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In this paper we consider a wide catalog of synthetic earthquakes, numerically modeled as spontaneous, fully
dynamic, 3-D ruptures on extended faults, governed by different friction laws, including slip-dependent and
rate- and state-dependent equations. We analyze the spatial correlations between the peak of fault slip velocity
(vpeak) and the rupture speed (vr) at which the earthquake spreads over the fault. We found that vpeak positively
correlates with vr and that the increase of vpeak is roughly quadratic. We found that near the transition between
sub- and supershear regimes vpeak significantly diminishes and then starts to increase againwith the square of vr .
This holds for all the governing models we consider and for both homogeneous and heterogeneous configura-
tions. Moreover, we found that, on average, vpeak increases with the magnitude of the event (vpeak~M0

0.18). Our
results can be incorporated as constraints in the inverse modeling of faults.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Understanding the physical and chemical dissipative processes
taking place during an earthquake is of pivotal importance in the me-
chanics of faulting. Fully dynamic models of spontaneously spreading
ruptures give us the extraordinary chance to investigate the features
of the constitutive law assumed to govern the fault surface, under
conditions that are very often far of being properly reproduced in labo-
ratory experiments.

One of the goals of modern-days seismology is to design robust
and computationally efficient numerical codes able to generate a cata-
log of synthetic events and to simulate the synthetic motions recorded
on the ground (i.e., on the free surface). The physics-based earthquake
(forward) source models appear to be crucial for realistic ground mo-
tion simulation and seismic hazard analysis; when seismological data
are rare (or even non-existent), numerical experiments can be used in
order to predict ground motions caused by future earthquakes. At the
same time, it is not obvious what is the most appropriated governing
model to describe the breakdownmechanismoccurring during slip fail-
ures (see Bizzarri, 2011b and references cited therein for a discussion).

Investigations of possible spatial correlations between the various
dynamic variables, such as fracture energy density, stress drop, total
developed slip, peak fault slip velocity (vpeak) and rupture speed (vr)
are important because they could be inserted as constraints in kine-
matic modeling of faults, on which current practice in seismic engi-
neering relies.
9 051 4151432; fax: +39 051
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By performing laboratory experiments of a mode II crack expand-
ing in a granite sample, the following direct dependence between
vpeak and vr has been proposed (Ohnaka et al., 1987):

vpeak≅vr
Δτb
G

ð1Þ

where Δτb is the breakdown stress drop (expressing the difference
between the upper and residual stress levels) and G is the rigidity of
the elastic medium. Notably, in laboratory only fracture on intact
rocks experiments give the rupture speed, contrarily to friction exper-
iments, both rotary shear and sandwich-like, where two pre-existing
surfaces slide against each other (and thus without the existence of a
crack tip).

In their pseudodynamic earthquake source modeling Guatteri et
al. (2004) try to understand the spatial interdependency of the earth-
quake source parameters, such as vr and the total slip (utot). Schmedes
et al. (2010a) analyze a series of dynamic models obeying the linear
slip-weakening friction to find correlations between various source
parameters. On the other hand, Song et al. (2009) explore the spatial
coherence between utot and vr, and between utot and vpeak by analyzing
kinematic rupture models of two large strike–slip events (this analysis
has been then extended to dynamic models by Song and Sommerville,
2010). Bizzarri (2010c) thoroughly discusses the relations between
the fracture energy and different physical observables, such as vr, utot
and the dynamic stress drop, by analyzing spontaneous dynamic earth-
quake models obeying different governing models.

Given the above-mentioned results, with this study we aim to un-
derstand whether, and how, vpeak and vr correlate. Both of these two
source parameters have a fundamental role in ground motion
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Table 2
Reference parameters adopted in the present paper.

