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[1] We explore the relationships between the fracture energy density (EG) and the key
parameters characterizing earthquake sources, such as the rupture velocity (vr), the total
fault slip (utot), and the dynamic stress drop (Dtd). We perform several numerical
experiments of three‐dimensional, spontaneous, fully dynamic ruptures developing on
planar faults of finite width, obeying different governing laws and accounting for both
homogeneous and heterogeneous friction. Our results indicate that EG behaves differently,
depending on the adopted governing law and mainly on the rupture mode (pulselike or
cracklike, sub‐ or supershear regime). Subshear, homogeneous ruptures show a general

agreement with the theoretical prediction of EG /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
S

� �q
, but for ruptures that

accelerate up to supershear speeds it is difficult to infer a clear dependence of fracture
energy density on rupture speed, especially in heterogeneous configurations. We see that
slip pulses noticeably agree with the theoretical prediction of EG / utot

2 , contrarily to
cracklike solutions, both sub‐ and supershear and both homogeneous and heterogeneous,
which is in agreement with seismological inferences, showing a scaling exponent roughly
equal to 1. We also found that the proportionality between EG and Dtd

2, expected from
theoretical predictions, is somehow verified only in the case of subshear, homogeneous
ruptures with RD law. Our spontaneous rupture models confirm that the total fracture
energy (the integral of EG over the whole fault surface) has a power law dependence on the
seismic moment, with an exponent nearly equal to 1.13, in general agreement with
kinematic inferences of previous studies. Overall, our results support the idea that EG

should not be regarded as an intrinsic material property.

Citation: Bizzarri, A. (2010), On the relations between fracture energy and physical observables in dynamic earthquake models,
J. Geophys. Res., 115, B10307, doi:10.1029/2009JB007027.

1. Introduction

[2] The so‐called “fracture” energy density, EG (where
[EG] = J/m2), is recognized to be one of the most important
parameters in the context of the physics of the earthquake
source and directly influences earthquake dynamics, since its
value controls the rupture propagation and its arrest [Husseini
et al., 1975; Schmedes et al., 2010]. In addition, it affects
radiation efficiency [e.g., Husseini and Randall, 1976;
Venkataraman and Kanamori, 2004]. In recent years, many
efforts have been made in order to retrieve its value from
laboratory experiments [e.g., Wong, 1982; Lockner and
Okubo, 1983] as well as from seismological inferences
[McGarr et al., 2004; Tinti et al., 2005, and references
therein] and to try to establish some analytical or empirical
relations between EG and macroscopic physical observables,

such as the scalar seismic moment (M0), the rupture velocity
of the propagating crack front (vr), and stress drop.
[3] EG can be physically defined as the amount of energy

(for unit fault surface) necessary to maintain an ongoing
rupture which propagates on a fault (or alternatively, as the
work done against the resistance to fault extension at the
rupture tip). It is often called seismological fracture energy
density and has been denoted with symbolG (orGc) in a large
number of previous papers. In the framework of linear elastic
fracture mechanics (LEFM) it has been associated with crit-
ical stress intensity factors [Irwin, 1957; Broberg, 1999; Tada
et al., 2000] for different modes of crack propagation, which
are material parameters and depend on the temperature and
pressure conditions, grain size, etc. [e.g., Paterson andWong,
2005]. The understanding of the earthquake energy budget
(i.e., the quantification of the amounts of energy dissipated
during cosesimic ruptures by the production of new fracture
surfaces, by seismic wave emission, thermal processes, etc.)
is one of the fundamental open issues in earthquake source
physics [e.g., Brown, 1998].
[4] From a mathematical point of view, on a specific point

on the fault, we can define EG as the difference between the
energy absorbed per unit area on the fault plane and the
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work done against the frictional stress [e.g., Bizzarri and
Cocco, 2006b] as

