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Abstract The energy flux F at the rupture tip has been previously computed only
for 2D steady-state singular cracks. In this paper, I compute F for fully dynamic 3D
ruptures, propagating both with constant and variable rupture speed (vr) over finite
faults directed by a governing law with a cohesive zone (and thus nonsingular rup-
tures). The results presented here indicate that F is positive and increasing over the
whole range of vr from zero up to P-wave speed. This is in contrast with 2D steady-
state singular cracks, which predict the existence of a forbidden zone in the range of
rupture speeds because in that interval F would be negative. Moreover, I found that in
3D ruptures with cohesive force, F is proportional to vr, again in contrast to 2D
steady-state singular cracks, in which F is not a unique function of vr and also exhibits
an inverse dependence on vr. More specifically, it emerges that fast earthquakes tend
to have a higher energy flux at the crack tip compared with slow ruptures. Finally, I
show that the magnitude of F is basically due to its component aligned in the direction
of the initial shear stress.

Introduction

The crack growth process involves material separation,
which is an energy-consuming physical process. As a con-
sequence, a positive energy flux is required at the tip of a
rupture. More explicitly, the leading edge of the crack, which
is responsible for the decohesion mechanism, requires some
energy to be supplied from the outer field to the crack edge
region (Broberg, 1989). On the other hand, the eventual trail-
ing edge of the crack, which consists of some healing mecha-
nism, does not require the energy supply; therefore, there are
no theoretical limitations for the rupture speed of that front.
As pointed out by Winkler et al. (1970) and Curran et al.
(1970), the leading-edge propagation can be possible at
any speed only in cases where the energy is supplied directly
to the crack without recourse to the elastic stress waves (see
also Samudrala et al., 2002). Broberg (1989) concludes that a
singular mode I or II leading edge cannot propagate at con-
stant, or smoothly varying, velocity in the interval �vR; vS� (vR
being the Rayleigh speed and vS being the S-wave speed),
because the energy flow to the edge is positive only for sub-
Rayleigh speeds (for modes I and II) and for supershear speeds
(for mode II). As discussed by Broberg (1989), the require-
ment of a positive energy flux is inescapable for the leading
edge; the only possibility for a crack propagating at fixed
speed is to alternate sub-Rayleigh and supersonic speeds,
so that, on average, the forbidden region is penetrated. As
summarized by Broberg (1999; fig. 9.3.1), in the range of
vr between vR and vS, a mode II singular crack would become
an energy source (i.e., energy releasing) instead of an energy
sink (i.e., energy absorbing; see also Freund, 1979; Broberg,
1989). Indeed, from that figure we can see that as the rupture

speed assumed in a 2D steady-state singular crack (having an
abrupt stress drop) approaches the boundaries of the forbidden
zone, the energy flux decreases and tends to become negative.
(Incidentally, we note that the same occurs when vr ap-
proaches vP, which is the maximum allowable speed for pure
mode II problems.)

A fundamental result recently found by Bizzarri and Das
(2012) is that for 3D nonsingular ruptures (for which the stress
release is accomplished in a process zone of finite length),
where there is a complex mixture of shear modes II and III
of fracture (and with possible rake rotation), the energy
flux is positive for mode II over the whole range of rupture
speeds, from 0 to vP. This is intimately related to the fact
that in 3D, even in the idealized case of linear slip-weakening
(SW) friction law (Ida, 1972), there is no so-called forbidden
zone vR ≤ vr ≤ vS (Bizzarri and Das, 2012).

In general, the fracture energy density EG��EG� � J=m2�
in each fault point ξ is defined as (e.g., Bizzarri, 2010; see
also equation 5.3.19 of Freund, 1990):

EG�ξ; t� �
Z �∞
0

�T�ξ; t� − Tres�ξ�� · v�ξ; t�dt

�
Z �∞
0

�τ�ξ; t� − τ res�ξ��u�ξ; t�du; (1)

in which T and Tres are the fault shear traction vector and its
residual level, respectively; τ and τ res are their Euclidean
norms; and the last equality holds when the traction is col-
linear to the fault slip velocity. EG, which physically repre-
sents the amount of energy required to create a new unit area
of fractured surface, is often denoted with the symbol γF
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(e.g., Achenbach, 1972; his equation 2.6, among many
others) or with the symbol γ (e.g., Ida, 1972). In the special
case of the linear SW model with homogeneous properties,
since τ res � τf (so that the integrands are not null only up to
t � Tb, the breakdown time, or analogously only up to
u � d0, respectively), we simply have

EG � Δτb
d0
2
; (2)

which depends only on the constitutive parameters (d0 is the
characteristic SW distance and Δτb�

df
τu − τf is the break-

down stress drop, τu being the upper yield stress, and τf being
the residual level after the stress release). In homogeneous
conditions, equation (2) implies that no predictions can be
made on the basis of the energetic arguments discussed thus
far regarding the allowed values of the rupture speeds (this
conclusion also holds in the pure mode II case) and similarly
implies that—for linear SW lawwith homogeneous properties
—EG should be a material property. On the other hand, in
the case of constitutive models different from the SW law it
has been shown (Bizzarri, 2010) that for homogeneous sub-

shear ruptures roughly EG ∝
������������
1 − v2r

v2S

q
, but for supershear rup-

tures it is difficult to infer a clear dependence of fracture energy
density on rupture speed, especially in heterogeneous configu-
rations. With these more realistic friction laws it emerges that
EG is not an intrinsic material property (Bizzarri, 2010).

