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a b s t r a c t

Though mode II shear fractures (primarily strike-slip earthquakes) can not only exceed the shear wave

speed of the medium, but can even reach the compressional wave speed, steady-state calculations

showed that speeds between the Rayleigh and shear wave speeds were not possible, thus defining a

forbidden zone. For more than 30 years it was believed that this result in which the rupture jumps over

the forbidden zone, also holds for 3-D ruptures, in which mode II and mode III (mainly dip-slip faulting)

are mixed. Using unprecedentedly fine spatial and temporal grids, we show that even in the simple

configuration of homogeneous fault properties and linear slip-weakening friction law, a realistic 3-D

rupture which starts from rest and accelerates to some higher velocity, actually does pass smoothly

through this forbidden zone, but very fast. The energy flux from the rupture tip is always positive, even

within the so-called forbidden zone, contrary to the 2-D case. Finally, our results show that the width of

the cohesive zone initially decreases, then increases as the rupture exceeds the shear wave speed and

finally again decreases as the rupture accelerates to a speed of �90% of the compressional wave speed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1955, Gutenberg studied the 1952 magnitude 7.6 Kern
County, California earthquake and concluded that the rupture had
progressed at a speed of about 90% of the shear wave speed of the
medium (Gutenberg, 1995). Study of the great 1960 Chilean earth-
quake (Benioff et al., 1961) of magnitude 9.5 and the great 1952
Kamchatka earthquake of magnitude 9.0 (Ben-Menhahem and
Toksöz, 1963) also led to similar results. Though these were dip-
slip earthquakes (mainly anti-plane mode), it led to the belief that
the maximum earthquake rupture speeds were limited by the
Rayleigh wave speed (vR). The idea was supported by fracture
mechanics studies which showed that tension cracks and in-plane
shear cracks also had this limiting speed, for very idealized
theoretical perfectly brittle fracture models. In the early 1970’s,
theoretical studies using more realistic models showed that mode II
cracks not only could exceed vR but could even reach the compres-
sional wave speed, vP (about 70% higher than the shear wave speed
vS for Poisson solids) (Andrews, 1976; Das and Aki, 1977). Since the
1990’s, this result has been confirmed by laboratory experiments
(Rosakis et al., 1999) and several examples of strike-slip earth-
quakes reaching such speeds have been found (Bouchon et al.,

2001; Robinson et al., 2006). However, self-similar calculations, in
which a 2-D, pure mode II crack suddenly appears and starts
extending at a constant speed, showed that speeds between the
Rayleigh and the shear wave speeds are not possible, based on
energy considerations (Andrews, 1976; Burridge et al., 1979;
Broberg, 1999). Andrews (1994), starting from Burridge (1973),
founds self-similar solution in between vR and vS (non-spontaneous
solutions, i.e., with prior assigned rupture speed), which are not
physically realistic for pure mode II spontaneous ruptures and his
solutions are singular at the crack tip. Moreover, his numerical
calculations of a mixed-mode rupture (in which there are two non-
null components of the solutions, but both depends only on a single
spatial coordinate; see Bizzarri, 2011, his Section 2.1 for further
details) has poor resolution and therefore cannot handle the
question of the penetration of the ‘‘forbidden zone’’ properly.

In this paper we will explore whether for realistic cases where
a crack starts from rest and accelerates spontaneously (the
rupture speed is a part of the solution) to some higher speed,
the rupture actually jumps over this ‘‘forbidden zone’’ or passes
through it. This is important for earthquake engineering applica-
tions as it is the acceleration of the crack edge that controls the
radiation of the waves which cause most damage (Madariaga,
1983). An additional motivation is that supershear earthquake
ruptures could produce larger ground velocities, accelerations and
stresses at some distances from the fault trace compared to subshear
ones (Bernard and Baumont, 2005; Dunham and Archuleta, 2005;
Bizzarri et al., 2010).

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/epsl

Earth and Planetary Science Letters

0012-821X/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.epsl.2012.09.053

n Corresponding author. Tel.: þ39 051 4151432; fax: þ39 051 4151499.