EG ¼
df

Zd
0

� � �resð Þdu; ð1Þ

where d is the amount of cumulative slip (u) at which the
value of the magnitude t (i.e., l2‐norm) of the fault shear
traction T reaches the residual level of friction, tres, attained
after the completion of the stress release. Figure 1 shows a
typical traction behavior for increasing cumulative fault slip
and the geometrical interpretation of the previous definition
of EG. Equation (1) implicitly assumes that t has a depen-
dence on u, which can be explicit, as for the slip‐dependent
friction laws [e.g., Ida, 1972] or implicit, as for other gov-
erning models. The quantity d in (1) can be associated with
the characteristic distance d0 in the context of the linear slip‐
weakening (SW) friction, or to its equivalent d0

eq (see Cocco
and Bizzarri [2002] for a detailed discussion) in the frame-
work of the laboratory‐derived rate‐ and state‐dependent
(RS) governing laws [e.g., Ruina, 1983] or, more generally,
in the case of other nonlinear constitutive equations. Analo-

gously, the quantity tres in (1) can be associated with the
kinetic level of friction, tf, in the case of the SW law, or to
its equivalent tf

eq [see Bizzarri and Cocco, 2003], in the case
of RS laws. In general, we can regard tres as the value that
the fault friction attains when the all the dissipative, chemi-
cophysical processes occurring during the cosesimic break-
down phase are completed [Bizzarri and Cocco, 2006a,
2006b] (see Bizzarri [2009b] for a comprehensive review).
As defined in (1), in general EG is not a prior‐imposed
constitutive property but is determined by the dynamic time
evolution of the total traction.
[5] If the considered fault is governed by the linear SW

law (see the dashed curve in Figure 1), then equation (1) is
simply reduced to [see Palmer and Rice, 1973]

EG ¼ D�b
d0
2
; ð2Þ

which depends only on constitutive parameters (Dtb¼
df
tu – tf

is the breakdown stress drop, with tu being the upper yield
stress); in this case EG is a prior‐imposed property. If Dtb
and d0 are homogeneous over the whole fault surface, then
also EG is spatially constant, even if there are no theoretical

Figure 1. Sketch showing the geometrical interpretation of the fracture energy density EG as defined in
equation (1). In the traction versus slip curve, t0 is the magnitude of the initial shear stress and tres is its
final level, attained when slip equals d. Dashed curve represents the traction behavior in the case of a
linear slip‐weakening constitutive equation.
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requirements for that. Moreover, when tf is a well‐defined
level, it is apparent from (2) that EG can be interpreted as the
energy in excess of the energy required to sustain frictional
sliding at shear level tf .
[6] In the framework of the RS laws, equation (2) can be

rewritten as

EG ffi b�eff
n ln

v2
v0

� �� �2 L

2
; ð3Þ

where b is a constitutive parameter, sn
eff is the effective

normal stress, L is the scale length for the evolution of the
state variable, v0 is the initial fault slip velocity, and v2 is its
value (a priori unknown) after the breakdown process. For
analytical details, see Bizzarri and Cocco [2003].
[7] When isotropic friction is not assumed, that is, when

the fault shear traction vector T is not collinear to fault slip
velocity vector v (namely, when T ≠ jjTjjv=jjvjj), as is
usually assumed in spontaneous dynamic earthquake models
(Bizzarri and Cocco [2005], among others), equation (1) has
been generalized as [Tinti et al., 2005]

EG ¼
ZTb
0

T� Tresð Þ � v dt; ð4Þ

where Tb is breakdown duration (i.e., the time interval over
which the stress release is realized), Tres is the residual shear
traction vector (its Euclidean norm is the quantity tres in
(1)), t is the time and the bullet symbol indicates the scalar
product. Tinti et al. [2005] term the quantity expressed by
equation (4) breakdown work, even if, strictly speaking, it
accounts also for the energy spent before the beginning the
breakdown phase (i.e., during the possible early strength-
ening stage of the rupture, where the fault traction increases
for increasing slip or slip velocity).
[8] The total fracture energy, UG (where [UG] = J) is the

integral of EG defined by equation (1) or (4) over the whole
fault surface as

UG ¼
Z
P
Z

EG xð Þdx; ð5Þ

where x maps the fault surface S. It is apparent that while
the quantity EG is a local estimate, which can be spatially
variable as a consequence of the heterogeneous distribution
of shear traction and slip velocity, UG is a global estimate,
which characterizes the whole seismic rupture event.
[9] Although some authors have considered the surface

energy (i.e., the amount of energy spent in creating new
sliding surfaces; in other words, the energy needed to break
bonds) as the same physical quantity as the fracture energy
[Wilson et al., 2005; Yoshioka, 1996], after the studies of
Chester et al. [2005], Tinti et al. [2005], and Pittarello et al.
[2008] it is now clear that surface energy is only a small
fraction of the mechanical work absorbed on the fault [see
also Lockner and Okubo, 1983]. Pittarello et al. [2008] also
show that the most prominent fraction of EG,which in turn is
not a negligible contribution to the earthquake energy
budget [Venkataraman and Kanamori, 2004; Tinti et al.,
2005; Cocco et al., 2006], is represented by heat produced
by frictional sliding. Moreover, we emphasize that EG is not

only due to interfacial friction, but it is the sum of all
energies associated with breakdown mechanisms.