Parameter Value

Medium and discretization parameters
Lamé constants, λ=G 27 GPa
S wave velocity, vS 3 km/s
P wave velocity, vP 5.196 km/s
Cubic mass density, ρ 3000 kg/m3

f a
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prediction and hazard assessment, in that the fault slip velocity is lin-
early related to the ground velocity (through the representation the-
orem; Aki and Richards, 2002) and the rupture speed controls the
frequency content of the recorded particle velocity (Bizzarri et al.,
2010). Moreover, vpeak (and its time occurrence) has received much
attention because it has been proposed as a way to infer the charac-
teristic distance over which the stress release is accomplished
(Mikumo et al., 2003; see also Tinti et al., 2004).
Fault length, L 2×6 km
Fault width, W f 11.6 km
Spatial grid size, Δx 8 m (b)

Time step, Δt 4.44×10−4 sb

Coordinates of the hypocenter, H ≡ (ξ1H, ξ3H) (5.992,7)km

Fault constitutive parameters
Effective normal stress, σn

eff 120 MPa
a) Slip-weakening law

Magnitude of the initial shear stress, τ0 70.52 MPa
Static level of friction coefficient, μu 0.73167

(↔ τu=87.80 MPa)
Kinetic level of friction coefficient, μf 0.54333

(↔ τf=65.20 MPa)
Characteristic slip-weakening distance, d0 0.05 m

b) Ruina–Dieterich law
Logarithmic direct effect parameter, a 0.016
Evolution effect parameter, b 0.020
Scale length for state variable evolution, L 0.02 m
Reference value of friction coefficient at low slip rates, μ* 0.56
Initial sliding velocity, v0 1×10−4 m/s
Magnitude of the initial shear stress, τ0 70.52 MPa

c) Flash heating law
Reference value of friction coefficient at high slip rates, μfh 0.13
Initial sliding velocity, v0 1×10−4 m/s
Magnitude of the initial shear stress, τ0 70.52

d) Chester–Higgs law
Reference temperature, T*=T f(t=0) 483.15 K
Activation energies, Qa and Qb 1×105 J/mol
Universal gas constant, R 8.314472 J/(K mol)

a The rupture expands bilaterally starting from the hypocenter.
b For the adopted parameters the Courant–Friedrichs–Lewy ratio, ωCFL ¼dfvSΔt/Δx,

equals 0.1665 and the estimate of the critical frequency for spatial grid dispersion,
facc
(s) =vS /(6Δx), equals 62.5 Hz.
2. Methodology

In this paper we consider synthetic earthquakes that represent the
solution of the fundamental elastodynamic equation for planar faults,
where 3-D spontaneous (i.e., without prior imposed vr) rupture ex-
pand bilaterally, starting from an imposed hypocenter. The solution
is obtained numerically (Bizzarri and Cocco, 2005), while the nucle-
ation procedure is the same as in previous papers (Bizzarri, 2009,
2010c).

We consider a large number of governing models, including the
linear–slip weakening (SW henceforth) function, the rate- and
state-dependent (RS) friction laws, the flash heating (FH) law and a
version of RS laws (referred to as CH law), where an explicit depen-
dence on the temperature Tf developed by frictional heat is incorpo-
rated (Chester and Higgs, 1992). All the equations are recalled in
Table 1; readers can refer to Bizzarri (2011b) for a thorough review
of these constitutive models. We also consider a set of simulations
where a viscous rheology is assumed when melting is occurring, fol-
lowing the physical model recently proposed (Bizzarri, 2011a). In
this case the elastic parameters are different with respect to those
listed in Table 2; we have vS=3.464 km/s and vP=6 km/s. Finally,
we report results pertaining to fault structures where the lubrication
process is active (Bizzarri, submitted for publication); this is formally
a non linear SW law, which can be in some sense physically associated
to the melting rheology.

