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Abstract Pseudotachylytes are important markers that can indicate the thermal
state during a coseismic slip failure and provide indirect information about the level
of stress and sliding velocities attained during that time window. On the other hand,
survivor, fragmented clasts embedded in the quenched material are also very impor-
tant, in that they provide information about the energy spent to create new fracture
surfaces. In this paper, I study the temperature evolution of clasts subjected to the heat
dissipated by a just-formed, molten pseudotachylyte (PT) vein. In particular, I find the
analytical solutions for the temperature evolution within the PT vein, the surrounding,
undamaged host rock, and inside a clast. According to the proposed model, the
numerical results show that the clasts tend to preferentially melt in the inner part of
the PT vein (i.e., they are completely assimilated by the PT). In contrast, some clasts
can survive far from the PT vein center. My solutions, although based upon a
simplified model, can provide a theoretical framework to predict the maximum size
of the survived clasts at a given distance from the PT center. The distribution of these
survivor clasts follows a power-law relation in terms of their radius, and its features
generally agree with field and laboratory observations.

Introduction

There is no doubt that the problem of the energy balance
for an earthquake event is one of the central issues in the
physics of the earthquake source (e.g., Dahlen, 1977;
Husseini, 1977; Rudnicki and Freund, 1981; Kostrov and
Das, 1988; Rivera and Kanamori, 2005; Cocco et al., 2007;
Bizzarri, 2013). On the other hand, pseudotachylyte (PT;
glassy-like, aphanitic, black-colored rocks; Shand, 1916) is
the unique fault rock that is known to be created during the
coseismic time window (i.e., at seismic slip rates [∼1–10 m=s
or more] when the major stress release occurs on a fault). As
a consequence, the presence of PT is of extraordinary impor-
tance, because it preserves direct evidence of the dynamic,
energy-dissipating chemical and physical mechanisms that
occur during earthquake ruptures (Sibson, 1975; Cowan,
1999). In more detail, PTs are interpreted as markers of the
heating processes that occur during the fast sliding on the
fault (McKenzie and Brune, 1972; Sibson, 1975; Spray,
1993, 1995; Ikesawa et al., 2003; Andersen and Austrheim,
2006; Sibson and Toy, 2006; Lin, 2008). Although PTs rarely
can be preserved or even recognized (see Sibson and Toy,
2006; Kirkpatrick et al., 2009; and Kirkpatrick and Rowe,
2013, for detailed discussion), they are regarded as markers
of a melting process (Philpotts, 1964; Sibson, 1975; Maddock,
1983; Spray, 1987; Lin, 1991; Kirkpatrick et al., 2012). In-
deed, localized melting at asperity contacts is predicted theo-
retically (Jeffreys, 1942; McKenzie and Brune, 1972; Rempel
and Rice, 2006; Bizzarri, 2009), and a plethora of theoretical
and numerical models indicates that melting temperatures for

rock-forming minerals can be easily exceeded during seismic
sliding (among others, Fialko and Khazan, 2005; Bizzarri and
Cocco, 2006b; Nielsen et al., 2008; Bizzarri, 2011). Indeed,
evidence of melting on major faults during great earthquakes
does exist; examples include the Outer Hebrides thrust, Scot-
land (Sibson, 1975), the Priestley fault, Antarctica (Storti et al.,
2001), and the Pasagshak Point thrust subduction décolle-
ment, Alaska (Rowe et al., 2005).

On the other hand, Pittarello et al. (2008) estimate the
surface energy (i.e., the energy required to create new frac-
ture surfaces) by analyzing the density of microcracks inside
the clasts entrapped in a PT vein and in the fault wall rock.
A clast is a rock fragment or a cracked grain that results from
the breakdown of larger rocks; an example can be found in
figure 3b of Pittarello et al. (2008). Indeed, the clast itself can
be internally cracked (Keulen et al., 2007) due to different
mechanisms, such as thermal fracturing (Ohtomo and Shima-
moto, 1994), abrasive wear (Rabinowicz, 1965), and process
zone microfracturing (Reches and Dewers, 2005).

The presence of survivor clasts (i.e., nonmolten clasts),
due to fragmentation, inside a PT vein can be of great impor-
tance in the attempt to formulate the energy balance equation
of an earthquake. Several studies have attempted to retrieve
the magnitude of dynamic shear resistance from the clast
content in the PT veins (e.g., Spray, 1992; Ujiie et al., 2007;
Kirkpatrick et al., 2012).

In this paper, I consider the problem of the survival of
a clast embedded into a just-formed (new) PT vein. I will
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explore the conditions controlling its survival, expressed in
terms of its position with respect to the vein center and its
dimensions. The theoretical framework proposed here, as
with every theoretical model of a natural phenomenon, is
based upon some assumptions and simplifications, which
are scrutinized in the Discussion section. Nevertheless, the
proposed model is, to date, the first framework to predict
the evolution (fate) of a clast embedded in a PT vein and
to explain the power-law distribution of the nonmolten (sur-
viving) clasts.

The problem of the cooling of a PT vein is solved ana-
lytically in a closed form in the Temperature within the Pseu-
dotachylyte Vein section, whereas in the Temperature Inside
a Single Clast section, I found an analytical solution for the
temperature inside a spherical clast. The Numerical Results,
Frequency Distribution of the Surviving Clasts, and Sensitiv-
ity Tests sections are devoted to the discussion of the numeri-
cal results, based on some realistic scenarios. The Conclusive
Remarks section summarizes the conclusions of the present
work.