2. Existing Scaling Relations for Fracture Energy

[10] From laboratory experiments of initially intact rock
fracture and mode II shear failure on preexisting faults
(precut samples) loaded by a two‐axial apparatus, Ohnaka
[2003] through his equation (22) proposes a linear depen-
dence of EG on the characteristic wave length lc of the
topography of the sliding surface at which its self‐similarity
breaks down as

EG ¼ 0:281 �u
D�b
�u

� �1:83

�c: ð6Þ

In the context of a constitutive model different from the SW
law, the quantities tu and tf have to be regarded as their
equivalents, tu

eq and tf
eq, respectively [see Bizzarri and

Cocco, 2003].
[11] The obvious scale dependence of the parameter lc

makes EG also scale dependent. This scale dependence [see
Ionescu and Campillo, 1999] is furthermore apparent from
equation (1), where it is stated as an explicit dependence of
the fracture energy density on the length scale d. On the
other hand, Otsuki [2007] found that the average fracture
energy density is proportional to the length of a seismic
rupture zone to the power of 0.56.
[12] By considering a slip pulse [Freund, 1979] obeying

the position‐weakening friction law introduced by Palmer
and Rice [1973] (in this simplified form of the SW law,
the traction linearly degrades with increasing spatial posi-
tion of the rupture tip), Rice et al. [2005] through their
equation (17), found, in two‐dimensions (2D), a relation-
ship between EG, the total cumulative slip utot developed
during the time duration of the pulse (tpulse), and the rupture
velocity as

EG ¼ Gu2tot
�Lpulse

F vrð Þ; ð7Þ

where Lpulse is the spatial length of the pulse, which can be
approximated as Lpulse ffi hvri tpulse (where hvri is the aver-
age rupture velocity), G is the rigidity of the medium, and
the dimensionless function F(vr) depends on the rupture
modes and is defined as

F vrð Þ ¼
R

�S 1� �2
S

� � ; for mode II

�S ; for mode III

8<
: ð8Þ

[see also Rice et al., 2005, equation (11)]. In equation (8)
R ≡ 4aSaP − (1 + aS

2)2 is 4 times the Rayleigh function,

aS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
S

� �q
and aP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
P

� �q
(vS and vP

being the S and P wave speeds, respectively). A similar
dependence of EG on vr was also reported by Day [1982]
in his equation (11). Moreover, F(vr) monotonically decreases
for increasing vr with maximum value for vr = 0, where it
equals 1/(1 − n) or 1 in the case of mode II or mode III,
respectively (n is the Poisson ratio).
[13] The dependence of EG on utot contained in

equation (7) roughly agrees with the empirical estimates of
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Zhang et al. [2003], on the basis of the SW curves inferred
from data of the 1999 Chi‐Chi earthquake, as

EG ¼ 0:35� 106u2:2tot : ð9Þ

[14] On the other hand, Abercrombie and Rice [2005] by
fitting earthquake data for slip ranging from 0.2 mm to
0.2 m to their equation (5) found the slightly different
relation

EG ¼ 5:25� 106 u1:28tot : ð10Þ

McGarr et al. [2004] in their equation (7), using a crack
model, suggest that fracture energy is linearly related to slip,
while laboratory experiments by Chambon et al. [2006,
equation (10)] suggest a still lower scaling exponent (∼0.6).
[15] From the nonspontaneous (i.e., with an a priori‐

assigned and constant vr), 2D plane‐strain, self‐similar
solution of Burridge [1973], Andrews [1976b] (p. 5685)
obtains an expression for fracture energy density as

