

MODELING INSTANTANEOUS DYNAMIC TRIGGERING IN A 3 - D FAULT SYSTEM: THE CASE OF AN EALRY AND REMOTE AFTERSHOCK IN THE JUNE 2000 SOUTH ICELAND SEISMIC SEQUENCE

Andrea Bizzarri¹, Maria Elina Belardinelli²

¹ Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Bologna ² Università degli Studi di Bologna – Dipartimento di Fisica

April 18 2007

Motivations and Goals

- Remote triggering is a case of dynamic triggering occurring at distances larger than the dimension of the causative fault;
- Since the M_w 7.7 1992 Landers EQ only a few examples of remote triggering have been observed; we consider the <u>early</u> <u>events in Reykjanes Peninsula on June 17, 2000;</u>
- We study the instantaneous remote triggering of a fault of finite extension, considering a realistic 3–D fault model, including heterogeneities in the crustal profile and in the fault rheology;
 - We generalize the conclusions obtained in a previous paper on the basis of a simple 1–D spring–slider analog system;
 - We study the response of the triggered fault as depending on the assumed constitutive relation: rate— and state—dependent governing laws and slip—dependent law.

The June 2000 seismic sequence in the South Iceland Seismic Zone

The sequence started on June 17, at 15:40:41 UTC, with an event of magnitude $M_s = 6.6$ (*Pedersen et al., 2001*), with hypocenter located at (63.973 °N, 20.367 °W, 6.3 Km) (*Stefansson et al., 2003*; *Arnadottir et al., 2006*).

O The largest events (*M*~5) occurring in the first five minutes are:

8s, 26s, 30 s, 130s, 226s

O In intermediate-far field:

26s, 30 s, 226s

O Reasonably are not secondary aftershocks:

26s, 30 s.

O The 30 s event is affected by the mainshock and also by the 26 s aftershock.

The numerical approach

For the June 17 2000 mainshock we assume:

1) The slip distribution retrieved by a joint inversion of GPS and InSAR data (*Arnadottir et al., 2003*) \rightarrow

2) A bilateral Haskell model, with a rupture velocity $v_r = 2500 \text{ m/s}$

3) A Bouchon ramp source time function (*Bouchon, 1981*) with a rise time t_0 equal to 1.6 s

4) 7°, 88° and 180° for the strike, the dip and the rake angles, respectively (i. e. right–lateral strike slip mechanism), on the basis of the aftershock distribution (*Stefansson et al., 2003*)

Using the discrete wavenumber and reflectivity code developed by *Cotton and Coutant (1997)* we compute the resulting stress field variations $\Delta \sigma_{ii}(\mathbf{x}, t)$

The values of the tensor $\Delta \sigma_{ij}$ are calculated on the 26 s fault plane up to 2.78 Hz, in a total of 12 × 8 "receivers", located in nodes uniformly spaced 1650 m in the strike direction and at depths of 0 m, 1650 m, 3300 m, 4950 m, 6550 m, 8100 m, 9900 m and 11550 m.

The spatial sampling of the receiver grid is <u>not</u> sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (*Bizzarri and Cocco, 2003; 2005*), as well as the temporal discretization.

We develop an algorithm that employs a C^2 cubic spline to interpolate $\Delta \sigma_{ij}$ in space and in time.

In the numerical code presented by *Bizzarri and Cocco (2005)* at time *t* and in each fault node, the dynamic load is: $\mathcal{L}_i = f_{ri} + T_{0i} + \Delta \sigma_{2i}$ (*i* = 1 and 3).

 T_{0i} are the components of the initial traction $(T_0(x_1, x_3) = \tau_0(x_1, x_3)(\cos(\varphi_0), 0, \sin(\varphi_0)))$

 f_{ri} are the components of the load (namely the contribution of the restoring forces, f_r) exerted by the neighbouring points:

 $f_{ri} = (M^- f_i^+ - M^+ f_i^-)/(M^+ + M^-),$

where M^+ and M^- are the masses of the "+" and "-" half split-node of the fault plane Σ and **f**⁺ is the force acting on partial node "+" caused by deformation of neighbouring elements located in the "-" side of S (and viceversa for **f**⁻).