It is interesting to consider the rate at which the
mechanical energy is extracted from a volume V by the frac-
ture process. This quantity, denoted by F, is equal to the rate
of the work due to the external forces minus the rate of in-
crease of the total energy in V (see Achenbach, 1972; his
equation 2.5). Within the framework of the Griffith’s theory
(Griffith, 1920), the energy extracted from the body contain-
ing the rupture is totally converted into the surface energy of
the newly formed surfaces, so that I can write

F�t� � _UG�t�; (3)

in which the overdot indicates the time derivative and UG

expresses the total fracture energy (e.g., Bizzarri, 2011;
his equation 19) as

UG�t� �
ZZ

Σ�t�EG�ξ�dξ; (4)

with Σ�t� being the fractured (or broken) region at time t.
The quantity F in (3) has the physical dimensions of energy
per unit time (�F� � W � J=s). It should be noted that the
equality of energy flux out of a block of material of volume
V (usually referred to as the difference between strain energy
flux and radiated energy) to the rate of total fracture energy is
exact only for quasistatic (the J integral; Cherepanov, 1967;
Rice, 1968) or steady-state ruptures (Ida, 1972). For variable
rupture speeds, or heterogeneous rheological properties, the
energy flow will also include the strain energy flux to the
fault tip, the radiated energy leaving the volume (which is

a time-dependent term), and the noise due to stress variations
(the so-called Kostrov’s term; see Favreau and Archuleta,
2003, Rivera and Kanamori, 2005, Madariaga, 2012 for a
discussion).

In the special case of a governing model that predicts a
constant fracture energy density over the fault surface—as
the linear SW law—equation (4) simply reads

F�t� � _Σ�t�EG; (5)

where _Σ�t� expresses the rate of the variation of the fractured
region. The computation of F�t� from equation (5) is
straightforward because, in dynamic models of faulting,
the location of the rupture tip is known at all times. Notably,
equation (5) can be further simplified in the case of a bilateral
2D, pure mode II rupture on the x2 � 0 plane and moving
along x1; in this case _Σ�t� becomes the rate of increase of the
broken length along x1, which in turn can be expressed as
2vr�t�. Equation (5) then becomes f�t� � 2vr�t�EG, in
agreement with equation (6.40) of Achenbach (1972; see
also Atkinson and Eshelby, 1968). (The lower case f empha-
sizes that in this particular case it is the rate of work per unit
length along x3 that is calculated, so that �f� � W=m. The
resulting F can be arranged as F�t� � 2vr�t�WfEG, in which
Wf is the width of the fault.)

In a general case of a spontaneous dynamic rupture (i.e.,
not stationary), the rate of work F is expressed as follows:

F�t� �
ZZ

Π�t�
�T�ξ; t� − Tres�ξ�� · v�ξ; t�dξ; (6)

which generalizes equation (2.18) of Achenbach (1972) per-
taining to a 2D, plane, nonstationary, singular crack. In equa-
tion (6) Π�t� denotes a zone surrounding the crack tip Γ�t�,
which is defined as the locus of points exceeding, at time t,
a threshold value of the slip velocity (vl � 0:01 m=s). We
have shown that this value is small enough to capture all
the details of the rupture and the birth of the supershear front.
In the special case of the SW law, the sliding logic also says
that the slip begins only once τu is reached; we have also
shown that the conditions to detect the rupture front from
the slip velocity criterion (vl) or from the traction value
(τu) give identical results. It is apparent that the integrand of
equation (6) is the same as that of equation (5) (once one has
substituted the definition of EG from equation 1); the link
between these two equations is discussed in more detail
in Appendix A.

In the case of a singular crack, Π�t� is an arbitrarily
small region containing Γ�t�; within the framework of a gov-
erning model with a cohesive zone, as the SW law, Π�t� has
to be interpreted as the process zone (formally, it represents
the length of the cohesive zone at time t, Xb�t�).

Equation (6) is appropriate for propagating ruptures;
indeed the domain of integration in equation (6) explicitly
depends on time, as well as the integrand function. An alter-
native version of this equation (with opportune manipulations
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to make it adequate for a 3D geometry) can be also found in
Freund (1972; see also Freund, 1990) and it is reported by
Achenbach (1972; his equation 2.28):

F�t� � lim
Λ→0

ZZ
Λ
�Tij�ξ; t�njvi�ξ; t�

� 1

2
Tij�ξ; t�ui�ξ; t�vn�ξ; t�

� 1

2
ρvi�ξ; t�vi�ξ; t�vn�ξ; t��dξ; (7)

in which Λ is a loop (lying on the fault surface) surrounding
the rupture tip and vn is the component of the velocity of a
point of the loop Λ in the direction of the outward normal.
As pointed out by Achenbach (1972; see the discussion after
his equation 2.28), the two formulations are equivalent.

