
laboratory experiments to the real-world case (Scholz,
1988). The values adopted here have been widely used in
recent literature (e.g., Lapusta and Liu, 2009 and references
cited therein).

Both of the selected configurations are velocity weaken-
ing (i.e., b > a), but in configuration A the large value of the
difference b � a ensures a strong velocity-weakening beha-
vior (see equation 20). In the RD case, the problem was
solved numerically as described in previous papers (e.g., Biz-
zarri, 2010c); the only difference was that here the radiation
damping term was also included, as shown in equation (3).
(This issue is discussed in more detail in the Appendix.)
Then once the solution to the RD case was found, the SW pa-
rameters τu, τf, and d0 were set in order to reproduce the
same levels of stress at the onset and at the end of the break-
down process, as well as the same SW distance. Finally, the
parameter R was tuned in order to have the same recurrence
times, as described by equation (17) (Tcycle � 52:00 yr for
configuration A and Tcycle � 31:40 yr for configuration
B), for both the SW and RD models. The results, as predicted
by the analytical solutions (4), (9), and (15) and their time
derivatives, are plotted with thick lines in Figures 1 and 2 in
the case of configuration A and in Figures 3 and 4 in the case
of configuration B. In these figures, the numerical results
pertaining to a system governed by the RD law, which are
shown with thin lines, are also superimposed.

It can clearly be seen that the analytical solutions per-
taining to model (1) were able to reproduce exactly the same
Tcycle as the RD law (Figs. 1, 2a, 3, and 4a), as desired. This is
not surprising, because the parameter R was set appropri-
ately, as stated in the Subsequent Instabilities section. The
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Figure 1. Evolution of the system as predicted by fully analytical solutions (thick lines; see the sections Fully Analytical Solution to the
1D Elastodynamic Equation and Subsequent Instabilities). The thin lines show a corresponding numerical solution pertaining to the RD
model (equation 18). The parameter R of model (1) has been tuned to have the same interevent time as the RD case. Parts (a) and (b) show the
time histories of the cumulative slip and slip velocity, respectively, with the inset showing the first instability event. The adopted parameters
are those pertaining to configuration A listed in Table 1, which characterize a more unstable fault. The color version of this figure is available
only in the electronic edition.
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peaks in the velocity were lower in the SW case compared to
the RD case, both for configuration A (Fig. 1b) and for con-
figuration B (Fig. 3b). Similarly, the slip developed during
each instability (i.e., the per-event slip u�n�) was also smaller
(Figs. 1a and 3a). On the contrary, the breakdown stress drop
Δτb was identical for the two solutions, as expected (Figs. 2
and 4); note that the RD solution exhibits a dynamic over-
shoot after the release of stress that occurs during the accel-
erating phase of the rupture (Figs. 2b and 4b), which is not
present in the SW solution. This overshoot was obtained also
without the inclusion of the radiation damping term in the
equation of motion (see Fig. A1d in the Appendix) and also
for other types of RS laws (see fig. 1c in Bizzarri, 2010c). It
was not predicted by the analytical solution because the SW
law prescribes that, after the breakdown process, the fric-
tional resistance equals τf and then increases accordingly
to the recovery function f.

The dynamic overshoot in the RD law is associated with
a more severe deceleration phase. While in the SW case v �
�1 � R�v0 in the whole interseismic stage (as discussed pre-
viously in the Interseismic Phase section), in the RD case the

minimum of v is roughly one order of magnitude smaller.
This difference is responsible for the different slips accumu-
lated during the interseismic stage, or, in other words, for the
different slopes of the envelope of the curves plotted in
Figures 1a and 3a.

Discussion and Conclusions

In this study, two major goals were fulfilled. First, I
derived a fully analytical solution to the 1D elastodynamic
equation for a seismogenic fault (in particular, the one-body
mass-spring analog fault system) governed by a linear, or
classical, SW friction (Ida, 1972). Second, I proposed a sui-
table mechanism for the interseismic stress recovery to be
incorporated in the linear SW framework, which makes it
possible to simulate repeated instabilities on the same seis-
mic structure. Note that this assumed interseismic traction
history mimics the behavior of the RS friction laws, where
the recurrence interval is not prescribed a priori, as in the
present model, but it results as a numerical solution to the
problem.
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As a side result of the present study, it has been shown
(see details in the Appendix) that the inclusion of the radia-
tion damping term (�c _u) in the equation of motion (3) sig-
nificantly affects the evolution of a system governed by the
RD constitutive model. In particular, it causes a decrease in
the peaks of the velocity attained during a slip instability
(thus reducing the temperature developed by frictional heat),
a decrease in the dynamic overshoot that occurs during the
decelerating stage of the rupture, and therefore a reduction in
the recurrence time. This confirms that the radiation damping
does not merely affect the coseismic phase of a simulated
earthquake event but also the whole history of the fault.