EG ¼ �r

4G
K vrð Þ Q vrð Þ D�2d ; ð11Þ

where r is the distance of the rupture tip from the nucleation
point (i.e., the length of the crack from the nucleation point),
K(vr) and Q(vr) are dimensionless functions of the rupture
velocity, and Dtd ¼

df
t0 − tf is the dynamic stress drop

(t0 denotes the initial shear stress). The square dependence
of EG on Dtd, postulated also by Kostrov [1964], recalls the
proportionality of EG to Dtb

1.83 contained in equation (6).
The dependence of EG on vr in (11) can be made more
explicit by considering equations (7) and (23) of Ida [1972],
that give [see Andrews, 1976a, equation (23)]

EG ¼ �r

2G
B vrð Þ �S D�2d ; ð12Þ

where aS has been defined above and B(vr) is a dimension-
less, monotonic function of vr. Since B(vr) can be approxi-
mated as 2/p [see Andrews, 1976a], equation (12) can be
rewritten as

EG ffi r

G
�S D�2d : ð13Þ

This relation is equivalent to equation (11.24) of Aki and
Richards [2002], derived in the case of a semi‐infinite
mode III shear model with cohesive force. A similar
expression for EG,

EG ¼ r

�G

1

�
D�2d ; ð14Þ

from equation (7) of Wong [1982], has been also used by
Husseini et al. [1975] with a = 1 in the case of a semi‐infinite
longitudinal shear crack.
[16] An important distinction between equation (7) and

equations (12–14) is that the former is appropriate for a
pulselike solution (in which the fault slip heals and the slip
velocity has a finite duration), while the latter refer to a
cracklike solution (where the slip does not spontaneously heal
and the rupture continues to develop until the ends of the fault
are reached or frictional heterogeneities are encountered).

[17] We finally mention that the kinematic models of Tinti
et al. [2005] suggest that UG scales with M0 as

UG / Mp
0 ; ð15Þ

where the exponent p is 1.18. This power law dependence,
which links two quantities representative of the entire
faulting episode, is in agreement with the fit of Abercrombie
and Rice [2005] based upon observations arising from
several real‐world earthquakes; rewriting our equation (5) as
UG = AhEGi (where hEGi is the average fracture energy
density over the cracked area A) and expressing hEGi as in
equation (5) of Abercrombie and Rice [2005], after simple
algebra we have

UG ffi 5:25� 106

GqAq�1
Mq

0 ð16Þ

with a scaling exponent q = 1.28. (Note that we neglect both
overshoot and undershoot phenomena, so that the quantityG ′
of Abercrombie and Rice [2005] is in fact our EG. Moreover,
we express the average fault slip S in equation (5) of
Abercrombie and Rice [2005] as a function of the scalar
seismic moment (S =M0/(GA) [e.g., Aki, 1967]). On the other
hand, from equation (1) of Venkataraman and Kanamori
[2004] we have

UG ffi C

2G A3=2
M2

0 � UR ð17Þ

where C is a dimensionless constant (C ffi 1.4) and UR is the
(total) radiated energy (which is defined as the wave energy
that would be transmitted to infinity if an earthquake
occurred in an infinite, lossless medium) [Haskell, 1964].
Equations (15) to (17) suggest that fracture energy measured
at the laboratory scale is several orders of magnitude smaller
that that inferred for earthquakes [see also Chester et al.,
2005].

3. Limitations of the Theoretical Predictions
and Motivation of the Present Paper

[18] Equations (7), (11), (12), and (13) previously dis-
cussed have been derived within the framework of the
LEFM and by the identification of the limiting rupture speed
of a propagating crack tip singularity. One important limi-
tation of the above‐mentioned equations we want to
emphasize is that they have been (necessarily) obtained
under the general assumption of simple 2D ruptures (or
pulses). For example, equations (7) and (8) provide a rela-
tionship between EG and vr in the case of mode II ruptures
only for vr ≤ vR (from (7) and (8) we have that EG becomes
negative for vr > vR, where vR indicates the Rayleigh speed)
and in the case of mode III ruptures only for vr ≤ vS (from
the definition of aS we have from equations (7), (12), and
(13) that EG assumes complex values for vr > vS). Indeed,
Bhat et al. [2007] observe that for supershear slip pulses it is
not possible to express EG as a simple analytical expression
of vr (as in the subshear case); they numerically found (their
Figure 14) that EG initially increases for vS < vr ⪅ 1.3vS and
then decreases for 1.3vS ⪅ vr ≤ vP. For steady state 2D
shear cracks the velocity range between vR and vS is
energetically inadmissible and therefore we cannot retrieve
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any information in this velocity interval from the theoret-
ical equations previously described.
[19] On the other hand, kinematic models contain only