Temperature within the Pseudotachylyte Vein

In this paper, I consider a PT vein with width of 2w em-
bedded in an infinite, homogeneous medium, as depicted in
Figure 1. For simplicity, I deliberately neglect any possible
corrugation or geometrical irregularity in the shape of the
vein, although I know that in some cases the molten material
can be ejected from the fault core and can penetrate into the

surrounding damage zone (see, for example, fig. 3a of Pit-
tarello et al., 2008, and fig. 1a of Kirkpatrick and Rowe,
2013). The initial temperature of such a system is T0�x� ≡
T�x; 0�, in which x ∈ � −∞;�∞ �. (The complete list of the
symbols used in this paper is reported in Table 1.) I assume
here that there is no any heat source internal to the system
(due, for instance, to viscous shearing or frictional heat); in-
deed, I am interested in the behavior of the PT vein instead of
the physical processes leading to its creation, which have
been considered elsewhere (e.g., Bizzarri, 2011, and referen-
ces cited therein).

In this case, the temperature T�x; t� at time t and at a
distance x from the center of the PT vein is expressed as
the solution of the 1D Fourier’s heat conduction equation
( ∂∂t T � χ ∂2

∂x2 T), which reads as

T�x; t� � 1

2
�������
πκt

p
Z �∞
−∞

T0�x′�e−
�x−x′�2

4χt dx′ �1�

(Carslaw and Jaeger, 1959), in which χ is the thermal diffu-
sivity (χ � κ=ρCp, wherein κ is the thermal conductivity,
ρ the cubic mass density of the material, and Cp its specific
heat at constant pressure). χ might be spatially heterogeneous
across the PT vein and across the host rock, depending on
mineral composition; here I assume an average value for the
whole space.

Let us assume that the initial temperature profile of the
PT vein simply is

T0�x� �
�
Tmelt; x ∈ �−w;w�
Thr; elsewhere

; �2�

x = 0 

Host
rock

Host

Clast

rock
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Figure 1. A schematic view of the system considered in the
paper: a homogeneous pseudotachylyte (PT) vein of constant thick-
ness 2w is embedded in an infinite surrounding host rock that also
has uniform material properties. The distance of a point P in the
clast from its center C is denoted by r�0 ≤ r ≤ rcl�, whereas the dis-
tance of C from the center of the vein is indicated with
x�−w ≤ x ≤ w�. The figure shows a cross section of the PT vein,
which extends in the direction perpendicular to the reader.

Table 1
Representative Parameters Used in This Paper

Parameter Description Value

w Half-thickness of the
pseudotachylyte (PT) vein

2:95 × 10−3 m

rcl Radius of the clast 1 × 10−3 m
x Distance from the center

of the PT vein
n/a

t Time n/a
T�x; t� Temperature field in the

medium
n/a

T0�x�≡T�x; 0� Initial temperature profile in
the medium

See equation (2).

Tmelt Effective melting temperature
of the PT vein

1450°C

Tmeltcl Melting temperature of the
clast

1200°C

Thr Temperature of the host rock 250°C
r Distance from the center of

the clast
≤ rcl

Tcl�r; t; x� Temperature field inside the
clast

n/a

Tcl0 Initial temperature of the clast 250°C
χ Thermal diffusivity 7:2 × 10−7 m2=s
χcl Thermal diffusivity of clast 1:75 × 10−6 m2=s
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in which Tmelt is the effective melting temperature within the
PT vein and Thr is the initial (reference) temperature of the
undamaged host rock. The condition expressed by equa-
tion (2) states that the PT vein has just been formed, because
its initial temperature is Tmelt and it begins cooling at t � 0.
Of course, the boxcar function represented by equation (2) is
a simplification of the initial conditions for the PT vein tem-
perature. One can alternatively assume other analytical func-
tions, even smoothed, such as the Gaussian or other arbitrary
formulations. Another possibility would be to use the steady
state solution proposed by Nielsen et al. (2008; see for in-
stance their figs. 4a and b), but I actually do not know if
the applicability of a steady state condition is appropriate to
the initial time; and, more importantly, I would add another
free (and unknown) parameter into the model (the steady
state sliding speed). In this paper, I conservatively assume
the most simple, and plausible, initial condition, as stated
by equation (2), allowing for the possibility that future work
will give us sufficient constraints to consider more complex
scenarios.

Once the function T0�x� is given, equation (1) can be
evaluated; in the case of equation (2), simple algebra shows
that one can obtain a closed-form analytical solution:

T�x; t� � 1

2

�
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�
erf

�
w� x
2

�����
χt

p
�
� erf

�
w − x
2

�����
χt

p
��

� Thr

�
erfc

�
w − x
2

�����
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p
�
� erfc

�
w� x
2

�����
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p
���
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in which erf�·� is the error function (erf�z��
df

2��
π

p
R
z
0 e

−ξ2dξ)

and erfc�·� is its complementary function
(erfc�·��

df
1 − erf�·�). There is no need to overemphasize that

this solution differs from previous ones in which an internal
heat source was included in the model (e.g., Fialko, 2004;
Bizzarri and Cocco, 2006a). In the center of the PT vein,

T�0; t� � Tmelterf
�

w
2

�����
χt

p
�
� Threrfc

�
w

2
�����
χt

p
�
; �4�

and, at the borders of the PT vein,

T��w; t� � Tmelterf
�

w�����
χt

p
�
� Threrfc

�
w�����
χt

p
�
: �5�

From equations (4) and (5), limt→�∞T�0; t� �
limt→�∞T��w; t� � Thr, which physically states that the
whole system asymptotically regains its reference thermal
state through time.

Temperature inside a Single Clast

Now, I consider a single spherical clast (of radius rcl)
with homogeneous properties, which is inserted at t � 0

in the PT vein (Fig. 1). Because the volume of a single clast
Vcl is negligible with respect to the whole volume of the PT

vein V, I can safely assume that the temperature evolution of
the PT vein is not perturbed by the presence of the clast, so
the solution in equation (3) is still valid. I emphasize here
that the condition Vcl ≪ V does not absolutely imply
rcl ≪ 2w; indeed, the PT vein has dimensions along the
depth and along the strike directions that are very large com-
pared to its size (2w). Consequently, the total volume of the PT
vein is basically controlled by these dimensions, not by 2w.