Both homogeneous and heterogeneous conditions are considered
in the present study; the former have all the parameters spatially
identical over the whole fault, while the latter are characterized by
a heterogeneous initial shear stress having a magnitude τ0 which fol-
lows a k−1 behavior at high radial wavenumbers k, which corre-
sponds in the static limit to the “k–square” model of slip at high
Table 1
Analytical equations for the considered governing models which give the value of the tracti
thorough discussion, a description of the different quantities and for a complete list of refe
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wavenumbers. This approach, which namely follows equation (21)
in Bizzarri (2010c), is very similar to that recently proposed by
Andrews and Barral (2011).
on τ in a generic fault point ξ and at time t. Readers can refer to Bizzarri (2011b) for a
rences.
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Fig. 1. Behavior of the peak slip velocity vpeak as a function of the rupture velocity vr for
different governing models (the equations are reported in Table 1) in the case of sub-
shear earthquakes; for the CH law the temperature evolution is computed as described
in Bizzarri (2010b). For comparison we plot as solid gray line the theoretical prediction
of vpeak ∝ vr (see Eq. (1)). Table 2 lists the adopted parameters.
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In the remainder of the paper we will consider as vpeak the abso-
lute maximum of the fault slip velocity time series, while vr is com-
puted as the inverse of the slowness (see equation (12) of Bizzarri
and Spudich, 2008). Both of these two quantities are local dynamic
variables, in that they are defined at each fault node.

3. Numerical results

We report in Fig. 1 the comparison between the results pertaining
to three different friction models, the SW law, the Ruina–Dieterich
(RD) law and the CH law. Both of these representative models have
the same initial conditions and are energetically comparable, in that
they have the same fracture energy density, and are characterized
by governing parameters guaranteeing a subshear rupture propaga-
tion (see Table 2). The resulting behavior is very similar in all the
cases; it is clear that vpeak does not increase linearly with vr, as pre-
dicted by the theoretical relation (1), but a quadratic increase of
peak slip velocity with the rupture speed emerges. For comparison,
we superimpose in Fig. 1 a linear relation vpeak ∝ vr (solid gray line)
to emphasize the general disagreement with Eq. (1). The evolution
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Fig. 2. Results for supershear ruptures (in this case, for the RD law a=0.010 and b=0.022)
Bizzarri (2011a; his Fig. 6, yellow line).
of v as a function of the strike coordinate and at the hypocentral
depth for the RD case in Fig. 1 is reported in Fig. 3b of Bizzarri
(2010c).

Further complications arise when a supershear rupture propaga-
tion regime is considered, where the ruptures eventually reach the
compressional wave speed (as theoretically first demonstrated by
Burridge, 1973, for cohesionless cracks). In the configurations
reported in Fig. 2a the parameters of the SW and RD laws and the in-
clusion of the flash heating of the asperity contacts allow for a sus-
tained supershear dynamic propagation. We remark that flash
heating is known to produce very high values of vpeak, even in 3-D
(Bizzarri, 2009) and that the SW simulation presented in Fig. 2a is
very unstable (the strength parameter is 0.13) and thus it produces
huge values of vpeak. It should be also noted that, in general, once
the transition to supershear regime is realized, the rupture is energet-
ically favored (Bhat et al., 2007; Freund, 1979). We can appreciate, for
all the models, an abrupt drop of vpeak in corresponding to the transi-
tion from sub- to supershear regimes; slightly after the S wave speed
vS, vpeak significantly decreases and then it continues to increase again
in the supershear regime. The same holds also in the case when melt-
ing or rocks is considered (see Fig. 2b), as in Bizzarri (2011a). Also in
this case, due to the dramatic stress drop experienced by the fault, the
rupture is very unstable and also in this case significant values of vpeak
are attained locally.