constraints on the average rupture velocity on a mathemat-
ical fault plane, ideally neglecting all possible small scale
heterogeneities in geometrical path, such as branching,
bending, and kinks, which have been introduced in dynamic
models (e.g., E. M. Dunham et al., Earthquake ruptures with
strongly rate–weakening friction and off–fault plasticity:
2. Nonplanar faults, submitted to Bulletin of the Seismo-
logical Society of America, 2010). More importantly, they
cannot account for possible fluctuations of rupture velocity
at periods shorter than those used to invert seismograms
(limited frequency bandwidth limitation) and they finally
suffer intrinsic limitations in representing the physics of
earthquake rupture. Moreover, in all models of Tinti et al.
[2005] vr is almost uniform and they do not give an esti-
mate of the dependence of EG on vr.
[20] As a natural consequence of the aforementioned lim-

itations, in the present paper we mainly aim to explore
whether fully dynamic, spontaneous models of earthquake
ruptures developing on planar fault of finite extension indi-
cate some specific relationships between fracture energy

density and physical observables. In addition, we examine
whether theoretical predictions based on some specific
assumptions can be used also in more complex configura-
tions. We will also investigate whether the behavior of
fracture energy density is affected by the choice of the fault
governing law and by the assumed spatial distribution of
the initial shear stress on the fault surface.
[21] We finally remark that the calculations presented in

this paper do not include inelastic deformations occurring
near the rupture front. We also neglect the energy loss due to
off‐fault damage which increases the fracture energy den-
sity, but it can be adequately modeled by fracture energy on
the fault [Andrews, 2005]. We do not consider zones of
plastic deformation developing before the crack grows, nor
viscous flow due to melting, so that there is no need to
consider Elastic Plastic Fracture Mechanics (EPFM).

4. Rupture Simulations

[22] In this paper, we solve the fundamental elastody-
namic equation, neglecting body forces, for a single, planar,
strike‐slip fault embedded in a perfectly elastic, isotropic
half‐space with free surface condition. The adopted fault

Figure 2. Geometry of the model. The imposed hypocenter is indicated by H and the light shaded plane
indicates the fault x2 = x2

f, having aspect ratio Lf/W f. The shaded box marks the portion of the compu-
tational domain where calculations are performed, due to the exploitation of the symmetry about H
and about the fault plane.
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Table 1. Model Discretization and Constitutive Parameters Adopted in This Study

Parameter Value

Medium and Discretization Parameters
Lamé constants, l = G 27 GPa
S wave velocity, vS 3 km/s
P wave velocity, vP 5.196 km/s
Cubic mass density, r 3000 kg/m3

Fault length, Lf 12 km
Fault width, Wf 11.6 km
Spatial grid size, Dx1 = Dx2 = Dx3 ≡ Dx 8 ma

Time step, Dt 4.44 × 10−4 s
Courant‐Friedrichs‐Lewy (CFL) ratio wCFL ¼

df
vSDt/Dx 0.1665

Coordinates of the hypocenter H ≡ (x1
H, x3

H) (5.992,7) km
Domain boundary conditions x1 = 0: ABCb; = x1

H: symmetryc

x2 = 0: ABCb; = x2
f: symmetryc

x3 = 0: Free surface; = x3end: ABC
b

Fault Constitutive Parameters
Initial rake angle, 80 0°d

Effective normal stress, sn
eff 120 MPa

Slip‐Weakening Law (Equation (18))
Magnitude of the initial shear stress, t0 70.51572 MPae