In general, the total volume of the clasts may also have
an impact on the vein cooling; this translates into the fact that
the PT vein temperature expressed by equation (3) should
be regarded as an upper bound of the actual PT temperature.
Nevertheless, many studies (e.g., Di Toro et al., 2005; Kirk-
patrick et al., 2012) show that the final clast content is rel-
atively low (on the order of 20% or less), so that the perturba-
tion due to the clast volume is small.

Although clasts can have shape different than a sphere,
I made this assumption in the interest of simplicity and to
obtain an analytical solution to this problem (see the Discus-
sion section). In particular, I wish to know the temperature
inside the whole clast, the increase of which is caused by the
heat exchange through time due to heating by the hotter PT
vein. Moreover, I assume that the clasts that were already
formed within the PT vein were formed through fracturing
processes prior to melting and formation of the PT vein fill,
such as wear, fragmentation, and other comminution proc-
esses (e.g., Sibson, 2003). Therefore, I neglect the problem
of the clast generation during a cosesimic slip event, as my
focus is the fate of the clasts rather than their formation.

I assume that the initial temperature of the clast (Tcl0 ) is
uniform inside its entire volume. Letting the center of the
clast be at a distance x from the PT vein center (Fig. 1), its
surface temperature (for r � rcl) equals the temperature
T�x; t� expressed by equation (3). In the special case in
which a clast can be geometrically viewed as a protrusion of
the host rock, its initial surface temperature is still expressed
by equation (3), which accounts for the temperature with and
without the PT vein.

At time t > 0 and at a distance 0 ≤ r < rcl from its
center (namely, in the point P reported in Fig. 1), the temper-
ature Tcl�r; t; x� of the clast is expressed as (Carslaw and
Jaeger, 1959; their chapter 9, equation 3)

Tcl�r; t; x� �
2

rclr

X�∞

m�1

e
− χclm

2π2 t

r2
cl

× sin
�
mπr
rcl

�
�I1 − χclmπ�−1�mI2�t; x��: �6�

In equation (6) χcl is the thermal diffusivity of the
clast and

I1≡
Z

rcl

0

Tcl0r
′ sin

�
mπr′

rcl

�
dr′ �7�

and
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I2�t; x�≡
Z

t

0

e
χclm

2π2 t′

r2
cl T�x; t′�dt′: �8�

(Readers can refer to chapter 9 of Carslaw and Jaeger, 1959,
for additional analytical details.) Equations (6)–(8) assume
that the surface temperature of the spherical clast is spatially
uniform and equal to T�x; t�; I discuss this issue in detail in
Appendix A.

Once the melting temperature of the clast Tmeltcl is ex-
ceeded, the clast starts to melt, and therefore one deals with a
Stefan problem (e.g., Nielsen et al., 2008; Bizzarri, 2011,
and references cited therein), which controls the kinetics of
the solid/melt boundaries of the melting clast. In such a case,
I would have to consider the latent heat of melting of the
clast. The incorporation of such a latent heat into the model
will have no effect on the temperature of the PT vein, but it
would tend to buffer the temperature of the partially melting
clast. Here, when a clast starts to melt, I ignore the latent
heat of melting of the clast. Considering that the integral

in equation (7) simply gives I1 � − �−1�mr2clTcl0
mπ , I rewrite

equation (6) as

Tcl�r; t; x� � −
2

rclrπ

X�∞

m�1

�−1�m
m

e
− χclm

2π2 t

r2
cl sin

�
mπr
rcl

�
�r2cl Tcl0

� χclm2π2I2�t; x��: �9�

The integral I2 in equations (6) and (9), defined in equa-
tion (8), has to be solved numerically. To this goal, it is com-
putationally convenient to rearrange equation (9) as

Tcl�r; t; x� � −
2

rclrπ

X�∞

m�1

�−1�m
m

sin
�
mπr
rcl

�
�r2cl Tcl0e

− χclm
2π2 t

r2
cl

� χclm2π2I3�t; x��; �10�

in which

I3�t; x�≡
Z

t

0

e
χclm

2π2�t′−t�
r2
cl T�x; t′�dt′: �11�

In order to compute I3, I adopt a general-purpose
integrator (modified from Piessens et al., 1983) that uses
a globally adaptive scheme to reduce the absolute error. It
subdivides the interval of integration (in my case �0; t�) and
uses a (2k� 1)-point Gauss-Kronrod quadrature rule to
estimate the integral over each subinterval. The error for each
subinterval is estimated by comparison with the k-point
Gauss quadrature rule. The subinterval with the largest esti-
mated error is then bisected, and the same procedure is ap-
plied to both halves. The bisection process is continued until
the error criterion is satisfied, round-off error is detected, the
subintervals become too small, or the maximum number of
subintervals allowed is reached.

Because
P�∞

m�1
�−1�m
m sin�mπr

rcl
� � − πr

2rcl
, equation (10) can

be rewritten in the following form:

Tcl�r; t; x� �
P�∞

m�1 tm�r��Tcl0e
− χclm

2π2 t

r2
cl � χclm2π2

r2cl
I3�t; x��P�∞

m�1 tm�r�
;

�12�
in which

tm�r� ≡
�−1�m
m

sin
�
mπr
rcl

�
: �13�

I remark here that the numerical treatment of equa-
tion (12) is more accurate than that of equation (10), espe-
cially for small values of r and t. First, from equation (12), it
is trivial to verify that Tcl�r; 0; x� � Tcl0 for any r and x, as
expected. Moreover, for an arbitrarily large value of mmax,
the numerical estimate

T̂cl�r; t; x� �
Pmmax

m�1 tm�r��Tcl0e
− χclm

2π2 t

r2
cl � χclm2π2

r2cl
I3�t; x��Pmmax

m�1 tm�r�
�14�

will converge to the exact value Tcl�r; t; x� of equation (12).
(Equation 14 is the truncation of the summation in equa-
tion (12) up to mmax.) In particular, in the center of the clast
(i.e., for r � 0), by recalling that limr→0

1
r sin�mπr

rcl
� � mπ

rcl
, it is

trivial to demonstrate that equation (14) simply reduces to

T̂cl�0; t; x� �
Pmmax

m�1�−1�m�Tcl0e
− χclm

2π2 t

r2
cl � χclm2π2

r2cl
I3�t; x��

1
2
��−1�mmax − 1� ;

�15�
which does not diverge if mmax is odd.