Fig. 3 reports the comparison of two heterogeneous configura-
tions, where the parameters are the same as in Fig. 1 for both SW
and RD laws, but now the initial shear stress has a k−1 falloff at
high wavenumbers. For these models the transition from sub- to
supershear speeds is more complicated than that occurring in models
of Fig. 2a; in this case, depending on the fluctuations of the heteroge-
neous initial stress field, there is a complex mixture of patches of the
fault experiencing vr>vS and other, larger patches where the oppo-
site holds. The spatial distributions of the rupture velocity resulting
from these two synthetic earthquakes are reported in Fig. 10c and d
of Bizzarri (2010c) for the RD and SW laws, respectively. Notably,
we can see from Fig. 3 that also in this case vpeak goes like vr

2 for rup-
ture velocities up to vS . Then vpeak diminishes and it starts to increase
again, roughly in a quadratic manner, as previously observed for ho-
mogeneous models (see Fig. 2a). We note that the drop in vpeak for
the RD case is less evident, since this simulation has small supershear
patches, so thatbvpeak>remains below vS (see Fig. 4a).

The behavior around vS is interesting; the significant reduction of
peak slip velocities corresponding to the transition from sub- to
supershear regime is connected to the loss of high frequencies at
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the crack tip in supershear ruptures. Moreover, we can also see that
the patches of the fault experiencing supershear rupture propagation
exhibit values of vpeak that are in general smaller than those pertain-
ing to subshear regions, in agreement with previous findings
(Bizzarri and Spudich, 2008; Schmedes et al., 2010b). This issue is
also discussed in more details in Appendix A.

By looking at Figs. 2 and 3 we can note that there is no a clear evi-
dence of a forbidden region of rupture speeds between the Rayleigh ve-
locity (vR) and the vS. Indeed, energetic arguments demonstrated that
for purely 2-D, steady-state, non spontaneous cracks the above men-
tioned range of rupture speeds is inadmissible (Broberg, 1989, 1994,
1999). In the case of 3-D spontaneous ruptures, as those considered
here, the coupling of mode II and mode III can allow the rupture
speed to extend above vR slightly, as occurs in the well known elliptical
crack solution with mode II velocity of vR and mode III velocity of vS
(Richards, 1973). Moreover, when the rupture front is not smooth
(i.e., it has a kink, due for instance to stress heterogeneities) the nature
of the crack tip is markedly different from a 2-D rupture; for this reason
is not surprising that Fig. 3 does not exhibits a forbidden range of vr. We
also mention that the difference between vR and vS is so small that it is
difficult to resolve the rupture velocity with sufficient accuracy to see a
forbidden range of rupture speeds. From an observational point of
view, it should be also noted that the resolution that is possible to obtain
today from recorded seismograms cannot exclude that real-world earth-
quakes actually pass through these speed regimeswhile going from sub-
Rayleigh to supershear or compressional wave speeds (Das, 2010).

To analyze the data we have adopted a zero-offset spatial correla-
tion analysis, in that we have considered the values of vpeak and vr
attained in the same fault node. We will discuss in Appendix B the ef-
fects of a nonzero-offset correlation analysis method (Song et al.,
2009), where these quantities are compared in different points of
the rupture plane (i.e., we introduce some spatial offset).

4. Event by event statistics

In the present section we consider the whole ensemble of the per-
formed numerical experiments and we compute the spatial averages
for each event. In particular, we spatially average the values vpeak and
vr over the fault nodes experiencing the rupture (namely, for points
where the fault slip velocity exceeds the threshold value
vl=0.01 m/s). We also exclude points within the initialization
patch, where possible effects of the imposed nucleation can affect
the data. Since we consider 3-D ruptures, which is a mixture of
inplane (mode II) and antiplane (mode III) modes of propagation
are coupled, when we compute the spatial average of vr we consider
both the faults nodes when eventually the rupture speed is super-
shear (portions of the rupture front experiencing predominantly
mode II conditions) and those when it remains subshear.

Our catalog is composed of 76 simulated earthquakes, which cover
a range of magnitudes roughly between 5.5 and 7.0 (namely, they
span a range of seismic moment between 1.06×1017 Nm and
3.66×1019 Nm). Overall, our statistics are based upon the analysis
of about 200 million fault nodes. This kind of analysis does not con-
sider the details of each individual rupture, such as the transition be-
tween the sub- to the supershear regime, local effects of the
heterogeneous fault patches, etc., which, on the contrary, are considered
in the analysis of each individual event, as that presented in the previous
figures. Here, we consider the average behavior of all the synthetic
earthquakes.