The analytical solutions presented in this paper (equa-
tions 4, 9, and 15 and their time derivatives) predict that
the fault, after it undergoes a dynamic instability, develops a
saturation slip and then heals (insets in Figs. 1a and 3a).
Similarly, the slip velocity has a compact support (like a
pulse; insets in Figs. 1b and 3b). This is corroborated by
inferences from data (Heaton, 1990) and numerical experi-
ments (Bizzarri, 2010a and references cited therein).

Overall, the behavior of the theoretical solution pre-
sented in this paper is compatible with a purely numerical
solution to problem (3) in which an RS friction law (Ruina,
1983) was assumed, even if the per-event developed slip and
the interseismic slip (and thus the total slip over multiple
earthquake cycles) are different between the two models.
Both of the constitutive models predict the same stress
release during the coseismic slip, and this breakdown stress
drop is constant in both models. Note that Δτb can poten-
tially vary during the time evolution of the fault, and these
variations already have been obtained in simulations when
the thermal pressurization of pore fluids is associated with
temporal changes in the slipping zone thickness, where the
maximum deformation is concentrated (Bizzarri, 2010c).
Moreover, both models show that the stress recovery occurs
when the slip increases very slowly (see Figs. 2b and 4b),
that is, when the sliding velocity is very low.

The possibility of simulating repeated instabilities with-
in the SW framework can be regarded as an alternative to the
widely used models that assume an RS constitutive law. The
lively debate about the most appropriate governing law for
the fault has been discussed elsewhere (e.g., Bizzarri,
2011b), and it is not the focus of the present paper.

The results indicate that the instability of the system is
controlled by the dimensionless ratio

κ � Δτb
d0k

: (19)

In particular, when κ < 1, an isolated fault system does not
experience slip instabilities; on the contrary, as long as κ
exceeds 1, the slider is more unstable in that the accumulated
slip and the peaks in slip velocity are larger and the first
instability occurs earlier. (Recall that the recurrence time is
controlled byΔτb; see equation 11.) This behavior is clearly
visible from Figure 5 in which the solutions pertaining to
different values of constitutive parameters (τu, τf, and d0),
leading to different values of the parameter κ, are plotted.

Within the framework of the RS laws, the more κ0 ex-
ceeds 1, the more unstable the fault seems to be (e.g.,
Ruina, 1983; Gu et al., 1984), where the dimensionless
parameter κ0 depends again on the constitutive parameters
and on k:

κ0 � kcr
k

� �b � a�σeff
n

kL
: (20)

The instability condition κ > 1 therefore suggests that
the critical stiffness in the SWmodel is kcr � Δτb=d0. More-
over, the condition κ > 1 for the SW law is the counterpart of
the condition κ0 > 1 already found for the RS laws.
Notably, the condition κ > 1 is equivalent to C1 < 0, which
guarantees that the solutions (4) and (5) are real-valued func-
tions (see the First Weakening Episode section).

Note that the analytical solution presented in this paper
is based upon a governing model (the linear SW friction law)
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that provides a viable mechanism for the stress release with a
finite energy flux at the crack tip. Therefore, it can be
regarded as an extended version of the well-known exact
solution to stick-slip events with an instantaneous transition
for static to dynamic friction (e.g., Jaeger and Cook, 1976).

The present results assume that the fault maintains the
same upper yield stress (τu) over its seismic cycle. In the SW
framework, an instability occurs once the stress reaches the
upper value τu (in some sense this defines a rupture criterion;
incidentally, I report here that τu is also named yield
strength), and therefore the fault has to recover the same
amount of stress along its life. This assumption is confirmed
by the behavior of a fault where an RS friction is assumed; in
the case of the RD law (equation 18), the upper values of the
frictional resistance (at which an instability occurs) are
shown to always be the same, which is expected in the case
of constant values of the governing parameters a, b, and σeff

n

(see thin curves in Figs. 2 and 4), as I presently hypothesize.
I mention here that the hold-slide-hold laboratory ex-

periments in the special case of stationary contacts (Dieter-

ich, 1972; Teufel and Logan, 1978) have revealed that the
coefficient of static friction μs (which corresponds to the
quantity μu) increases with the logarithm of time:

μs � μ� � K log
�
t � tf
t�

� 1

�
; (21)

where K is an empirical dimensionless constant retrieved
from fitting procedures, tf is the time occurrence of the last
instability (see also the Fully Analytical Solution to the 1D
Elastodynamic Equation section), and the normalizing con-
stant t� � 1 s is used for dimensional correctness. (Conse-
quently, t � tf represents the duration of the contact between
the two sliding surfaces, that is, the hold time; see also Mar-
one, 1998 and references cited therein.) The increase in μs

predicted by equation (21) leads to the so-called logarithmic
healing that occurs in the interseismic period; note that the
healing of slip at the end of the slip pulse observed in the
framework of my model is a different phenomenon. In addi-
tion, note that an open question remains as to whether the
above-mentioned results (obtained for slow slip rates,
<10�3 m=s) can be applied to natural faults moving at v ∼
1 � 10 m=s or more.

In the present paper, I made the assumption that the
stress recovery is linear with time, as stated by equation (2).
Interestingly, in the case of the RD law, where the stress
recovery is not imposed but is completely controlled by the
nonlinear governing equations, the stress recovery is shown
to be linear over the whole life of the fault (see Figs. 2a
and 4a).

Finally, I highlight that, in the coseismic time window,
the solution for the slip velocity (equations 5 and 10) pre-
sented here is not based on special physical assumptions (like
the solution in the interseismic phase, which depends on the
stress recovery mechanism that was assumed). Equations (5)
and (10) are nonsingular, dynamically consistent by defini-
tion, and agree with previously assumed functions (e.g., Liu
and Archuleta, 2004). As such, they can be regarded as pos-
sible candidates for a source time function to be employed in
kinematic slip inversions of strong-motion data. The solution
derived here exhibits a rapid decrease after its peaks, and this
could cause significant radiation of seismic waves also at the
healing front; this will be examined in a future study
devoted to the finite source inversion problem.

Data and Resources

All data sources were taken from published works listed
in the References.
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Appendix

Numerical Solution to the 1D Dynamic Problem
in the Case of the RD Model

When the spring-slider dashpot model is coupled
with rate- and state-friction law (18), the dynamic problem
has to be solved numerically. This is done using a code
implementing a fourth-order Runge–Kutta method with
adaptive time stepping and a control of the truncation error.
The methodology is exactly the same as in previous papers
(e.g., Bizzarri, 2010c), where the following equation of
motion was considered:

m �u � kvloadt � ku � τ : (A1)

In the present paper, equation (3) was considered,
rewritten here for completeness:

m �u � kvloadt � ku � τ � c _u; (A2)

which is identical to equation (A1) except for the presence of
the radiation damping term (�c _u), henceforth referred to as
RDT. As mentioned in the Fully Analytical Solution to the
1D Elastodynamic Equation section, this term mimics the
energy loss as propagating seismic waves, which are fully
considered in extended fault models (e.g., 2D or 3D fault
models) and neglected by definition in the single spring-
slider approximation of a fault (1D fault model).

In the present section, the effects of the introduction of
such a term in the solutions obtained by assuming the RD law
(equation 18) are quantitatively evaluated. I focus on config-
uration B of Table 1; the results are qualitatively the same for
other values of the governing parameters.

The results reported in Figure A1 show that the presence
of the RDT reduces the peaks in the slip velocity history by
about a factor of 2 (from 0:36 to 0:18 m=s; see Fig. A1b).
These differences cause the configuration without the RDT
to develop large values of per-event slip, as shown in
Figure A1a. Interestingly, the presence of the RDT does not
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change the upper value attained by the frictional resistance
(see Fig. A1c). On the contrary, it also causes a significant
difference in the breakdown process; from Figure A1d, note
that while the dynamic stress drop (occurring within the
accelerating phase of the rupture) is the same in both cases
(it equals 3.5 MPa), the dynamic overshoot (taking place dur-
ing the decelerating stage of the rupture) is rather different.
Without the RDT, the fault exhibits a dynamic overshoot of
3.2 MPa; while with the RDT, it has a dynamic overshoot of
1.3 MPa. This difference explains the different recurrence
time (Tcycle) of the two configurations; without the RDT,
the fault takes more time to reach again a new instability,
because it has to recover more stress with respect to the case

where the RDT is considered. This is clearly visible from
Figure A1b, from which Tcycle for the case with the RDT
is about 34% shorter than that predicted in the case without
the RDT.
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