E-mail addresses: bizzarri@bo.ingv.it (A. Bizzarri), das@earth.ox.ac.uk (S. Das).
1 Tel.: þ44 1 865 272015; fax: þ44 1 865 272072.

Earth and Planetary Science Letters 357–358 (2012) 397–404



Author's personal copy

2. Method

In this paper we deliberately consider the most simple, or
canonical, configuration for faulting. Although large earthquakes
generally occur on a complex interacting fault system rather than a
single isolated structure, in order to better understand the supershear
transition and compare the results with the theoretical predictions
discussed in the main text, we model the spontaneous rupture
propagation on a planar, vertical fault having homogeneous rheolo-
gical properties and separating two isotropic, perfectly elastic media
having identical properties and taken to be Poisson solids. A sketch of
the fault model is showed in Fig. 1a. The rupture is truly 3-D, in that it
is a mixture of mode II (in-plane shear) and mode III (anti-plane
shear) propagation, each of which explicitly depends on the two on-
fault coordinates x1 and x3 and rake rotation is allowed in our model.
We do not allow any tensile component, so that the slip is continuous
in the x2-direction. Modes II and III constitute the most important

mechanisms for seismic wave excitation and generating ground
shaking. The fundamental elastodynamic equation neglecting body
forces is solved numerically, by adopting an OpenMP parallel, 2nd-
order accurate, finite difference, conventional grid method, which is
described in details in Bizzarri and Cocco (2005) and Bizzarri (2009).

At the initial instant, the medium is assumed to be in equili-
brium and the initial shear stress on the fault is directed in the
x1-direction, defining a strike-slip mechanism. For sake of sim-
plicity, we assume here that its magnitude t0 is homogeneous
over the whole fault plane, defined by the two dimensions Lf and
Wf in the strike and depth direction, respectively. We set both Lf

and Wf in order to avoid that the arrest waves generated from the
fault boundaries can stifle the supershear transition. By assuming
homogeneous properties on the fault surface we intentionally
neglect the complexity of the seismic radiation which emerges
from the inhomogeneity of the stress drop distribution (e.g.,
Madariaga, 1983). The rupture starts from an imposed hypocenter
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Fig. 1. (a) Geometry of the fault. The rupture starts from the hypocenter H and spreads out in all directions over a vertical plane, and the material properties are

homogeneous (see Table 1). (b) Snapshot of the slip distribution on the left half of the fault plane for a 3-D rupture at the 62% of the total computational time (tend¼3.12 s).

Dashed red lines show the portion of this figure which is shown expanded in (c). (d) Slip distribution for a 2-D pure mode II rupture (propagating along x1), plotted against

the strike coordinate and time. The fault properties are the same as for (a). The inset shows a zoom-in of the crack tip bifurcation. Contours defining the leading and trailing

edges of the cohesive zone (region where the fault slip lies between 0 and the slip-weakening distance d0) are shown in panels (b)–(d). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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(x1
H, x3

H) (the nucleation procedure is realized by initially forcing
the rupture to expand at a constant rupture speed, as thoroughly
described in Bizzarri, 2010) and then spreads bilaterally and
spontaneously over the fault, obeying the linear slip-weakening
(SW) friction (Ida, 1972). The depth of the hypocenter guarantees
that the rupture accelerates to the supershear regime well before
interacting the free surface (x3¼0), which is well-known to enhance
the propensity for a supershear transition (e.g., Olsen et al., 1997;
Bizzarri, 2010). The parameters adopted in the present study are
reported in Table 1.

The slip-weakening constitutive model assumed here (see Eq.
(25) in Bizzarri, 2011) prescribes that the fault shear traction
linearly degrades with the increasing fault slip u from the upper
yield stress tu (the finite material peak strength) down to the
residual level tf. This traction drop is not abrupt, as in the Leonov–
Panasyuk–Dugdale model (Leonov and Panasyuk, 1959), but it
occurs over a characteristic length scale (the slip distance d0) and
thus over a finite time (the breakdown zone time, Tb; e.g., Bizzarri
et al., 2001). It can be regarded as an extension of the interatomic
cohesion model in brittle solids and it can be regarded as an
idealization of more elaborated friction laws, accounting for the
large number of chemical and physical processes that can poten-
tially take place during faulting (Bizzarri, 2011). Indeed, at the
microscale, lubricants, possible phase transitions and other mechan-
isms can play an important role in defining the above-mentioned
levels of stress, as well as the transition between them. This friction
law is able to capture the most significant features of a propagating
rupture, as discussed in Bizzarri (2011).