Fig. 4a confirms that also the averaged vpeak and vr positively cor-
relate. In particular, we can see thatbvpeak>increases more than lin-
early withbvr>; we can extrapolate the following relation

vpeak
D E

¼ AeB
vrh i
vS ð2Þ

where A=0.67 m/s, B=2.89. To make our statistic more robust we
have also considered some SW cases where the fault is 110 km long
and has a high aspect ration (Lf/Wf=11, instead of 0.52 as in the refer-
ence simulations). These numerical experiments are denoted by light
blue symbols in Fig. 4a and comes from Bizzarri et al. (2010) (as such
they have been obtained with a different numerical code). In these
cases the rupture accelerates and finally propagates at nearly constant
speeds when the fault properties are homogeneous (see Fig. 2 of
Bizzarri et al., 2010), in agreement with the findings of Schmedes et
al. (2010b). At the same time, we also have that vpeak tends to saturate
(see Animations S1 and S2 of the auxiliary material of Bizzarri et al.,
2010) at moderate to large distance from the hypocenter, when the
rupture has fully developed. By considering these saturations values in
the averaging procedure we still obtain a god agreement with the pre-
diction of the empirical relation (2), as shown in Fig. 4a.

The maximum variations of vpeak are expected to take place during
the accelerating stage of the rupture (where vr changes significantly,
too). In this phase it has been found for 2-D SW ruptures that the co-
hesive zone (where the stress is released) progressively shrinks
(Andrews, 1976). In homogeneous conditions this implies that,
when the rupture is accelerating, also the peak slip velocity increases
as the rupture develops (Bizzarri et al., 2001; their Equation (A5)).

Moreover, our results indicate that the average vpeak increases
with the magnitude of the event (see Fig. 4b). If we exclude the FH
simulations (symbols in magenta in Fig. 4a) – which are known to
give an overestimate of the fault slip velocities (Bizzarri, 2009; Noda
et al., 2009) – although there is considerable scatter, we can tenta-
tively fit the data with a curve of the typebvpeak>~ M0

0.18.

5. Discussion and concluding remarks

In addition to the fracture energy density, the stress drop, and the
total developed slip, very important dynamic variables which charac-
terize the earthquake source physics are the rupture speed (vr) and
the peaks in fault slip velocity (vpeak). While the fault slip velocity is
related to the ground motions (Aki and Richards, 2002), the rupture
speed is known to affect the high frequency signature of the ground
velocity time histories (Bizzarri et al., 2010). Moreover, a pivotal
question in seismic hazard assessment is to clarify how the peak
ground velocity scales with the earthquake magnitude
(Abrahamson and Silva, 2008).

Hitherto, a systematic analysis of the spatial correlation existing
between vpeak and vr for different constitutive models and stress con-
ditions was lacking. The present work fill this gap, through the analy-
sis of a synthetic catalog composed by 76 earthquakes which cover a
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wide magnitude interval (M0 from 1.06×1017 Nm to 3.66×1019 Nm)
and propagate spontaneously on planar faults, obeying a large num-
ber of governing models.