Static level of friction coefficient, mu 0.73167 (↔ tu = 87.80 MPa)f

Kinetic level of friction coefficient, mf 0.54333 (↔ tf = 65.20 MPa)f

Dynamic stress drop, Dtd ¼
df

t0 − tf 5.32 MPa

Breakdown stress drop, Dtb ¼
df

tu − tf 22.60 MPa

Strength parameter S ¼
df

(tu − t0)/(t0 − tf) 3.25

Characteristic slip‐weakening distance, d0 0.05 mf

Ruina‐Dieterich Law (Equation (19))
Logarithmic direct effect parameter, a 0.016
Evolution effect parameter, b 0.020
Scale length for state variable evolution, L 0.02 m
Reference value of friction coefficient at low slip rates, m* 0.56
Initial sliding velocity, v0 1 × 10−4 m/s
Magnitude of the initial shear stress, t0 mss(v0) sn

eff = 70.51572g

Ruina‐Dieterich Law With Flash Heating of Asperity Contacts (Equation (20))
Reference value of friction coefficient at high slip rates, mfh 0.13
Initial sliding velocity, v0 1 × 10−4 m/s
Magnitude of the initial shear stress, t0 mss(v0) sn

eff = 70.51572g

aFine spatiotemporal discretization guarantees a proper resolution of the breakdown zone (see Bizzarri, [2009a] for
numerical details) for all of the considered governing models. This allows the analysis of ruptures up to a frequency facc

(s) =
vS /(6Dx) = 62.5 Hz and what is more, it guarantees not less than 40 points within the breakdown zone (on average, for all
considered numerical simulations), that in turn ensures a stable determination of fracture energy density in each fault node.

bAbsorbing boundary conditions described by Bizzarri and Spudich [2008, Appendix A].
cSymmetries about the strike location of the hypocenter (x1 = x1

H) and about the fault (x2 = x2
f ) are exploited as described

by Bizzarri [2009a].
dFor sake of simplicity the initial shear traction vector is aligned along x1.
eThis value has been chosen to have the same initial shear stress for all governing models in case of homogeneous

conditions.
fThese values correspond to the average values of tu

eq, tf
eq and d0

eq of the homogeneous RD simulation.
gThe mss denotes the steady state value of the friction coefficient, realized when dQ/dt = 0 in the evolution equations of

models (19) and (20).

Figure 3. Solution for a synthetic subshear earthquake, obeying the RD law (equation (19)), and for a homogeneous
distribution of the initial shear stress. Distribution on the fault plane at the final time level of the numerical simulation of
(a) cumulative fault slip utot, (b) fault slip velocity v, (c) fault traction t, (d) rupture velocity vr, and (e) EG. The insets in
Figures 3a–3c report the behavior of utot, v, and t, respectively, as functions of the strike coordinate, at the hypocentral depth.
Rupture velocities are calculated as in equation (12) of Bizzarri and Spudich [2008] using vr(x1,x3) = 1/k r(x1,x3)tr(x1,x3)k,
where tr is the rupture time, defined as the instant of time at which the fault slip velocity exceeds a threshold value vl, assumed
to be 0.01 m/s. In Figures 3a, 3b, 3d, and 3e purple color denotes unbroken part of the fault plane. Note that due to symmetry
exploitation only one‐half of the fault along the strike direction is reported on the plots (the same holds for Figures 10a, 10c,
10d, 11).
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geometry is shown in Figure 2. The problem is solved
numerically, by employing the three‐dimension (3D), sec-
ond order accurate, OpenMP‐parallelized, finite difference,
conventional grid code described by Bizzarri and Cocco

[2005]. The absorbing boundary conditions described in
Bizzarri and Spudich [2008] are adopted in order to reduce
spurious reflections from the borders of the computational
domain and the existing symmetries are exploited to reduce

Figure 3
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computational times and storage requirements, as discussed
in detail by Bizzarri [2009a]. The rupture starts from the
hypocenter H and expands bilaterally in a spontaneous
fashion and dynamically; the slip is purely tangential, so that
no opening or interpenetration of material is allowed. Within
an initialization patch Inucl surrounding H, the earthquake
nucleation is realized by initially forcing the rupture to
develop with a constant speed in the case of the SW law. For
the RS law, on the contrary, the nucleation is obtained by
decreasing at t = 0 the value of the state variable, by
setting a value smaller than the steady state attained out-
side Inucl. Additional numerical details are presented by
Bizzarri [2010a] and Bizzarri [2009a].
[23] The fault boundary condition on the frictional inter-

face is represented by the constitutive law (in this study we
consider a wide range of governing models): under the
linear SW law,