 $\{\Delta \sigma_{2i}\}$ are coupled to the components of the fault friction T_i via

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_1 = \alpha [\mathcal{L}_1 - T_1]$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_3 = \alpha [\mathcal{L}_3 - T_3]$$

where $\alpha \equiv \mathcal{A} ((1/M^+) + (1/M^-))$, $\mathcal{A} = \Delta x_1 \Delta x_3$. T_i express on the governing law.

etniertenco lencitevreedO

1) Perturbed rupture time $t_r = 25.9 \pm 0.1 \text{ s}$

2) Hypocenter (63.951 \pm 0.004 °N, 21.689 \pm 0.008 °W, 8.9 \pm 1.3 Km) \leftrightarrow on fault coordinates of (16500 \pm 450, 8900 \pm 1300) m (*Antonioli et al., 2006*)

Green: All Relocated Events within the Fault Orange: Relative Error in Lat, Lon and Depth < 100m

63.90

Latitude

Depth [km]

3') From the aftershocks distribution shown in *Hjaltadottir and Vogfjord (2005)* we consider the seismic part of the fault (*A*) limited in latitude between 63.890 °N and <u>63.947</u> °N (in the case of North–South fault this corresponds to [9700, <u>16050</u>] m in strike direction) and limited in depth between 5400 m and <u>8100</u> m

Upper bound estimates':

 $M_0 = 1.23 \times 10^{15} \ A^{3/2} = 8.73 \times 10^{16} \text{ Nm};$ Av. fault slip: $\langle u \rangle_A = M_0 / (\rho v_S^2 A) = 0.14 \text{ m};$ Av. stress drop: $\langle \Delta \tau \rangle_A = 2M_0 / (\pi W_A L_A) = 1.62 \text{ MPa}$

4) $M_w \ge 5$ (Arnadottir et al., 2006; Vogfjord, 2003) $\Rightarrow M_0 \cong 3.2 \times 10^{16}$ Nm

Results with DR law – homogeneous

Dieterich - Ruina governing law

$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[\mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

 $\frac{\mathrm{d}}{\mathrm{d}t}\Psi = 1 - \frac{\Psi v}{L}$ Can be neglected (see Antonioli et al., 2006)

Perturbed rupture times

$$v(x_1, x_3, t) \ge v_1 \implies t_p(x_1, x_3) = t$$

 $v_l = 0.1$ m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)

 t_p^{min} = 23.47 s @ (20700,2900) m M_0 = 2.37 x 10¹⁹ Nm Whole fault

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

Results with DR law – homogeneous

Dieterich - Ruina governing law

$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[\mu_* + \alpha \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

 $\frac{\mathrm{d}}{\mathrm{d}t}\Psi = 1 - \frac{\Psi v}{L}$ Can be neglected (see Antonioli et al., 2006)

Perturbed rupture times

$$v(x_1, x_3, t) \ge v_1 \implies t_p(x_1, x_3) = t$$

 $v_l = 0.1$ m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2006); Rubin and Ampuero (2005); Ziv and Cochard (2006)

			· ·
23.9	24.4	24.8	25.3
Perturbe	d failure	time (s)

 t_p^{min} = 23.47 s @ (16500,2900) m M_0 = 2.23 x 10¹⁹ Nm Whole fault

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

Results with RD law – heterogeneous

Ruina – Dieterich governing law

$$\tau = \left[\mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right)\right] \sigma_n^{eff}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Psi = -\frac{\Psi v}{L}\ln\left(\frac{\Psi v}{L}\right)$$
 Can be neglected

 t_p^{min} = 23.44 s @ (15700,7900) m M_0 = 2.02 x 10¹⁶ Nm [9000,17300] m in strike direction [6300,8000] m in dip direction

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

Different values of L in the RD law

L = 5 mm

 t_p^{min} = 23.99 s @ (14600,7600) m M_0 = 1.27 x 10¹⁶ Nm [9500,16800] m in strike direction [6500,7700] m in dip direction

L = 10 mm

 t_p^{min} = 24.72 s @ (13300,7300) m M_0 = 2.17 x 10¹⁶ Nm [9500,16700] m in strike direction [6000,7400] m in dip direction

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

Modified Bouchon source time function:

$$f(t) = \frac{1}{2} \left| 1 + \tanh\left(\frac{t - \frac{t_0}{2}}{\frac{t_0}{2}}\right) \right|$$

corrected from *Cotton and Campillo, 1995*; $t_0 = 1.6$ s. Increased amplitudes in $\Delta \sigma_{21}$ peaks. Modified Bouchon source time function:

$$f(t) = \frac{1}{2} \left[1 + \tanh\left(\frac{t - \frac{t_0}{2}}{\frac{t_0}{2}}\right) \right]$$

corrected from *Cotton and Campillo, 1995*; $t_0 = 3.2$ s. Only a temporal shift.