In each node of the fault we compute the rupture speed vr as
the inverse of the slowness:

vr x1,x3ð Þ ¼
1

:r x1 ,x3ð Þtr x1,x3ð Þ:
ð1Þ

where x1 and x3 are the strike and depth directions, respectively,
and the array tr represents the rupture times, defined as the first
time instant when the fault slip velocity, in that node, exceeds the

threshold value vl¼0.01 m/s. We compute the spatial derivatives
of tr in Eq. (1) as it follows (e.g., Lapidus and Pinder, 1999):

@

@x1
tr x1,x3ð Þ ¼

1

Dx

~tr iþ1,kþ1ð Þ�~tr i�1,kþ1ð Þþ ~tr iþ1,k�1ð Þ�~tr i�1,k�1ð Þ

4
ð2Þ

And

@

@x3
tr x1,x3ð Þ ¼

1

Dx

~tr iþ1,kþ1ð Þ�~tr iþ1,k�1ð Þþ ~tr i�1,kþ1ð Þ�~tr i�1,k�1ð Þ

4
ð3Þ

where the symbol ~q indicate the discrete equivalent of a generic
quantity q the doublets (i,k) define a fault node located at the
position iDx in the strike direction (x1) and at the depth (k�1)Dx

(Dx being the spatial discretization in both x1 and x3 directions).

3. Numerical results for a 3-D rupture

In order to determine if the forbidden zone truly exists, as well
as to understand its properties if it is not forbidden, and to better
understand the supershear rupturing process, we carried out
numerical calculations using finer grids than had ever been used
before (5 m square grids). This extraordinary spatial resolution,
associated with a time step of 1.2�10�4 s, gives an unprece-
dented resolution of the cohesive zone; on average we have
oNc4¼oXb4/Dx¼100 (see next Fig. 4d). For comparison, the
best resolved model of Day et al. (2005) uses oNc4¼0.9.

Fig. 1a shows the geometry of the problem and the adopted
parameters are listed in Table 1. These parameters guarantee that
the rupture will reach supershear speeds. Supplementary Movies
1 and 2 show the development of the cohesive zone and the
change of the rake angle, respectively, as the rupture propagates.

Table 1
Parameters adopted in the present paper.

Parameter Value

Medium and Discretization Parameters

Lamé’ s constants, l¼G 35.9 GPa

S wave velocity, vS 3.464 km/s

Rayleigh velocity, vR 3.184 km/s

P wave velocity, vP 6 km/s

Eshelby velocity, vE ¼
ffiffiffi
2
p

vS
4.899 km/s

Fault length, Lf 16 km

Fault width, W f 12 kma

Spatial grid size, Dx 5 mb

Final time, tend 3.12 s

Time step, Dt 1.2�10�4 sc

Coordinates of the hypocenter, H�(x1
H, x3

H) (8, 7) km

Fault Constitutive Parameters
Magnitude of the effective normal stress, sn

eff 120 MPa

Magnitude of the initial shear stress (pre-stress), t0 73.8 MPa

Static friction coefficient, mu 0.677 (2tu¼81.24 MPa)

Dynamic friction coefficient, mf 0.46 (2tf¼55.20 MPa)

Characteristic slip-weakening distance, d0 0.4 m

a Accordingly to the results of Dunham (2007) we set the width of the fault so that the supershear transition can occur. From his Fig.