One conclusion emerging from our study is that vpeak and vr corre-
late for all the governing equations we consider, confirming the re-
sults obtained with the linear slip-weakening law (Schmedes et al.,
2010a). In particular, we found here that the peak fault slip velocity
increases as the rupture speed increases. Interestingly, the direct de-
pendence between vpeak and vr is more than linear, as previously sug-
gested by laboratory fracture experiments performed at relatively
low velocities and for the purely in-plane geometry (Ohnaka et al.,
1987; see Eq. (1)). Indeed, the event by event statistics over all the
3-D spontaneous rupture models we consider indicate that peak slip
velocity averaged over the fault surface increases exponentially with
the average rupture speed (Fig. 4a), as stated by Eq. (2). This conclu-
sion is robust, in that it holds for both sub- and supershear ruptures,
both in homogeneous and heterogeneous conditions. Moreover, this
result is confirmed for a large class of constitutive equations, concep-
tually different and based upon different physical frameworks
(Bizzarri, 2011b); the linear slip-weakening, the classical (or canoni-
cal) formulations of the rate and state laws with memory effects, the
flash heating of micro-asperity contacts model and the Chester and
Higgs model (a compendious summary of the equations is reported
in Table 1). This result is important, in that we can extract consistent
correlation patters irrespective of the assumed friction law.

Our numerical experiments also suggest a direct dependence
ofbvpeak>on M0; this is reported in Fig. 4b, which indicates that the
average peak slip velocity roughly goes like M0

0.18. This relation
holds by excluding FH simulations which predict very high values,
perhaps overestimates, of the fault slip velocity, as previously noted
(Bizzarri, 2009; Noda et al., 2009). In other words, we found that
the more destructive the earthquake is, the more relevant peaks in
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fault slip velocity are attained. This has also consequences on the heat
dissipated during sliding, which is directly controlled by the values of
the slip velocity (Richards, 1976).

Several empirical studies (Abrahamson and Silva, 2008; Boore and
Atkinson, 2008) suggest that peak ground velocity (PGV) increases
with the magnitude of the event and saturates for moments greater
than roughly 4×1019 Nm. It is difficult to relate the peak fault slip ve-
locity to PGV; if the peaks on the fault occur during a very short dura-
tion, they might be destroyed by anelastic attenuation during the
propagation in the medium surrounding the fault surface, or they
might not add constructively at a receiver site. On the other hand,
the longer period components would survive and add constructively
to make the PGV. Finally, we note that if peak slip velocities are largest
away from the hypocenter, then they occur in an area where the iso-
chrones velocities are smaller (see Schmedes and Archuleta, 2008),
countering the effect of large vpeak .

Moreover, we found that significant peaks in slip velocity can be
realized (see Fig. 4); there is a large debate in the literature concern-
ing the existence of extreme ground motions (Harris et al., 2011).

We conclude by emphasizing that the spatial interdependencies
between the dynamic variables we found can be implemented as con-
straints in kinematic modeling of faults. A further development of this
work is to explore whether the above conclusions are also preserved
for more complex geometries, which account for fault bending and
non planarity of the fault surfaces.
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Appendix A. Distribution of the peak slip velocity on the fault surface

In Fig. A1 we report the spatial distribution over the fault plane of
the peak slip velocity (vpeak) for homogeneous supershear ruptures.
Panel (a) refers to a slip-weakening case (which corresponds to the
blue circles in Fig. 2a of the main text), while panel (b) refers to a
Ruina–Dieterich model (which corresponds to the red circles in
Fig. 2a of the main text). Due to the symmetry exploitation (see
Bizzarri, 2009 for the numerical details) we plot only one half of the
fault in the strike direction.

In both the panels we also superimpose the contours defining the
transition between the sub- and the supershear regimes, where the
local rupture speed (vr) is below and above the S wave speed (vS),
respectively.

It is apparent from Fig. A1 that the fault patches where the rupture
remains subshear (which are in the direction of the mode III propaga-
tion, i.e., perpendicular with respect to the direction of the initial
stress, aligned along the strike direction) exhibit higher peaks in
fault slip velocity, on average, with respect to the supershear regions
(which are in the direction of the mode II propagation, i.e., on the
strike direction). This is in agreement with the findings of Bizzarri
and Spudich (2008).