The Numerical Model

In this paper, I consider a vertical strike-slip fault
embedded in a perfectly elastic and isotropic medium. The
geometry of the problem is reported in figure 2 of Bizzarri
(2010) and the elastodynamic problem is solved numerically
(Bizzarri and Cocco, 2005; Bizzarri, 2009). The initial rake
angle is φ0 � 0 and the residual stress is spatially homo-
geneous (i.e., kTres�ξ�k � τf), so that equation (6) simply
reads

F�t� �
ZZ

Π�t�

��
T1�ξ; t� − τf

v1�ξ; t�
v�ξ; t�

�
v1�ξ; t�

�
�
T3�ξ; t� − τf

v3�ξ; t�
v�ξ; t�

�
v3�ξ; t�

�
dξ; (8)

in which the subscripts 1 and 3 define the along-strike and
along-depth components, respectively, of the vectors T and
v, and v � kvk � �v21 � v23�1=2. Because the traction and the
fault slip velocity vectors are collinear, the value of
the residual stress is defined according to the direction of
motion. Equation (8) is practically identical to the formu-
lation of Bizzarri and Das (2012; their equation 4), as it is
discussed in detail in Appendix B.

Equation (8) is valid not only for the SW law but also can
be easily generalized to various fault governing models, such
as the rate- and state-dependent friction laws (in such a case
kTres�ξ�k � τ eqf , following Bizzarri and Cocco, 2003). I re-
mark here that theminus sign appearing in front of the integral
in equation (2.18) of Achenbach (1972) is cancelled because
of our definition of the discontinuity of the particle velocity
fields, that is, of the fault slip velocity vi � V�

i − V−
i , in

which V�
i and V−

i are the components of the particle velocity
on the two half-spaces of the oriented fault surface (see also
fig. 3 of Bizzarri and Spudich, 2008); and v2 � 0, because the
material interpenetration and the opening of the fault are not
allowed. The numerical counterpart of (8) is

~F�m� � �Δx�2
X
�i;k�

X
∈ ~Π�m�

�
~T�m�
1 �i; k� − τf

~v�m�
1 �i; k�
~v�m��i; k�

�
~v�m�
1 �i; k�

�
�
~T�m�
3 �i; k� − τf

~v�m�
3 �i; k�
~v�m��i; k�

�
~v�m�
3 �i; k�; (9)

in which the summation is done for the doublets �i; k�, which
at each time level m define the region ~Π�m� surrounding the
crack tip. A schematic representation of the integration domain
is reported in Figure 1. The definition of the crack tip,
Γ�t� � f�x1; x3�jv�x1; x3; t� ≥ vl for the first timeg, can be
rewritten in discrete terms as ~Γ�m� � f�i; k�j~tr�i; k� � mg, in
which m denotes the time level (~t�m� � mΔt, with Δt being
the time step). In the 2D singular crack of Achenbach (1972;
see fig. 2) the region Π�t� is defined by the interval
[xr�t� − ε, xr�t� � ε], in which xr�t� is the instantaneous loca-
tion of the rupture tip at time t and ε is an arbitrarily small pos-
itive real number. In our nonsingular fault model, the region
Π�t� is a zone surrounding the rupture tip and is sufficiently
large to account for the dissipative processes occurring during
the failure, that is, the length of the cohesive zoneXb�t�. This is
the substantial difference between the treatment of Achenbach
(1972), which is valid only for singular cracks, and our gener-
alization to constitutive models with cohesive zone.

x3 ( k )

x1 ( i )

Unbroken region

Broken region 

Failing  node defining  the  discrete 
crack tip )(m

Node belonging to the region )(m

Generic node of the fault 

( )tCrack tip

Π

Γ

Γ

Figure 1. Diagrammatic representation of the region ~Π�m� used
to compute the energy rate F in equation (8). The crack tip at time t,
Γ�t� (dashed line), is defined by the fault nodes having a slip veloc-
ity exceeding the threshold value vl. Large black circles formally
define ~Γ�m�. The large open circles denote the nodes that define
the region ~Π�m�. For simplicity I represent ~Π�m� only with 3 points
at each depth; this is only a simplified sketch, in that the regionΠ�t�
represents the length of the cohesive zone Xb�t�, which is mapped
by a large number of points (due to the very fine discretization I
employ). The color version of this figure is available only in the
electronic edition.
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To define the region ~Π�m�, in our 3D case I consider all
the nodes belonging to the process zone; that is, up to a dis-
tance from the rupture tip where the traction has already
reached the residual level τf; these nodes are denoted by
large open circles in Figure 1. To illustrate this, let the
doublet �i�; k�� denote a generic fault node that fails. Let also
i ≥ i� define the broken region, for the given depth
�k� − 1�Δx (see Fig. 1). Because the breakdown process
is not abrupt (contrarily to Achenbach [1972], but it is con-
trolled by the constitutive relation that incorporates the co-
hesive forces), for the given depth �k� − 1�Δx it is not true
the fault traction exactly equals τf for i > i�. In particular, as
a result of the assumed spatiotemporal resolution of the co-
hesive zone, I now have ~τ �m��i� � 1; k�� > τf.