8 and considering a bounded fault a rough estimate of the minimum width to have supershear rupture propagation is given by (0.8Lð3�DÞ
trans )/

2¼5.6 km for our parameters.
b The spatial discretization ensures a good resolution of the breakdown zone length (Xb). On average we have: oNc4¼oXb4/

Dx¼100 (see Fig. 4d).
c For the adopted parameters the Courant–Friedrichs–Lewy ratio, wCFL ¼

d:f :
vsDt=Dx, equals 0.083 and a conservative estimate (e.g.,

Archuleta and Frazier, 1978) of the critical frequency for spatial grid dispersion, facc
(s)
¼vS/(6Dx), equals 115 Hz. As required by explicit time

stepping schemes we satisfy the condition DtrDx/(2vP).
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(The cohesive zone represents the region where the traction
degrades from the upper yield level down the residual level.)

Supplementary material related to this article can be found
online at doi:10.1016/j.epsl.2012.09.053.

Fig. 1b shows a snapshot of the fault slip at time t¼1.92 s. For
comparison, we show the situation for the 2-D mode II case,
carried out using a similar calculation method, in Fig. 1d. In 3-D,
we see that unlike in the pure 2-D mode II case, the leading edge
of the cohesive zone does not appear to have the jump in space
once the rupture becomes supershear, as seen in Fig. 1d. (We
recall here that the leading edge is the line which separates points
of the fault plane which are at rest (i.e., having zero slip) from
points which are already moving.) However, if we zoom-in to look
at the details of the dashed zone of Fig. 1b, plotted in Fig. 1c, we

see a knee in the trailing edge (the locus of moving points where
the slip equals the characteristic slip-weakening distance), which
formally represents a weak jump in space for a given depth. (The
trailing edge is the locus of moving points where the slip equals
the characteristic slip-weakening distance.) For example, if we
refer to the depth x3¼0.9Wf (dashed white line in Fig. 1c) there is
an interval along the strike direction (x1A]0.24Lf, 0.25Lf[, thick red
segment in Fig. 1c) where the fault points are at rest which is
surrounded by two regions where the points are already moving
(x1A[0.21Lf, 0.24Lf] and x1Z0.25Lf. The unbroken interval will
disappear at the next time level, in that depth x3¼0.9Wf all points
with strike coordinate lower than the location of the trailing edge
will be moving.

By looking at Fig. 1d we can see that the jump of the rupture
(once the rupture becomes supershear) occurs at a distance of
1.86 km from the nucleation point. This formally defines Lð2�DÞ

trans ,
the distance at which the supershear transition occurs. This figure
replicates what Andrews (1976) early found with a different and
non-dimensional set of parameters (see his Fig. 3; see also Fig. 2a
and d in Bizzarri et al., 2001 and Fig. 2a in Bizzarri and Cocco,
2005). Das and Aki (1977), by studying a transient mode II crack
expansion in an infinite, isotropic, homogeneous, elastic solid
subject to a remote shear stress, confirmed the numerical results
of Andrews (1976), by adopting a critical stress criterion. The
secondary, supershear rupture front is separated from the pri-
mary, sub-Rayleigh one by a region which has zero slip (i.e., an
unbroken region).

In the 3-D case we can see that at a distance Lð3�DÞ
trans ¼2.17 km from

the hypocenter, the rupture becomes supershear (see Fig. 2a, where
the black contour lines emphasize the region where vr exceeds vS). It
is interesting to remark that, for the same parameters and the same

nucleation procedure, our results predicts that Lð3�DÞ
trans 4Lð2�DÞ

trans (their

ratio Lð3�DÞ
trans /Lð2�DÞ

trans equals 1.12), in agreement with the conclusion of

Dunham (2007). Indeed, by looking at his Fig. 5 and extrapolating,

we have that for our parameters Lð2�DÞ
trans �12Lfric while Lð3�DÞ

trans �25Lfric,

where Lfric is a frictional length scale, which, for the linear SW model,
can be set as Gd0/(tu�tf) or Gd0/(t0�tf). It is important to
remark that the comparison with the results by Dunham (2007) is
only qualitative, in that his estimates reported above (for our

1

3

5
mode II
mixed - mode 30° 

vr < vS

vr > vS

mixed–mode 
30°

H mode II 

free surface

vR

vS

vP

vE

forbidden zone 

supershear regime 

sub–Rayleigh regime 

R
up

tu
re

 v
el

oc
ity

 (k
m

/s
)