Numerical Results

In this paper, I assume that the PT vein is 5.9 mm wide;
this is the average value found by Pittarello et al. (2008)
based on measurements from the high-resolution digital pho-
tomosaics of the planar segment from the Gole Larghe fault,
Adamello, Italy. This target site is an example of one of the
most well-studied PT-bearing fault zones; however, because
the clast size distribution is affected by cataclasis (Ma-
gloughlin, 1992; Di Toro et al., 2005, and references cited
therein; Fialko and Khazan, 2005), I do not expect my cur-
rent results on the clast size distribution (see the Frequency
Distribution of the Surviving Clasts section) can be applied
literally to that case. The other parameters of the model are
tabulated in Table 1, again in agreement with the data from
the Gole Larghe fault; in the Sensitivity Tests section, I will
also explore different configurations to generalize my results.
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The melting temperature of the PT vein (initial PT temper-
ature) was chosen according to the observation of Nestola
et al. (2010), who established that the molten PT layer ex-
periences temperature equal to 1450°C due to the presence
of the dmisteinbergite. On the other hand, I consider clasts
made by plagioclase, for which the melting temperature is
1200°C. The initial temperature of the PT vein exceeds that
of the clast because it fails in superheating conditions.
Finally, the temperature of the wall rock away from the
PT vein (Thr in equation 2) has been set according to the
estimates from the mineral assemblage far from the PT
(Di Toro and Pennacchioni, 2004); Thr � 250°C.

Figure 2a shows the spatiotemporal distribution of the
temperature of the PT vein for the typical parameters listed

in Table 1, as given by the closed-form analytical solution in
equation (3). After t � 0 the vein starts to cool, and concur-
rently the host rock warms.

Figure 3 depicts the time evolution of T within (thick
lines) and outside (thin lines) the PT vein for the same param-
eters. It is clear also from Figure 3a that the PT vein cools,
while the host warms up. At around t � 3 s, the boundaries
of the PT vein (i.e., jxj � 2:95 mm) tend to reach an inter-
mediate equilibrium temperature, equal to �Tmelt � Thr�=2.
Afterward, the whole system cools, and it reaches the final
temperature of the host rock (i.e., the ambient, reference tem-
perature Thr; see Fig. 3b). This outcome is reasonable, in that
the heat lost by the PT vein initially warms the host rocks
and finally dissipates, so that the whole system regains its
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Figure 2. (a) Spatiotemporal evolution of the temperature in the medium for the parameters listed in Table 1. The initial condition T0�x�
(thick line) is specified in equation (2), and the values of T are given by equation (3). (b) The temperature profile across the medium is
calculated at t � 1 s in the same conditions as in panel (a). The rectangle indicates the location of the PT vein. The color version of this figure
is available only in the electronic edition.
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reference thermal state (Thr). The asymptotic limit depicted
in Figure 3b confirms the theoretical predictions discussed at
the end of the Temperature within the Pseudotachylyte Vein
section.

In Figure 4, I plot the temperature inside a single, iso-
lated clast Tcl, as given by equation (14). It refers to a clast
centered at a distance x � 2:6 mm from the PT vein center.
In this example, I have deliberately chosen a clast with an
initial large radius (rcl ∼ w=3) to see the different tempera-
ture profiles depending on many distances from the center of
the clast. Until the final radius of the surviving clast is re-
duced to 0.35 mm, a part of the clast is out of the PT vein.
The thick line indicates the ambient temperature, that is, the
temperature T of the PT vein (as given by equation 3). The
various lines refer to different positions r with respect to
the center of the clast. Because of the heat transferred from
the PT vein, Tcl increases starting from t � 0, with a rate that

is inversely proportional to r. For inner points (i.e., for
smaller r), Tcl increases more slowly than for points close to
the external surface of the clast (i.e., for larger r). This behav-
ior is reasonable, because as long as r approaches rcl, Tcl

asymptotically collapses to T.
After 0.2 s Tcl roughly equals T, indicating that the sys-

tem has reached its thermal equilibrium; for larger times the
two temperatures evolve identically and asymptotically tend
to the final temperature (recall Fig. 3b). The most important
outcome of Figure 4 is that for r ≥ 0:75 mm the clast start to
melt. At this particular distance x, and for the adopted param-
eters, my results indicate that the maximum size of a survivor
(i.e., not molten) clast fails in the range between 0.5 and
0.75 mm.