Results for Nonspontaneous Ruptures

In this section, I consider synthetic earthquakes that prop-
agate over the fault in a nonspontaneous fashion, that is, with a
prescribed and constant rupture speed vr. The adopted param-
eters are listed in Table 1. In these numerical simulations, the
ruptures are nonsingular, in that the stress drop is accom-
plished over a characteristic, and finite, time t0 � 0:1 s;
namely, this is a time-weakening friction law (see equation 23
in Bizzarri, 2011), which can be regarded as the counterpart of
the SW law in the time domain. The results for four selected
configurations are reported in Figure 2, from which I can see
that F is always positive and increasing, in agreement with the
findings of Bizzarri and Das (2012). Moreover, it emerges that

after an initial stage the rate of increase of F becomes nearly
constant, and this rate is proportional to the rupture speed. To
interpret this result, I consider, in the interest of simplicity, a
circular 3D rupture that propagates on a homogeneous fault
with a constant speed. The rate of the variation of the broken
region can be approximated as _Σ�t�≅2πv2rt, so that from
equation (5) we can write F�t�≅2πv2rEGt. Therefore, for this
specific configuration, I have: _F�t�≅2πv2rEG. If I also assume
that EG is uniform over the whole fault, I finally have that _F�t�
is constant and proportional to v2r . In our case this relation can-
not be used literally, in that the shape of the rupture front is not
perfectly circular.

It is interesting to note that one of the models (dashed line
in Fig. 2) propagates with a constant velocity that is within the
forbidden zone. Although this seems to be in contrast to the
theory, we must recall that the negative energy flux is pre-
dicted for 2D steady-state singular cracks. I repeat here that
our ruptures are not singular, and therefore F is positive (and
nondecreasing) also near the boundaries and within the forbid-
den zone. I finally emphasize that even in pure mode II rup-
tures, if they are nonsingular, one can obtain the rupture
propagation at a constant speed within the forbidden zone.

Spontaneous Modeling

I now consider a fully spontaneous rupture, where vr is
not previously assigned (as in the Results for Nonspontane-
ous Ruptures section), but it changes during the propagation
process and is a part of the solution of the elastodynamic
problem. The fault obeys a linear SW law (see equation 25
in Bizzarri, 2011) and the parameters are again those of Biz-
zarri and Das (2012); see Table 1. By definition, the ruptures
are not singular. I do not prescribe any arrest of the rupture,
because the fault properties are homogeneous and no healing
mechanisms are incorporated into the fault governing law.
The synthetic event represents an earthquake having a seismic

Table 1
Parameters Adopted in the Present Paper

Parameter Value

Medium and discretization parameters
Lamé constants, λ � G 35.9 GPa
S-wave velocity, vS 3:464 km=s
Rayleigh velocity, vR 3:184 km=s
P-wave velocity, vP 6 km=s
Eshelby velocity, vE � ���

2
p

vS 4:899 km=s
Fault length, Lf 16 km
Fault width, Wf 12 km
Spatial grid size, Δx 5 m
Final time, tend 3.12 s
Time step, Δt 1:2 × 10−4 s
Coordinates of the hypocenter,
H ≡ �xH1 ; xH3 �

(8,7) km

Fault constitutive parameters
Magnitude of the effective

normal stress, σeff
n

120 MPa

Magnitude of the initial shear
stress (prestress), τ0

73.8 MPa

Static friction coefficient, μu 0.677
(↔τu � 81:24 MPa)

Dynamic friction coefficient, μf 0.46
(↔τf � 55:20 MPa)

Resulting strength parameter, S 0.4
Characteristic slip-weakening

distance, d0

0.4 m
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Figure 2. Energy flux F�t� for ruptures with prescribed and con-
stant velocity over the whole fault surface (i.e., nonspontaneous rup-
ture models, but still with cohesive force). The dashed line represents
a case in which rupture speed is within the forbidden zone. The color
version of this figure is available only in the electronic edition.
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momentM0 2:18 × 1019 N·m (Mw 6.83). Just to give a rough
idea this synthetic event is slightly smaller than the 1995 Hy-
ogo-ken Nanbu (Kobe, Japan) earthquake (Wald, 1996).

The time evolution of F is reported in Figure 3a; the dots
indicate F as computed from the rate of variation of UG

(i.e., computed from equation 5), while the continuous lines
denote F as computed from the integration of traction and
slip velocity (i.e., computed from equation 8). A first out-
come emerging from Figure 3a is that the two different
and independent calculations give the same result. This in-
dicates that equation (5)—which has been derived theoreti-
cally in the case of quasistatic (Cherepanov, 1967; Rice,
1968) or steady-state ruptures (Ida, 1972), as discussed in
the Introduction—is a sufficiently good approximation also
in the case of variable rupture speeds, for which seismic-
wave radiation is expected (Madariaga, 1983).

I can also see that the value of F resulting from equa-
tion (8) is basically due to the 1-components of traction and
slip velocity; the 3-components contribute only a little in the
total F. The peak in F at t � 2:049 s and its further decrease
is attributed to the fact that at that time the rupture front hits
the fault boundary x1 � 0, as clearly depicted in Figure 3b,
where I plot the spatial distribution of the rupture times. After
that instant the definition of the rupture tip becomes problem-
atic, in that part of it begins to be absorbed by the fault boun-
dary, so that a diminishing (and finally null) part of it remains
defined. I can therefore disregard the behavior of F after
t � 2:049 s.