� ¼
�u � �u � �f

� � u
d0

; u < d0

�f ; u � d0

8<
: ; ð18Þ

[Ida, 1972], under the Ruina‐Dieterich (RD) form of the RS
law,

� ¼ �* þ aln
v

v*

� �
þQ

� �
�eff
n

d

dt
Q ¼ � v

L
bln

v

v*

� �
þQ

� � ; ð19Þ

[Bizzarri, 2009a, and references therein] (Q is the dimen-
sionless state variable, a is a constitutive parameter, while m*

and v* are reference values for friction coefficient and sliding
velocity, respectively), and under the RD law with the
incorporation of the phenomenon of the flash heating (FH) of
microscopic asperity contacts,

� ¼ �* þ aln
v

v*

� �
þQ

� �
�eff
n

d

dt
Q ¼ � v

L
Qþ b

vfh
v
ln

v

v*

� �
þ 1� vfh

v

	 

aln

v

v*

� �
þ �* � �fh

� �� �
ð20Þ

[Bizzarri, 2009a, and references therein], where vfh is the
cutoff velocity above which FH operates (for v ≤ vfh the
evolution equation for Q is that of the classical RD
model (19)) and mfh is the reference value for friction
coefficient at high slip velocities.
[24] The reference parameters adopted in this study (see

Table 1) refer to a typical, subshear crustal earthquake. In
the next two sections we will assume on the fault a homo-

Figure 4. Relations between fracture energy density and
physical observables for the simulation reported in Figure 3.
With red circles we report (a) EG as a function of vr, (b) EG as
a function of utot, and (c) EG as a function of Dtd. In orange
are reported the values of EG as obtained from theoretical
predictions (equations (13), (7), and (11) for Figures 4a, 4b,
and 4c, respectively). The dashed blue curve indicates the
value of EG for corresponding homogeneous SW model
(equation (18)), as obtained from equation (2).
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geneous initial shear stress, while in section 7 we will
consider heterogeneous distributions.

5. Results for Homogeneous Configurations:
Subshear Synthetic Earthquakes

[25] In homogeneous conditions, the linear SW model,
equation (18), prescribes a constant fracture energy density

over the whole fault; EG is simply expressed by equation (2).
On the contrary, within the framework of RS friction laws
EG can be spatially variable, due to the variability of shear
traction on the fault, even for homogeneous t0.
[26] We report in Figure 3 the spatial distribution on the

fault plane of the relevant quantities of our problem at the
end of a numerical experiment. They pertain to a synthetic

Figure 5. Three‐dimensional scatter plots displaying the behavior of EG as a function of the two inde-
pendent variables appearing in equations (7) and (13), for the model reported in Figures 3 and 4. (a) EG =
EG(vr, utot). (b) EG = EG(vr, Dtd).

BIZZARRI: FRACTURE ENERGY IN 3‐D DYNAMIC MODELS B10307B10307

9 of 23



earthquake of moderate size (M0 = 4.25 × 1017 Nm,
corresponding toMw = (Log(M0) − 9)/1.5 = 5.8) obeying the
RD law, equation (19). In Figure 4 we plot, with red circles,
the behavior of EG, represented separately as a function of
vr, utot and Dtd, resulting for this synthetic event. On the
basis of our fine spatial discretization (see Table 1), in
each synthetic event about one million points were con-
sidered for the analysis. We have performed a zero‐offset
spatial correlation analysis, in that we have considered the
values of different quantities attained in the same fault
node. We will discuss in the appendix the effects of a
nonzero‐offset correlation analysis, where the quantities
are compared in different points of the rupture plane (i.e.,
we introduce some spatial offset).
[27] From Figure 4a we can see that the dependence of EG

on vr is roughly described by equation (13) (orange dots);
the fluctuations for low vr (vr < 500 m/s) refer to the
nucleation phase, within the initialization patch Inucl. Note
that equation (13) in Figure 4a is plotted for the different
values of Dtd realized in the different fault nodes. On the
contrary, from Figure 4b we have that the proportionality of
EG to utot

2 theoretically predicted for pulses by equation (7)
(orange dots) is markedly far from describing the numer-
ical results (Figure 4b, red dots); this result is not sur-
prising and we will discuss in the next section the reason
for such a strong disagreement with the theoretical pre-
diction. Finally, Figure 4c shows that the dependence of
EG on Dtd is somehow proportional to Dtd

2, as expected
from equation (11).
[28] In Figure 5 we report the 3D scatter plots of the

fracture energy density as a function of the two independent
variables appearing in equations (7) and (11). This kind of
figure is complementary with respect to Figure 4; for
example, by considering the data points in Figure 5a, we
have that the projection on the EG − vr plane gives Figure 4a,
while the projection on the EG − utot plane gives Figure 4b.
(The same holds for Figure 5b.)