For a given set of thermal parameters and size of the PT
vein, the maximum size (radius) of a survivor clast depends
on the distance x of the clast center from the PT vein center.
To analyze such a dependence, I report in Figure 5 a phase
diagram summarizing the behavior of the clasts as a function
of the two distances x and r. For each position x, I first com-
pute the temperature in the center of the clast (i.e., for r � 0).
If this temperature exceeds the melting temperature, this im-
plies that the whole clast melts and it is completely assimi-
lated into the PT vein. This situation is reported by a full
circle. If the temperature at r � 0 does not exceed the melt-
ing temperature of the clast Tmeltcl , then I consider r > 0 and
identify (again for the target position x) the maximum value
of r for which the temperature of the clast Tcl is below Tmeltcl.
I repeat this computation for all possible distances x. This
computation makes it possible to consider not only the
two end members (molten or nonmolten clasts, which clearly
emerge from the distinction between open and full circles in
Fig. 5), but also the process of partial melting. For example,
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Figure 3. Time evolution of the temperature in the medium at
different distances x from the center of the PT vein (indicated near
each curve). Thick and thin lines pertain to locations within and
outside the PT vein, respectively. The very thick line identifies
the temperature in the center of the PT vein (as expressed by equa-
tion 4). Relevant temperatures are also indicated. (a) Time window
is up to 3 s. (b) Time window is up to 10 min, with the inset panel
reporting times up to 1 min. The color version of this figure is avail-
able only in the electronic edition.
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Figure 4. Temperature evolution inside a single, isolated clast
located at a distance x � 2:6 mm from the PT vein center. The dif-
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if one considers the distance x � 2:6 mm, a clast with an ini-
tial radius rcl � 1 mm partially melts and survives when
rcl � 0:5 mm.On the other hand, if a clast has an initial radius
rcl � 0:15 mm, it survives completely at the target distance x.

The phase portrait in Figure 5 collects nearly 200 nu-
merical simulations. For the parameters assumed here, for
x ≤ 2:56875 mm all clasts melt and are completely assimi-
lated by the PT vein; I will critically discuss this result in the
Discussion section. Similarly, no clasts with a radius of 1 mm
survive.

In general, for a given value of x (i.e., for a fixed value in
the abscissa), the larger survivor clast is that having the larg-
est r associated with an empty circle. (Analogously, for a
given r [i.e., for a fixed value in the ordinate], the minimum
distance at which a clast with that radius survives is the
first value [moving to the left] with an empty circle.) In
Figure 5a, the dashed line denotes the separation between the
survivor clasts and the molten ones. Figure 5b depicts an

enlarged view of the rectangle in Figure 5a, which pertains
to the transition between molten and nonmolten clasts.

The boundary between the molten and survivor clasts
reported in Figure 5 depends on the adopted parameters
(Table 1); in the Sensitivity Tests section I scrutinize the
behavior of the system for other configurations. In general,
it is difficult to perform quantitative, exact comparisons with
cases reported in the literature. For an example, Pittarello
et al. (2008) found that no clasts survive with radius greater
than roughly 0.01 mm at Gole Large fault, whereas Chester
et al. (2005) found a maximum radius roughly of 0.1 mm at
Punchbowl fault. More explicit comparison against observa-
tion can be done when one considers the statistical distribu-
tion of the surviving clasts, which is the topic of the next
section.

Frequency Distribution of the Surviving Clasts

The distribution of the (surviving) clasts has received
great attention in the literature, not only in the framework
of the PT veins, but also in different contexts (e.g., Sammis
and King, 2007; Pittarello and Koeberl, 2013). Notably, Ray
(1999) observes that the grain-size reduction due to catacla-
sis along fault interfaces (after the onset of slip, the intact
wall rocks are crushed and generate rock fragments, with
progressively reducing size) follows a power-law (fractal,
and thus scale-invariant) size–frequency distribution. In the
context of the PT vein, Shimamoto and Nagahama (1992)
and Chester et al. (2005; see their fig. 3b) reported that sur-
viving clasts obey a power-law size distribution. Considering
exhumed samples from the Gole Larghe fault, Italy, Pittarello
et al. (2008; see their fig. 4) found a power-law distribution
for the surviving clasts, over roughly two orders of magni-
tudes. Kirkpatrick and Rowe (2013; their fig. 7d) also found
a power-law distribution with a constant slope over a small
range of radii.

My current model can provide, as a side result, the
opportunity to study the distribution of the surviving clasts.
To determine the number of surviving clasts, I consider all
possible distances xi from the center of the PT vein. Then I
compute the temperature of a single clast centered at each xi;
the maximum radius rsi at which the temperature of the clast
is below the melting temperature Tmeltcl . The number of the
surviving clasts, Ni ≡ N�r � rsi�, having a given radius rsi
is expressed as

Ni � 2

�
int

�
w − �xi � rsi�

2rsi

�
� 1

�
: �16�

In equation (16), the subscript i indicates the discrete values
of the distance x from the center of the PT vein and the values
of the maximum radius of the survivor clast rs at that dis-
tance (see Fig. 5). The factor 2 accounts for the symmetry of
the problem with respect to x � 0. Moreover, equation (16)
assumes that the clasts cannot interpenetrate (and therefore
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Figure 5. Phase diagram reporting the maximum size of the
surviving clasts at a given distance x from the PT vein center. Filled
circles denote molten clasts (i.e., the clasts that are completely de-
stroyed and incorporated into the PT vein). Empty circles denote the
survivor clasts. In (a), the dashed curve separates the phase space
where the clasts survive from that where they melt completely.
(b) The enlarged view of the region marked by the rectangle in panel
(a) shows the clasts in a semilogarithmic plot. The color version of
this figure is available only in the electronic edition.
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the available space, for 0 ≤ x ≤ w, for clasts of radius rsi is
w − �xi � rsi�; the same is true of −w ≤ x ≤ 0). Finally,
I exclude the clasts that are not completely within
the total size of the PT vein (namely, I put Ni � 0 when
w − �xi � rsi� < 0). It is important to note that because I
deal with a single clast at once, I do not consider any specific
parental (i.e., initial) clast distribution.