Another interesting time is t � 1:71 s, the time when the
rupture tip first hits the bottom of the fault, as also reported in
Figure 3b. At this time it is possible to clearly see variation of
the rate of increase of F (see Fig. 3a). In particular, we ob-
serve that _F decreases after t � 1:71 s; this is also due to the
fact that after this instant the deeper part of the rupture tip is
not properly defined, as observed above, and only its shallow
part remains. I also remark a significant increase in _F after
t � 0:7998 s; this represents the time when the rupture be-
gins to propagate in a supersonic fashion (see Fig. 3b).

Overall, I emphasize that F is always increasing as in the
nonspontaneous simulations (see the Results for Nonsponta-
neous Ruptures section). In Figure 4, the evolution of F as a
function of vr is reported (note that in this case we plot the
energy flux resulting from equation 8, not just the contribu-
tion of the nodes aligned in the mode II direction or in the
mode III direction, as done in fig. 6 of Bizzarri and Das
[2012]). From Figure 4 it emerges that F is positive over
the whole range of rupture speeds (from 0 to vP) and does
not exhibit relevant variations in its rate, contrary to what
happens in 2D, in which the increase of F tends to vanish
just below the beginning of the forbidden zone (i.e., when
vr approaches vR). As long as the rupture propagates in a
sustained supershear way, F increases more rapidly; this
can be interpreted in two ways. First, from equation (5) we
note that, since EG is constant in time and homogeneous in
space, the energy flux into the process zone is directly pro-
portional to the rate of increase of the ruptured area; as the

rupture becomes supershear, after t � 0:7998 s (see Fig. 3b),
the fault surface is consumed faster. Another interpretation
comes from equation (8). Once the rupture becomes super-
shear, the slip velocity tends to increase, due to the contrac-
tion of the cohesive zone (see appendix A of Bizzarri et al.,
2001, and fig. 4d of Bizzarri and Das, 2012; we can also
numerically verify that the peaks in slip velocity globally in-
crease), and this makes the integrand in equation (8) larger.

Finally, I remark that even in the mode II direction the
cohesive zone does not vanish, as the Rayleigh speed is ap-
proached (Bizzarri and Das, 2012), and this removes the sin-
gularity in the integration domain which would potentially
appear in a 2D, pure mode II rupture.

The results discussed above are also preserved in the
case of a subshear event. I consider a case in which the
parameters are exactly the same as in the supershear event,
except for the initial shear stress, which is now 63.88 MPa
instead of 73.8 MPa. This value gives a higher value of the
strength parameter S (Das and Aki, 1977), which is now 2
instead of 0.4, but the breakdown stress drop is the same in
both models, so EG is also the same. In this case it gives
M0 9:26 × 1018 N·m or equivalently Mw 6.58, which is
slightly greater than the magnitude of the 1979 Imperial
Valley, California, earthquake (Hartzell and Heaton, 1983).

A first outcome of Figure 5 is that the value of the energy
flux is significantly reduced with respect to the supershear
event. This is not surprising, considering that for a less un-
stable fault we expect to have small slip velocities compared
to a very unstable fault. Moreover, also in this case the con-
tribution due to the 3-component (i.e., the along-depth compo-
nent) is even less significant in the computation of the total F.
This also is not surprising, because the maximum rake varia-
tion (which in turn corresponds to a deviation of T3v3 from
τfv23=v) is maximum in correspondence to the supershear tran-
sition, as already discussed in Bizzarri and Das (2012).

Discussion and Concluding Remarks

In this paper, I generalize the calculation of the energy
flux F at the tip of a propagating rupture, originally formu-
lated by Achenbach (1972) in the case of 2D singular cracks
(for which the stress release is abrupt and is accomplished in
an arbitrarily small process zone). Here I consider an ex-
tended fault, with 3D geometry, for which mode II and mode
III are mixed together and the rake variation is allowed. In
our case the stress release is not abrupt, as in singular crack
models, but it occurs over a characteristic time—the break-
down time Tb—which is controlled by the characteristic
length scale of the assumed fault governing law. Correspond-
ingly, the process zone has a finite dimension in space—the
breakdown distance Xb. The general expression of the time
evolution of the energy flux is given by equation (8), which is
valid for various fault governing models in which the
residual level of friction is well defined.

By considering both nonspontaneous (i.e., with prior
assigned rupture speed vr) and spontaneous synthetic
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earthquakes obeying a fault governing law with cohesive
zone, I show that F is always positive and increasing, and
it does not have any relevant variation in its rate. This result
is not obvious because, in 2D dynamic and spontaneous rup-
tures obeying the linear SW law, the energy flux rate tends to

vanish or even decrease when the forbidden zone is ap-
proached. The positiveness and the increasing behavior of
F confirms previous findings of Bizzarri and Das (2012),
who demonstrated that along the direction of pure mode
II, and that of pure mode III, F is always increasing with
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time. Moreover, in the case of supershear ruptures, the fact
that F is positive over the whole range of vr (see Fig. 4) is in
contrast with the theoretical results pertaining to 2D steady-
state singular cracks (e.g., Broberg, 1999).