Coordinate along strike /Lf
0

C
oo

rd
in

at
e 

al
on

g 
de

pt
h 

/W
 f  

Rupture velocity (km/s)
0

0
Distance from the hypocenter /Lf

2–D

0

0.25

0.5

0.75

1

0.25 0.5

1.5 3.0 4.5 6.0

0.0625 0.1250 0.1875 0.2500 0.3125

Fig. 2. (a) Distribution of the rupture speed on the left half of the fault plane. The purple region denotes the initial patch where nucleation occurs. The black line is the

separation between regions experiencing sub- and super-shear rupture speeds. The lines along which the rupture velocities will be plotted in (b) are shown by red and

black dashed lines. (b) Plot of the rupture velocity as a function of the hypocentral distance, along profiles shown in (a). The grey line reports the correspondent results for a

2–D, pure mode II spontaneous rupture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.185

3.285

3.385

1.7

mode II 
11 pts. 
23 pts. 
36 pts.

mixed – mode 30°
13 pts. 
46 pts. 
208 pts. 

Distance from the hypocenter (km)

R
up

tu
re

 v
el

oc
ity

 (k
m

/s
) 

2.2 2.7 3.2 3.7

x = 25 m 
x = 10 m 
x = 5 m vS

vR

Fig. 3. Zoom of the forbidden zone. The number of points failing within the

forbidden zone are also indicated for the different resolution of the models. The

number of grid points lying within the forbidden zone are 36 and 208 for the pure

mode II and the mixed mode case, respectively. Even with a rougher discretization

of 25 m grid size, we have 11 and 13 points in this zone, respectively.

A. Bizzarri, S. Das / Earth and Planetary Science Letters 357–358 (2012) 397–404400



Author's personal copy

parameters: Lð2�DÞ
trans ¼6.5 km and Lð3�DÞ

trans ¼14 km, when Lfric¼Gd0/

(tu�tf)¼551 m) refer to an unbounded fault.

4. Penetration of the Forbidden Zone

The most important results emerging from Fig. 1b is that there
is no jump in the rupture velocity. This is more explicitly visible in
Fig. 2a, where we plot the rupture speed distribution over the
fault plane, and show regions which remained subshear and those
which reached supershear speeds. In Fig. 2b, we plot the rupture
speed along the pure mode II and a chosen mixed-mode direction.
The rupture velocity clearly passes through the ‘‘forbidden zone’’
in both directions, the change in gradient of the curve on either
side of the forbidden zone being particularly sharp for the mixed-
mode case. Thus, though the crack front does pass through the
forbidden zone, it passes through it fast, as it emerges from Fig. 3.
Madariaga and Olsen (2000) did propose this idea, based on
numerical simulations which did not have the same level of resolu-
tion, compared to those discussed in this paper. The penetration of
the forbidden zone was also shown in Bizzarri and Cocco (2005);
their Fig. 2c, but for a special non-dimensional set of parameters (that
of Andrews, 1976). In the pure mode II direction, the rupture then
passes through the Eshelby speed vE¼2½vS without any perceptible
change of gradient and approaches vP. The expected increase of the
values of the supershear rupture speeds near the free surface is very
clearly seen (Olsen et al., 1997; Aagaard and Heaton, 2004; Bizzarri,
2010). However, we emphasize that in our simulations the penetra-
tion of the forbidden zone is not due to phase conversion along the
free surface or to interactions with the stress field generated by the
sliding near the free surface, as shown by Kaneko and Lapusta (2010;
their Figs 7 and 9c).

In Fig. 3 we report a zoom of the forbidden zone [vR,vS]. In this
plot we superimpose the results pertaining to three different
numerical experiments, when we only vary the spatial and temporal
discretization. It is apparent that the number of points failing within
the forbidden zone increases as the resolution becomes finer. The
number of points within [vR,vS] is also marked in the figure. The
discrete jumps in the rupture speed do not depend on the adopted
numerical scheme (Eqs. (2) and (3)), which performs better than
other methods we examined.