The cumulative number Ncum
i of clasts with r ≥ rsi

simply is

Ncum
i � Ni � Ncum

i−1 : �17�

The resulting distribution Ncum versus rs is reported in a
log–log scale in Figure 6, from which emerges a power-law
behavior of the type

Ncum � Cr−Ds : �18�

I note a smaller (negative) slope for finer clasts, in agree-
ment with previous studies (e.g., Pittarello et al., 2008);
this reflects in a different exponent D (I have C � 0:98 and
D � 0:90 for r < 0:1 mm and C � 0:24 and D � 1:5 for
r > 0:1 mm). Data from postmelting clast products from
the Sawar–Junia sector, India, analyzed by Ray (2004; his
table 1b) indicate a clear distinction between small and large
clasts in that a different power-law exponent describes the
two ranges. In particular, he found that the power-law expo-
nent is larger for larger clasts radii. My results are in agree-
ment with his findings, although an exact, direct comparison
is difficult because his data include clasts of exceptionally
large size (with radii up to 28 mm), which also implies a
much larger PT vein thickness. Remarkably, I found that
the threshold between small and large clasts (i.e., the critical
value of radius at which the power-law exponent changes)
has a direct proportionality with the PT vein thickness.

I also remark here that the exponents D that I retrieve
can underestimate the true D, because in equation (16), and
thus in equation (17), I account only for clasts with center at
the same depth, although a denser distribution is possible
if I account for contacting clasts which do not have centers
aligned along the y axis.

Interestingly, Tsutsumi (1999) found that for experimen-
tally generated PT, the clast size distribution still follows a
power-law behavior, which is slightly modified with respect
to equation (18). Namely,

Ncum � C′

�
1� rs

E′

�−D′

; �19�

in which E′ is a constant that depends on the material.

Sensitivity Tests

The survival of a clast, at a given distance from the PT
vein center depends on the chosen parameters. In order to
better explore the behavior of the system, I first consider

a model in which the initial radius is rcl � 2:5 mm. In
Figure 7, I report the time evolution of the temperature of
the clast, at a distance x � 2:6 mm from the PT vein center
and for different distances r from the center of the clast.
Although in the reference case a clast of radius 0.75 mm
is assimilated by the PT vein (see Fig. 4), in the present case
it survives (see Fig. 7).

This simple example raises the question as to whether
the power-law distribution I found for the surviving clasts
size (see Frequency Distribution of the Surviving Clasts)
is dependent on the particular set of parameters. To solve this
problem, I have considered another, rather different configu-
ration, in which I simultaneously enlarge the size of the PT
vein (now w � 10 mm) and the initial radius of the clast
(now rcl � 4 mm) and increase the melting temperature of
the PT vein (now Tmelt � 1500°C). I perform nearly 450 ad-
ditional simulations to build another phase diagram; then I
extract the statistics of the surviving clasts, still based on
equations (16) and (17). The results are reported as triangles
in Figure 6. As expected, the total, cumulative number of
clasts, even of small radius, is larger in this case; this is
basically due to the effect just discussed in the comparison
between Figures 4 and 7 and to the larger size of the PT vein
in the present case. Remarkably, this configuration also
shows a power-law distribution; there is a higher (negative)
slope for larger clasts, as observed in the reference case
(circles). The majority of the clast size distribution follows
a power law, with an exponent D � 0:90, exactly as in the
reference case.

Discussion

As with every model of a natural phenomenon, here I
make some assumptions. First, I neglect possible spatial
heterogeneities in the size of the PT vein, 2w. Tribological
surfaces can deviate from a plane (e.g., Power and Tullis,
1991; Scholz, 2002), and the fault core can be spatially var-
iable, even within the same fault structure (Kirkpatrick and
Shipton, 2009; Rathbun and Marone, 2010). Büttner et al.
(2013) report a high variability in the thickness of the PT
veins, ranging from 1 mm to 40 cm; consequently, I can
expect that, in general, the PT vein can have nonplanar boun-
daries. This, in turn, will insert additional spatial dependen-
cies in the Fourier heat conduction equation and in the initial
distribution of the temperature T0�x�, making the problem
three dimensional instead of one dimensional, as assumed
here. Unfortunately, I do not presently have an exact math-
ematical model, constrained by geological observations, able
to describe the spatial heterogeneities of the PT vein in all
dimensions. Therefore, my solution in equation (3) should
be regarded as an average value (over the depth and the strike
direction) of the temperature inside the PT vein.

Second, I assume that the clasts are already present at
t � 0. As thoroughly discussed by Kirkpatrick and Rowe
(2013), many different phenomena can lead to the generation
and modifications of clasts during cosesimic slip. In my
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idealized picture, I imagine having a snapshot just after the
formations of the clasts and ignoring the generation of the PT
vein. Moreover, during the generation of the PT vein, I can
also observe the injection of some molten materials (at mm to
cm scale; e.g., Büttner et al., 2013) into the surrounding
damage zone, as a consequence of microscale or mesoscale
tension fractures. All these mechanisms are likely to occur
during the coseismic time window. At a fundamental level,
I consider healing processes that take place locally or that the
coseismic slip has just completed, so that the PT vein has
been formed (due to frictional heat), clasts have been gener-
ated, and possible ejections of melts have been already ac-
complished. Then, I follow the evolution of the system,
starting from that time and from these conditions.

Third, I assume that the PT temperature T is not affected
by the presence of the clasts. This assumption is clearly cor-
rect when I focus on the temperature of single, isolated clast
embedded within the vein; indeed, the volume of a single
clast is always smaller than the total volume of the PT vein.
The complete treatment of multiple clasts reflects into a mul-
tibodies problem, which cannot be easily addressed. When
multiple clasts are considered simultaneously in the PT vein,
the total volume of all clasts may not be a small fraction of
the whole volume of the vein itself. In such a situation, the PT
temperature T expressed by equation (3) is not strictly valid;
the colder, total volume of the clasts ensemble would de-
crease the PT temperature faster than the temporal evolution
predicted by equation (3). As a consequence, equation (3)
should be regarded as an upper bound of the true temperature
of the PT vein. On the other hand, the surface temperature of
a clast will be lower; this finally translates into the fact that, at
a given distance, larger clasts will survive. It is impossible to
exactly predict how the statistics of the survived clasts will be

affected in this case. However, it is important to remark that,
given this model assumption, the computations presented
and discussed in the present paper are in general agreement
with the observations.