The fact that vpeak tends to be higher in the mode III (i.e., anti-
plane) direction than in the mode II (i.e., inplane) direction is a fea-
ture which is preserved also for subshear rupture events; this is
evident from Fig. A2, where we plot the spatial distribution of vpeak
for the Ruina–Dieterich model (panel (a)) and for the Chester–
Ruina–Dieterich law
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Higgs model (panel (b)), presented in Fig. 1 of the main text (red and
green circles, respectively). This is the reason why it is a common
practice to examine the fault slip velocity time histories in the anti-
plane direction when the modeler wants to analyze the quality of
its solutions, in term of numerical oscillations.

Appendix B. The nonzero-offset correlation analysis method

In the grid by grid analysis presented in Section 3we have considered
a zero-offset distance correlation analysis (i.e., we have considered the
values of the peak fault slip velocity and of the rupture speed in the
same fault node). We will consider here a nonzero-offset distance corre-
lation, in which these quantities are defined in different points of the
fault plane.

To this goal we follow the approach discussed in Bizzarri (2010c);
in particular, we consider the normalized covariance as it follows
(e.g., Goovaerts, 1997):

Cα;β ¼

Piend−αþ1

i¼1

Pkend−βþ1

k¼1
xi;k− Xh i

� �
yiþα−1;kþβ−1− Yh i

� �
iend−α þ 1ð Þ kend−β þ 1ð Þ σXσY

ðB:1Þ

where the 2-D arraysX and Ydenote the arrays vpeak and vr, respectively,

and 〈X〉= 1
iendkend

Piend
i¼ 1

Pkend
k¼ 1

xi;k and σX=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

iendkend

Piend
i¼1

Pkend
k¼1

xi;k− Xh i
� �2

s
(and

analogous expressions for Y). In Eq. (B.1) the operator 〈⋅〉 represents
the average value of the array and σ its standard deviation. The integers
iend and kend define the size of the arrays in the x1 (strike) and x3 (depth)
directions, respectively, while the integers α and β define the transla-
tion vector h≡((α−1)Δx1, (β−1)Δx3)=((α−1),(β−1))Δx (Δx
being the spatial discretization; see Table 2)h is associated to the spatial
offset distance h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−1ð Þ2 þ β−1ð Þ2

q
Δx and an azimuth angle

φ=arctg(β−1)/(α−1)).
The pair (α,β)=(1,1) corresponds of a zero–offset distance, so

that Cα,β becomes the autocorrelation function. Cα,β , which is also
known as correlogram (Goovaerts, 1997), represents the linear de-
pendency between the two variables X and Y, and it varies between
−1 and 1 (see also Song et al., 2009). The evaluation of Cα,β for differ-
ent values of h (i.e., for different values of α and β) quantifies the po-
tential spatial coherence between the spatially varying variables X
and Y.

We have considered two rather different datasets, one pertaining
to a SW law leading to a supershear rupture and one pertaining to a
RS simulation where the rupture remains subshear. The results are
reported in Fig. B1a and b, respectively, where we report the values
of Cα,β as a function of the spatial offset h. It is clear that the maximum
spatial correlation exists at zero–offset distance for both the models.
Remarkably, this feature is not peculiar of these numerical simula-
tions, but it emerges for the whole ensemble of models we have con-
sidered. We can also see from Fig. B1 that for increasing spatial offset
Cα,β decreases, reaching a minimum for a value of h value nearly equal
to 2.3 km for both the models, while the slopes of the three curves
reported in Fig. B1a and b is slightly different.

We can conclude that the maximum spatial correlation existing at
zero–offset distance corroborates the same point, grid by grid analysis
presented in Section 3.
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Fig. B1. Results for the non-zero offset correlation analysis method. For two different
models, a supershear rupture obeying the SW law (panel (a)) and a subshear rupture
governed by RS law (panel (b)), we plot the values of the normalized covariance Cα,β
between vpeak and vr as a function of the spatial offset h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
Δx. Cα,β

is formally defined in Eq. (B.1). We can clearly see that the maximum correlation exists
at zero offset distance for both the models.
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