5. On the shrinking of the cohesive zone

Fig. 4(a–c) shows the snapshots, taken from Supplementary
Movie 1, of the behavior of the evolution of the cohesive zone
through time. In Fig. 4d we report the cohesive zone width in the
mode II and mode III directions, plotted against the distance from
the hypocenter. At the beginning of the rupture process, the
cohesive zone has roughly the same width in both the directions.
As rupture progresses from rest, the cohesive zone in the pure
mode III direction continuously decreases, as the rupture accel-
erates to the shear wave velocity. When it reaches this limiting
speed, the cohesive zone asymptotically reaches a final width.
This is in contrast to the pure mode II direction, where the
cohesive zone width at first decreases as the rupture accelerates,
but then increases as its leading edge starts moving faster than
the trailing edge, and moves into the supershear regime. The
cohesive zone shape becomes much more complicated as rupture
continues, and the shapes of the leading and trailing edges
both change. As the trailing edge also starts moving faster,
the cohesive zone width again starts decreasing. The time
required for the stress to drop from the yield stress (tu) where
rupture starts occurring to the final stress level (tf) at which the
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stress drop process is completed (‘‘breakdown time’’), is shown in
Fig. 5.

The shrinking of the cohesive zone after the supershear transition
is already known from the 2-D pure mode II results of Andrews
(1976); for comparison, in Fig. 4d we plot in red the behavior of the
corresponding 2-D rupture. Remarkably, the general shape of the
cohesive zone in 2-D is quite similar to those obtained for the mode
II of the 3-D simulation. The only difference is a spatial shift, which
we expect from the knowledge of the transition lengths (also
marked in Fig. 4d), which is lower in 2-D compared to 3-D (see
Section 3). In 3-D the shrinking is more evident in the mode III
direction than in the mode II; this makes sense, since the shrinking
of the cohesive zone is intimately related to the increase of the peak
fault slip velocity (Bizzarri et al., 2001, their equation (A5)), increase
which in turn is more significant in the mode III direction (see
Fig. A1 and A2 in Bizzarri, 2012). This is also in agreement with the
theoretical prediction of Palmer and Rice (1973) pertaining to a
nonspontaneous 2-D crack obeying a Barenblatt-type process region
(namely, a linear position-weakening friction law, in which the
traction degrades linearly with the position reached by the rupture
tip, instead of with the cumulated slip).

The spatial distribution of breakdown zone time Tb is reported
in Fig. 5, from which it is apparent that, in general, Tb varies
depending on the position on the fault. In particular, it is clear
that overall Tb is lower in the mode III direction with respect to
the mode II direction. In the mode III direction the decrease of Tb

is continuous, while in the mode II direction it initially decreases,
once the rupture develops spontaneously outside the nucleation

patch. When the supershear transition occurs (see the black
contour in Fig. 5), Tb initially increases; this is visible from the
yellow arc in Fig. 5. This increase of the cohesive zone in the mode
II direction is due to the bird of the supershear front, which,
contrarily to what happens in 2–D is not separated from the inner
front. Moreover, this increase of Tb along the mode II direction is
intimately connected to the increase of the cohesive zone length
Xb occurring in the same direction (see Fig. 4d). We also empha-
size that, once the sustained supershear speeds are attained by
the rupture, then the cohesive zone starts to shrink markedly also
in the mode II direction, just as observed for Xb.

6. Energy flux at the rupture tip

Since crack growth involves material separation, which is an
energy consuming physical process, it requires a positive energy flux
at the crack tip. More explicitly, the leading edge, which is respon-
sible of the decohesion mechanism, requires that some energy is
supplied from the surrounding stress field to the crack edge region
(Achenbach, 1972). In Fig. 6 we plot the rate of work F as a function of
the rupture speed in the modes II and III directions of our fault. The
rate of work F is defined as it follows:

FðtÞ ¼

ZZ
PðtÞ
ðT n,tð Þ�TresðnÞÞUv n,tð Þdn

¼

ZZ
PðtÞ

T1 x1,x3tð Þ�tf Þv1 x1,x3,tð ÞþT3 x1,x3,tð Þv3 x1,x3,tð Þdx1dx3

�

ð4Þ

where T and Tres are the fault shear traction vector and its
residual level, respectively (t and tres are their Euclidean norms,
respectively), P (t) denotes a zone surrounding the crack tip and
n maps the fault. In the framework of the Griffith’s theory, the
energy F extracted from the body containing the rupture is totally
converted into the surface energy of the newly formed surfaces.
Most remarkably, we see that F assumes positive values even in
the forbidden zone in [vR,vS] and its rate is also positive, contrary
to the pure mode II calculations (Burridge et al., 1979; Broberg,
1999; see Fig. 1 of Das, 2010).
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7. Conclusions

For more than 30 years, after the theoretical and numerical
results pertaining to steady crack or 2-D, pure mode II ruptures,
it has been assumed that an earthquake cannot propagate
with a velocity within the so-called forbidden zone [vR,vS]
(Andrews, 1976; Burridge et al., 1979). In the present paper,
we have performed numerical experiments of a 3-D rupture, with
an unprecedented spatial and temporal resolution to explore
whether this is really impossible.

Even for our simple 3-D configuration (homogeneous fault
properties and linear slip-weakening friction law), the rupture
speed does enter the forbidden zone [vR,vS], in contrast to the 2-D
pure mode II rupture. In the latter, we clearly observe a jump of
the rupture front and after this the rupture speed is greater than
the shear wave speed, with an unbroken region in between the
sub-Rayleigh and supershear portions of the leading edge of the
crack (Fig. 1d; see also Fig. 4d). Thus, we emphasize that though
we did see a similar but very transient unbroken zone for the
leading edge in 3-D (see Fig. 1c), there is no forbidden zone. We
emphasize here that in the numerical simulations presented and
discussed in the present paper the ratio of the cohesive zone
length (Xb) to the radius of curvature of the rupture front at the
supershear transition (namely, Lð3�DÞ

trans ) is relatively high, so that
the rupture is definitively far from satisfying the conditions for
which the singular crack results of Richards (1976) are expected
to be valid in the present case.

The presence of the knee in the 3-D case is also responsible of
the two blue bands with low rupture speed, observed in Fig. 2a.
These two bands form an angle of roughly 601 with respect to the
mode II direction and emerge once the rupture begins to propa-
gate at the supershear speed. Interestingly, these knees are the
regions where the rake rotation most perceptible (see Supple-
mentary Movie 2), with regions of positive and negative rake
rotation located in contiguous regions. Though small (the max-
imum variation with respect to the initial direction is at
most7151), the rake variation is significant once the rupture
becomes supershear and it is maximum in the region near the
knee of the rupture tip. Our simulations also show that the energy
flux is always positive and it assumes positive values even in the
forbidden zone, contrary to 2-D steady state solutions.

In summary, the result from 2-D calculations that strike-slip
earthquakes cannot propagate at speeds between the Rayleigh
and shear wave speeds does not hold for realistic 3-D faults,
showing that 2-D results cannot simply be extended to the 3-D
case. As pointed out by Dmowska and Rice (1986) the only
possible special case in which a 3-D crack can be somehow
describable by using a 2-D solution is when the cohesive zone
is small compared to the radius of curvature of a tridimensional
rupture front. This reflects in two possibilities, the first being that
the transition occurs in a very late stage of the rupture and very
far from the hypocenter when the curvature is very small and the
second being that the cohesive zone is extremely small at the
supershear transition. Both of these possibilities introduces ser-
ious problems, because it is very difficult, even with the present
computational resources, have sufficiently good resolution of the
cohesive zone at huge distance from the nucleation patch, due to
the continuous contraction of the cohesive zone itself. On the
other hand, having a very small cohesive zone compared to
the transitional distance, automatically poses the problem of the
correct resolution.

Our results have important implications for seismologists inter-
preting seismograms to infer details of the earthquake source
process, and for earthquake engineers considering the generation of
damaging waves from earthquakes in order to construct earthquake-
resistant structures.
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