Fourth, in order to have exact solutions (i.e., closed-form
analytical solutions) the present treatment assumes that the
clasts can be approximated by spheres (see Fig. 1). This
assumption is conservative and reasonable for two reasons.
First, it is known that survivor clasts also can be affected by
plastic deformations, which can elongate them (e.g., Kirkpat-
rick and Rowe, 2013). However, I do not presently have
enough information to be able to select a specific initial
shape of the clasts, and I also ignore the exact details of the
mechanics of the these plastic deformations; the present
choice of an initial spherical shape can be therefore regarded
as a conservative choice. Second, data from exhumed sam-
ples indicate that from 35% to 90% of the clasts embedded
into melted–originated PT veins have roundness greater than
0.4 (Lin, 1999), and Sibson (1975) and Lin (1999) suggest
that the rounding of clasts in PT veins is a typical conse-
quence of the occurrence of melting processes within the PT
vein. If I hypothesize that a clast (originally having an arbi-
trary shape) experienced a partial melting (and thus a partial
rounding, in agreement with the evidence mentioned above)
during a previous coseismic slip episode, then, when I con-
sider the actual slip episode (which can potentially lead to a
more complete melting), the initial spherical shape therefore
appears as a reasonable assumption.

Finally, because I neglect the latent heat of fusion during
the partial melting of a clast (the Stefan problem), equa-
tion (14) is intended to be an upper bound of the temperature
of the clast after its possible partial melting.

Conclusive Remarks

The main aim of the present study is to understand the
destiny of a clast already present and embedded into a molten
and just-formed PT vein. PTs are known to be created (and
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even destroyed) during coseismic slip failures, as discussed,
for example, by Kirkpatrick and Rowe (2013). The occur-
rence of melting has been investigated theoretically in many
studies (e.g., Fialko and Khazan, 2005; Bizzarri and Cocco,
2006b; Nielsen et al., 2008; Bizzarri, 2011, and references
cited therein), which indicate that melting at microasperity
contacts can often occur. On the other hand, clast formation
is due to wear processes (e.g., Sibson, 2003). Remarkably,
survivor clasts can be used to retrieve the energy required
to create new fracture surfaces (Pittarello et al., 2008), which
in turn is of pivotal importance in the formulation of the en-
ergy balance for a seismic event.

Starting from the standard formulations in Carslaw and
Jaeger (1959), I analytically (and in a closed form) solve the
Fourier heat conduction equation, specialized for a PT vein
surrounded by a colder host rock. The PT vein is just formed,
so that its temperature equals Tmelt, which exceeds that of the
neighboring undamaged rocks. My solution in equation (3)
expresses the spatiotemporal evolution of the temperature T
inside the PT vein and in the damaged rock (see Figs. 2 and
3). I then found an analytical solution for the temperature
within a clast, embedded into the PT vein, which has the sur-
face temperature equal to T. My equation (14) expresses the
temperature Tcl as a function of the distance x from the PT
vein center and of the distance r from the center of the spheri-
cal clast (see Fig. 1).

Indeed, the concurrent modeling of (1) the PT and clasts
generation through coseismic slip, (2) the possible ejections
from the PT vein of molten materials, and (3) the consequent
cooling of the whole system is a very complicated phenome-
non. Unfortunately, no comprehensive models exist at the
moment, and there is insufficient data available to allow us
to build a realistic and well-constrained mathematical model.
In the present study, I present a first-order approximation of
such a complicated situation.

Given the limitations scrutinized in the Discussion sec-
tion, the theoretical framework proposed here (namely,
equations 3 and 14) is, to date, the first model that enables
us to theoretically predict the existence of survivor clasts of a
given dimension within the molten PT vein. By performing
more than 600 numerical experiments with different sets of
parameters, I demonstrate that the distance from the PT vein
center influences the existence of survivor clasts. Moreover,
the temperature distribution inside the clast is not uniform, as
physically expected, but it strongly depends on the distance
from the center of the clast (see Fig. 4) and on its initial size
(Figs. 4 and 7). The evolution of Tcl provides us with the
maximum size of a clast surviving into the PT vein, at a given
distance x from its center.

Moreover, I found that no clasts can be preserved in the
inner part of the PT vein for the adopted parameters. Such a
strong statement should not be taken too literally; indeed, as
stated above, if I consider multiple clasts concurrently heated
in the PT vein, their actual surface temperature will be lower
than that expressed by equation (3), so some clasts can sur-
vive in the PT center or in its proximity. Pittarello et al.

(2008) found that some clasts survive in the central zone
of the PT vein, but these clasts were exclusively of quartz,
which has a melting temperature of about 1700°C (e.g.,
Spray, 2010). (The melting temperature of the clasts assumed
in the present model is 1200°C, which is the melting temper-
ature of the plagioclase.) Of course, if I assume that some
clasts are composed of quartz, then my model will predict
the survival of clasts even in the center of the PT vein, in
that the maximum temperature within the PT vein itself is
1450°C. Alternatively, I can also speculate about the pos-
sibility that some clasts were originally surrounded by micro-
lites (crystals that grow in and from the PTs melt), which can
act as a protection against clast melting, as well as a possible
small circulation of clasts, due to postseismic arrangements
of the PT vein and of the surrounding rocks. In conclusion, I
can interpret my results as a tendency that clasts are prefer-
entially melted in the center of the PT vein compared with
the edges.