2# znoitonut emit eoruce eviternet A

Modified Bouchon, $t_0 = 1.6$ s; $\sigma_n^{eff^*} = 4.2$ MPa – DR law

 t_p^{min} = 25.36 s @ (13500,7600) m

 $M_0 = 2.59 \text{ x } 10^{16} \text{ Nm}$

[9500,16700] m in strike direction [6200,8700] m in dip direction

Modified Bouchon, $t_0 = 3.2$ s DR law

t_p^{min} = 26.49 s @ (13000,7500) m

 $M_0 = 2.30 \text{ x} 10^{16} \text{ Nm}$

[9700,16500] m in strike direction

[6400,7600] m in dip direction

- We simulate the remote triggering in a *truly* 3–D fault model with different governing laws;
- We generalize the results of Antonioli et al. (2006), providing additional details of the 26 s event: the location of the hypocenter, its failure time, the rupture area and the seismic moment;
- The effective normal stress and the pre-stress are heterogeneous;
- The spring-slider and the 3-D model are intrinsically different, but we observe an excellent agreement during the slow nucleation phase...
- ... during the acceleration, in the 3–D model the dynamic load of the slipping points further decrease the perturbed failure time;

- The agreement with observations increases considering a modified (and more causal) source time function;
- ✓ If detailed informations of the initial state of the fault, potentially highly heterogeneous, were available the agreement with observations will be even better.

Case	Constitutive law	Rupture extension along strike (m)	Rupture extension along dip (m)	Hypocenter location (m)	Origin time (s)	Total seismic moment M ₀ (Nm)
F	DR	[9700, 16500]	[6400, 7500]	(13200,7500)	24.94	2.27×10^{16}
L	RD (<i>L</i> = 10 mm)	[9500, 16700]	[6000, 7400]	(13300,7300)	24.72	2.17×10^{16}
0	DR	[9700, 16500]	[6400, 7600]	(13000,7500)	26.49	2.30×10^{16}
Р	DR	[9500, 16700]	[6200, 8700]	(13500,7600)	25.36	2.59×10^{16}
Obs co	servational Instraints	[9700, 16500]	[5400, 7400]	$(16500 \pm 450, 8900 \pm 1300)$	25.9 ± 0.1	\cong 3.2 ×10 ¹⁶

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

The spatial sampling of the receiver grid is <u>not</u> sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (*Bizzarri and Cocco, 2003*; 2005), as well as the temporal discretization.

We develop an algorithm that employs a C^2 cubic spline to interpolate $\Delta \sigma_{ij}$ in space and in time.

Parameter	Value
	parallelepiped that extends $x_{l_{and}} = 36.5 \text{ Km}$
Ś	along x_1 , $x_{2_{end}} = 10$ Km along x_2 and
	$x_{3_{end}} = 11.6 \text{ Km along } x_3$
$\Sigma = \mathbb{O}\mathcal{B}$	$\{ \mathbf{x} \mid x_2 = x_2^{f} = 5000 \text{ m} \}$
$\Delta x_1 = \Delta x_2 = \Delta x_3 \equiv \Delta x$	100 m (a)
Number of nodes	4,289,571
Δt	1.27×10^{-3} s (a)
Number of time levels	33,650
v_{I}	0.1 m/s
$\sigma_n^{e\!$	2.5 MPa
$\varphi(x_1, x_3, 0)$	$\varphi_0 = 180^\circ$
$v(x_1, x_3, 0)$	$v_{init} = 6.34 \times 10^{-10} \text{ m/s} (= 20 \text{ mm/yr})$
$\Psi(x_1, x_3, 0)$	$\Psi^{ss}(v_{init}) = 1.577 \times 10^6 \text{ s} \ (\cong 18.25 \text{ d})$
$\sigma_n^{eff}(x_1, x_3, 0)$	See Table 3
$\tau_0(x_1,x_3)$	$\mu^{ss}(v_{init})\sigma_n^{eff}(x_1,x_3,0)$
a	0.003 ^(b)
<i>b</i>	0.010
L	1×10^{-5} m
μ_*	0.7
V.*	V _{init}
α_{LD}	0

the stand of the s

3-D

Crustal profile (from *Vogfjord et al., 2002*; *Antonioli et al., 2006*)

Layer # k	$\frac{v_{P_k}}{(m/s)}$	$\frac{v_{S_k}}{(m/s)}$	$ ho_{rock_k}$ (Kg/m ³)	$\begin{array}{c} \textit{Up do depth of} \\ x_{3_k}(m) \end{array}$
1	3200	1810	2300	1100
2	4500	2540	2540	3100
3	6220	3520	3050	7800
4	6750	3800	3100	11600

zzerła lamron evitacite laitinl

6

Support Slides 2: Parameters, Notes, etc.

To not be displayed directly. For discussion only.

Effect of different V

Dieterich – Ruina governing law

Ruina – Dieterich governing law

<i>v</i> ^{<i>H</i>} = 0.01 m/s (<i>t</i> = 24.56 s)	
<i>v</i> ^{<i>H</i>} = 0.05 m/s (<i>t</i> = 24.84 s)	

$$v^{H} = v_{l} = 0.1 \text{ m/s} (t = t_{o} = 24.94 \text{ s})$$

Failure occurs before traction reaches the residual level.

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)