Indeed, the mechanics of a curved 3D rupture front can-
not be adequately described by using the results from 2D
plane front, except when the cohesive zone is small com-
pared to the radius of curvature of the 3D rupture tip. This
can occur when (1) the cohesive zone is extremely small at
the supershear transition and (2) the supershear transition oc-
curs in a very late stage of the rupture (i.e., very far from the
hypocenter), so that curvature of the rupture front is very
small. Both these situations pose relevant problems of
numerical resolutions (I recall that, due to its contraction
[e.g., Andrews, 1976; Bizzarri and Das, 2012], it is very dif-
ficult to have sufficiently good resolution of the cohesive
zone at huge distances from the imposed hypocenter).

The fact that the energy flux is also positive in the
so-called forbidden zone can be theoretically illustrated by
considering equation (3.2.64) of Dmowska and Rice (1986;
see also Kostrov and Nikitin, 1970):

EG � 1

2G
��1 − ν��g�II�K�I�2 � g�I�K�II�2� � g�III�K�III�2�;

(10)

in which G is the rigidity of the medium, ν is the Poisson
ratio, and K�I�, K�II�, and K�III� are the stress intensity factors
for the three linearly independent basic modes of rupture in
fracture mechanics (I, II, and III, respectively). K physically
expresses the state of the stress near the tip of a crack due to a
remote loading. The functions g, defined in equation (3.2.63)
of Dmowska and Rice (1986), depend explicitly on vr, in-
crease monotonically with vr, and become unbounded for
the limiting speeds vR for modes I and II and vS for mode
III (they are also related to the inverse of the functions F in
equation 11 in Bizzarri, 2012). Indeed, equation (10) is of
completely general validity for crack motion at steady or

unsteady sub-Rayleigh speed (or subshear speed in the case
of a pure mode III crack) propagating in a linear and isotropic
elastic medium. Now, from equation (5) I simply have (for
the linear SW law)

F�t� �
_Σ�t�
2G

��1 − ν��g�II�K�I�2 � g�I�K�II�2� � g�III�K�III�2�;
(11)

from which it is possible to see that the energy flux is ex-
pressed by a mixture of functions g defined in the two over-
lapping intervals of vr �0; vR� and �0; vS�.

Another interesting outcome of the present study is that
F is somehow proportional to vr; from Figure 2, in which F
for nonspontaneous and nonsingular ruptures is reported, it can
be seen that fast earthquakes tend to have a higher energy flux at
the rupture tip compared to slower events. The relation between
the fracture energy density, EG, and the rupture speed, has been
already discussed elsewhere (Bizzarri, 2010). Here I found that,
again in contrast to steady-state solutions, F increases as vr in-
creases. Remarkably, there are no decreases in the energy flux
as the rupture speed approaches the limiting speed of vP, nor
when it approaches the forbidden zone (see Fig. 4).

Remarkably, the results presented in this study show that
equation (5)—which follows from equation (3), which in turn
has been theoretically derived for quasistatic (Cherepanov,
1967; Rice, 1968) or steady-state ruptures (Ida, 1972)—also
is a sufficiently good approximation in the case of nonsteady
ruptures (i.e., with variable rupture speeds), for which seismic-
wave radiation is expected (Madariaga, 1983). This is appar-
ent from the different computation presented in Figure 3a.

Finally, I found here that the magnitude of the energy
rate at the rupture tip is basically controlled by its component
aligned as the initial shear stress (see Figs. 3a and B1). In our
case of a strike-slip faulting mechanism F is essentially due
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to the 1-components of traction and slip velocity; from
Figure 3a we see that F�II��t� is definitively paramount with
respect to F�III��t�. This clearly demonstrates that the rake
rotation does not play a substantial role in the earthquake
energy balance.
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All data sources were taken from published works listed
in the References.

Acknowledgments

The author thanks S. Das for valuable discussions that motivated this
study and R. Madariaga for stimulating comments. He also acknowledges
Associate Editor A. McGarr and two anonymous referees who provided
detailed comments that help in clarifying some points in the paper.

References

Achenbach, J. D. (1972). Dynamic effects in brittle fracture, in Mechanics
Today 1, S. Nemat-Nasser (Editor), Pergamon Press, New York, 1–57.

Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks,
J. Geophys. Res. 81, 5679–5687.

Atkinson, C., and J. D. Eshelby (1968). The flow of energy into the tip of a
moving crack, Int. J. Fract. Mech. 4, no. 1, 3–8.

Bizzarri, A. (2009). Can flash heating of asperity contacts prevent melting?,
Geophys. Res. Lett. 36, L11304, doi: 10.1029/2009GL037335.

Bizzarri, A. (2010). On the relations between fracture energy and physical
observables in dynamic earthquake models, J. Geophys. Res. 115,
no. B10307, doi: 10.1029/2009JB007027.

Bizzarri, A. (2011). On the deterministic description of earthquakes, Rev.
Geophys. 49, RG3002, doi: 10.1029/2011RG000356.

Bizzarri, A. (2012). Analytical representation of the fault slip velocity from
spontaneous dynamic earthquake models, J. Geophys. Res. 117,
no. B06309, doi: 10.1029/2011JB009097.