It also should be noted that some compositional varia-
tions of the molten material would be expected at the local
scale, where the clasts are completely assimilated into the
matrix (e.g., Büttner et al., 2013). The mineral composition
of the survivor clasts is used to constrain the (upper) temper-
ature within the PT vein (e.g., Nestola et al., 2010). In this
light, the results presented here are a further corroboration of
such an interpretation.

In general, the threshold distance x for melting and the
maximum size of the survived clasts depend on the adopted
parameters, with a pronounced dependence on the size of the
PT vein and on the initial radius of the clasts. Clasts with
small initial radius have a greater tendency to melt (i.e., a
smaller survivability potential) compared with larger clasts,
for a given location inside the PT vein. Indeed, I found that
the distribution of the surviving clasts follows a power-law
relation in terms of their radius (see equation 17 and Fig. 6),
regardless of the adopted configuration. This theoretical
result is in general agreement with previous microstructural
analyses conducted on laboratory and on exhumed samples
(Shimamoto and Nagahama, 1992; Ray, 1999, 2004; Pittar-
ello et al., 2008; Kirkpatrick and Rowe, 2013).

Cataclastic fault rocks usually follow a power-law dis-
tribution (e.g., Sammis and King, 2007), so it is possible that
the distribution of the (survived) clasts into the PT vein some-
how reflect their initial distribution (Ray, 2004; Kirkpatrick
and Rowe, 2013). In the present paper, I focus on the evolved
(by melting process) clast size distribution patterns, rather
than on the inherited (by cataclasis) pattern. (As stated in the
Frequency Distribution of the Surviving Clasts section, I do
not consider any parental clast distribution.) From contem-
plating the full circles and full triangles in Figure 6, one can
see a power-law distribution for both sets of the parameters
considered, and this behavior does not depend on the initial
size of the clasts. In the framework of the present model,
the power-law exponent is different for small and large
clasts, in agreement with the conclusions of Ray (2004) and
Pittarello et al. (2008). Notably, Pittarello et al. (2008)
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obtain D between 0.2 and 1 for clast dimensions of
2 × 10−5 mm < rcl < 1 × 10−3 mm, which is compatible
with my estimate of 0.9 (see Fig. 6). The slope is different
for larger dimensions; this is imputable to the assumptions of
the present model.

More complicated configurations, also including some
spatial heterogeneities in the distribution of the thermal
parameters, can be tackled numerically and/or further com-
plicating the partial differential equations to be solved, but,
given the assumptions made here, the present results provide
a first-order attempt to build a theoretical framework to
predict the destiny of a clast within a PT vein.
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All data sources were taken from published works listed
in the References.
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Appendix A

Estimation of the Surface Temperature of the Clast

One essential ingredient to determine the temperature
inside a clast, Tcl�r; t; x�, is its surface temperature. In the
Temperature Inside a Single Clast section, equations (6)–(8)
express this temperature by assuming the surface tempera-
ture of the spherical clast is spatially uniform and equal to
T�x; t�, that is, equal to the temperature at the location of
the clast center (see Fig. 1). Such a temperature is maximum
at x − rcl and minimum at x� rcl (which represent the mini-
mum and the maximum distance, respectively, from the
pseudotachylyte [PT] vein center, x � 0). At a given
time t, T�x; t� is intermediate between T�x� rcl; t� and
T�x − rcl; t�; that is, T�x� rcl; t� < T�x; t� < T�x − rcl; t�.

Obviously, if rcl is small (formally, if the condition
rcl ≪ w is met), the temperature difference between the two
above-mentioned end points is negligible, so that T�x; t� can
be safely taken as the representative surface temperature of
the whole clast.

In general, I can define the average surface temperature
of the clast as

hTi � 1

4πr2cl

Z
Σrcl

Tdσ; �A1�

that is, the temperature is averaged over its spherical surface.
In equation (A1) Σrcl is the boundary of the sphere of radius
rcl (i.e., its surface) and dσ is the differential. In polar coor-
dinates, I have

( x � x0 � rcl sin θ cosφ
y � y0 � rcl sin θ sinφ
z � z0 � rcl cos θ

; �A2�

in which θ ∈ �0; π�, φ ∈ �0; 2π�, and �x0; y0; z0� is the posi-
tion in R3 of the center of the clast. Considering that T does
not depend on y0 and z0 and that dσ � r2cl sin θ dθ dφ, I can
write equation (A1) as

hTi � 1

4πr2cl

Z
2π

0

dφ
Z

π

0

dθ T�x0 � rcl sin θ cosϕ; t�r2cl sin θ:

�A3�
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Now, I consider the McLaurin series expansion of the
(regular) function T at first order, which is

T�x0 � rcl sin θ cosφ; t� ≈ T�x0; t� �
∂T
∂x jx0rcl sin θ cosφ;

�A4�
and rewrite equation (A3) as

hTi ≈ 1

4π

�Z
2π

0

dφ
Z

π

0

dθ T�x0; t� sin θ

�
Z

2π

0

dφ
Z

π

0

dθ
∂T
∂x jx0rcl sin θ cosφ

�

� 1

4π

�
T�x0; t�

Z
2π

0

dφ
Z

π

0

dθ sin θ

� rcl
∂T
∂x jx0

Z
2π

0

dφ
Z

π

0

dθ sin θ cosφ
�
:

Because

Z
2π

0

dφ
Z

π

0

dθ sin θ � 4π andZ
2π

0

dφ
Z

π

0

dθ sin θ cosφ � 0;

I simply obtain

hTi ≈ T�x0; t�: �A6�
In words, equation (A6) states that the average surface tem-
perature of a clast can be approximated, at first-order series
expansion, as the temperature T at the distance x0 of its
center from the center of the PT vein. Therefore, equa-
tion (A6) mathematically demonstrates that the combination
of equations (6) and (8) is valid to estimate the temperature of
a clast subject to the temperature field T, given in turn by
equation (3).
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