Bizzarri, A., and M. Cocco (2003). Slip-weakening behavior during the
propagation of dynamic ruptures obeying rate- and state-dependent
friction laws, J. Geophys. Res. 108, no. B8, 2373, doi: 10.1029/
2002JB002198.

Bizzarri, A., and M. Cocco (2005). 3D dynamic simulations of spontaneous
rupture propagation governed by different constitutive laws with rake
rotation allowed, Ann. Geophys. 48, no. 2, 279–299.

Bizzarri, A., and S. Das (2012). Mechanics of 3D shear cracks between
Rayleigh and shear wave rupture speeds, Earth Planet. Sci. Lett.
357–358, 397–404, doi: 10.1016/j.epsl.2012.09.053.

Bizzarri, A., and P. Spudich (2008). Effects of supershear rupture speed on
the high-frequency content of S waves investigated using spontaneous
dynamic rupture models and isochrone theory, J. Geophys. Res. 113,
no. B05304, doi: 10.1029/2007JB005146.

Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi (2001). Solving the
dynamic rupture problem with different numerical approaches and
constitutive laws, Geophys. J. Int. 144, 656–678.

Broberg, K. B. (1989). The near-tip field at high crack velocities, Int. J.
Fract. 39, 1–13.

Broberg, K. B. (1999). Cracks and Fracture, Academic Press, New York,
752 pp.

Cherepanov, G. P. (1967). The propagation of cracks in a continuous
medium, J. Appl. Math. Mech. 31, no. 3, 503–512.

Curran, D. A., D. A. Shockey, and S. Winkler (1970). Crack propagation at
supersonic velocities, II, Theoretical model, Int. J. Fract. Mech. 6,
271–278.

Das, S., and K. Aki (1977). A numerical study of two-dimensional sponta-
neous rupture propagation, Geophys. J. Roy. Astron. Soc. 50, 643–668.

Dmowska, R., and J. R. Rice (1986). Fracture theory and its seismological
applications, in Continuum Theories in Solid Earth Physics, in Physics
and Evolution of the Earth’s Interior, No. 3 R. Teisseyre (Editor),
Elsevier and Polish Scientific Publishers, 187–255.

Favreau, P., and R. J. Archuleta (2003). Direct seismic energy modeling and
application to the 1979 Imperial Valley earthquake,Geophys. Res. Lett.
30, no. 5, 1198, doi: 10.1029/2002GL015968.

Freund, L. B. (1972). Energy flux into the tip of an extending crack in an
elastic solid, J. Elasticity 2, 341–350.

Freund, L. B. (1979). Mechanics of dynamic shear crack–propagation, J.
Geophys. Res. 84, no. B5, 2199–2209.

Freund, L. B. (1990). Dynamic Fracture Mechanics, Cambridge University
Press, Cambridge, England.

Griffith, A. A. (1920). The phenomenon of rupture and flow in solids, Phil.
Trans. Roy. Soc. Lond. A 221, 163–198.

Hartzell, S. H., and T. H. Heaton (1983). Inversion of strong ground motion
and teleseismic waveform data for the fault rupture history of the 1979
Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am. 73,
1553–1583.

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack
and Griffith’s specific surface energy, J. Geophys. Res. 77, no. 20,
3796–3805.

Kostrov, B. V., and L. V. Nikitin (1970). Some general problems of mechan-
ics of brittle fracture, Arch. Mech. Stos. 22, 749–775, (in Russian).

Madariaga, R. (1983). High frequency radiation from dynamic earthquake
fault models, Ann. Geophys. 1, 17–23.

Madariaga, R. (2012). The birth of forward models: From Coulomb criterion
to cohesive force laws, in The Mechanics of Faulting: From Labora-
tory to Real Earthquakes, A. Bizzarri and S. H. Bhat (Editors),
Research Signpost, India, http://www.ressign.com/UserArticleDetails
.aspx?arid=11588#; http://trnres.com/emags/bizzarri/bizzarriebook.
html (last accessed May 2013), 125–152.

Rice, J. R. (1968). A path independent integral and the approximate
analysis of strain concentration by notches and cracks, J. Appl. Mech.
35, 379–386.

Rivera, L., and H. Kanamori (2005). Representation of the radiated energy in
earthquakes, Geophys. J. Int. 162, 148–155, doi: 10.1111/j.1365-
246X.2005.02648.x.

Samudrala, O., Y. Huang, and A. J. Rosakis (2002). Subsonic and intersonic
shear rupture of weak planes with a velocity weakening cohesive zone,
J. Geophys. Res. 107, no. B8, doi: 10.1029/2001JB000460.

Wald, D. J. (1996). Slip history of the 1995 Kobe, Japan, earthquake deter-
mined from strong motion, teleseismic, and geodetic data, J. Phys.
Earth 44, no. 5, 489–503.

Winkler, S., D. A. Shockey, and D. A. Curran (1970). Crack propagation at
supersonic velocities I, Int. J. Fract. Mech. 6, 151–158.

Appendix A

Link between Equations (3) and (6)

In this section, I will demonstrate that, in the case of 2D
rupture problem and by assuming the linear slip-weakening
(SW) friction law, equation (3) can be obtained from equa-
tion (6). To this goal, let me rewrite equation (6) in this
special case:

F�t� �
Z
π�t�

f�x1; t�dx1; (A1)

in which π�t� is the counterpart in 2D of the domain of
integration Π�t� in 3D (see also Fig. 1) and
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f�x1; t�≡ �τ�x1; t� − τf�v�x1; t�: (A2)

In the case of the linear SW law, the domain of integra-
tion π�t� can be made explicit as it follows: x1∈�0; σ�t��, in
which σ�t� is the fractured area at time t (namely, it repre-
sents the location of the rupture front at time t) and for which
we have considered only one half of a bilateral rupture start-
ing at t � 0 from the point x1 � 0. (σ�t� formally is the
counterpart in 2D of the region denoted by the symbol
Σ�t� in 3D; see equation 4). Equation (A1) then becomes

F�t� �
Z

σ�t�

0

f�x1; t�dx1: (A3)

Let T be an arbitrary time greater than the actual time t,
so that σ�T� > σ�t�. In the case of linear SW law, one has

f�x1; t� � 0; ∀ x1 > σ�t�; (A4)

simply because v � 0 in the unbroken part of the fault.
Therefore I can rewrite equation (A3) as

F�t� �
Z

σ�T�

0

f�x1; t�dx1: (A5)

After integrating F�t� of equation (A5) over the time t,
between 0 and T, I have

Z
T

0

F�t�dt �
Z

T

0

Z
σ�T�

0

f�x1; t�dx1 dt

�
Z

σ�T�

0

Z
T

0

f�x1; t�dt dx1

�
Z

σ�T�

0

EG�x1�dx1
� UG�T�; (A6)

in which I have changed the order of integration in the sec-
ond line and have considered the definitions of the fracture
energy density (see equation 1) and of the total fracture
energy (see equation 4) in the third and fourth lines, respec-
tively. By differentiating with respect to the time T in both
the members of equation (A6), I finally have

F�t�jt�T − F�t�jt�0 �
d
dT

UG�T�; (A7)

which simply reads:

F�T� � _UG; (A8)

because F�0� � 0 (recall that f�x1; 0� � 0 for the SW law,
because v�x1; 0� � 0). Whereas T is arbitrary, I can replace
T with t in equation (A8), so that (A8) is exactly the same as
equation (3).

I emphasize that the above demonstration holds exactly
only in the case of linear SW law. In more elaborate constit-
utive models (such as the rate- and state-dependent friction
laws), the condition (A4) does not hold, in that the fault slip
velocity is (although small) nonnull also in the unbroken part
of the fault, so that we cannot replace (A3) with (A5).
In turn, this prevents the change in the order of integration
performed in equation (A6).

Appendix B

Comparison of Two Formulations to Compute
the Energy Flux F

When no rake rotation is allowed during the rupture
processes the traction is always aligned with the initial shear
stress and the slip-weakening (SW) governing law can be
simply specified, at each time t, through the Euclidean norm
of the shear stress vectors (τ 0 � kT0k, τu � kTuk and
τf � kTresk). The situation is more complicated when rake
rotation is allowed, as in the simulations presented and dis-
cussed in the present paper (see also Bizzarri and Cocco,
2005).

Although traction and fault slip velocity vectors are col-
linear, at each time t we can express the difference between
the actual traction T and the residual level Tres as it follows
�T − τf� v1v along x1 and �T − τf� v3v along x3 (with T � kTk
and v � kvk). By definition, we also have T v1

v � T1 and
T v3

v � T3. Therefore, from equation (6) we have

F�t� �
ZZ

Π�t�

��
T1 − τf

v1
v

�
v1 �

�
T3 − τf

v3
v

�
v3

�
dx1dx3;

(B1)
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Figure B1. Comparison between the computation of F�t� from
two different methods; equation (B1) (full lines) assumes that the
residual stress is defined from the collinearity of slip velocity and
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collinear with the initial shear stress vector (see Appendix B for
further details).
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which is equation (8) of the main paper, where we have
dropped the explicit dependence on the spatial coordinates
and on time in the integrand.

Bizzarri and Das (2012; their equation 4) use a slightly
different equation, which assumes that Tres is always collin-
ear to T0 (for the adopted faulting mechanism, we have
Tres � �τf; 0�). In such a case, we have

F�t� �
ZZ

Π�t�
��T1 − τf�v1 � T3v3�dx1dx3: (B2)

From the comparison of equations (B1) and (B2), it is appar-
ent that the integrand functions are T1v1 � T3v3 − τfv �
Tv − τfv in the first case and T1v1 � T3v3 − τfv1 � Tv −
τfv1 in the second one.

In Figure B1 we compare the results from the two for-
mulations (B1) and (B2). The parameters are the same as in
Figure 3 (see Table 1); we have deliberately chosen the
supershear simulation because it is known that subshear

models should have much smaller rake rotations. It is clear
that variations are negligible; they begin to become appreci-
able only after t � 1:71 s, which corresponds to the time
when the rupture tip first hits the bottom of the fault (see
Fig. 3b and the Results for Nonspontaneous Ruptures section
of the main text). Before this point the two time evolutions of
F are identical, for both the 1-component and 3-component.
Because the 3-component is practically negligible in the total
estimate of F, we can conclude that the two methods are
equally good estimates of the energy flux.
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