6. Homogeneous, Supershear Synthetic
Earthquakes

[29] In this section we will consider three cases, repre-
sentative of supershear seismic events, where the maximum
speed asymptotically reaches the P wave velocity. Even
though most natural earthquakes have subshear rupture
velocities, there is increasing interest in supershear earth-
quakes, because they have some important and distinct
features [Bizzarri and Spudich, 2008; Dunham and Bhat,
2008; Bizzarri et al., 2010].
[30] One numerical simulation refers to the FH governing

model (equation (20)), in which, if the local temperature of a
microscopic asperity contact reaches a temperature at which
thermally activated defects become highly mobile, then the
contact will weaken. The inclusion of FH causes the tran-
sition to the supershear regime [Bizzarri, 2009a] for a rhe-
ology (that of Table 1) which would produce a subshear
propagation in the absence of FH (see previous section). The
results are reported in Figures 6 and 7. In the other two
cases, the RD law (equation (19)) is adopted, but we change
the value of governing parameters a, in order to increase the
degree of instability of the fault and its propensity to accel-
erate up to supershear speeds [see also Bizzarri et al., 2001].

Figure 6. The same as in Figure 4, but now in the case of
a supershear rupture obeying the FH governing law
(equation (20)).
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The results are displayed in Figures 8 and 9. Figure 8 com-
pares the results obtained using a = 0.012 (full circles) and
a = 0.010 and b = 0.022 (open circles). While the value of
the initial shear stress in the FH case is the same as that
adopted in the simulations discussed in the previous sec-
tion, the different values of parameters a and b change the
magnitude of t0 in the two RD numerical experiments.

[31] It is apparent from Figures 6a and 8a that the rela-
tionship between EG and vr becomes complicated in the case
of supershear ruptures. In the FH case (Figure 6a) there is no
a clear trend of EG for increasing vr, since the data are very
sparse; they tend to group around two values of vr,
approximately at 2.5 km/s and 4.2 km/s (visible also in
Figures 7a and 7b). In the RD cases (Figure 8a) it is possible

Figure 7. The same as in Figure 5, but now in the case of the FH model reported in Figure 6.
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to roughly envisage the behavior found by Bhat et al. [2007]
in the case of supershear slip pulses. In our two spontane-
ous, dynamic ruptures with RD law there are large fluc-
tuations of data and it is not simple to identify the value of
rupture velocity which maximizes the fracture energy den-
sity; a rough estimate is that it is slightly smaller than vS.
[32] An essential difference emerges from the comparison

of the EG versus utot curves (Figures 6b and 7a versus
Figures 8b and 9a). We can see that the general agreement
with equation (7) is quite good in the case of FH simulation
(Figures 6b and 7a), but from the RD simulation shown in
Figures 8b and 9a we have that EG increases roughly in a
linear fashion for increasing slip. We emphasize that in the
FH case, for the adopted parameters, we have a pulselike
solution, while in the two RD cases we have cracklike solu-
tions (in these cases utot has to be interpreted as the slip at the
end of the numerical experiments). Therefore, our fully
dynamic simulations confirm that the prediction by Rice et al.
[2005] is not appropriate in the case of sustained cracklike
ruptures (see also Figures 4b and 5a). This result, which is
also corroborated by the kinematic findings of Tinti et al.
[2005], holds for other FH models where governing para-
meters produce slip pulses.
[33] In Figures 6c and 8c we plot the EG versusDtd curves.

In the case of a sustained supershear slip pulse (Figures 6c
and 7b) the value of tf

eq is substantially spatially constant.
Considering that t0 is homogeneous, this causes the
dynamic stress drop to be basically constant over the whole
fault (Dtd ffi 55 MPa). This is apparent from Figures 6c
and 7b, where we can see that the smaller values of Dtd
correspond to very low values of the fracture energy density,
attained basically within Inucl. The fluctuations of EG for
Dtd ffi 55 MPa are due to the variations in traction evo-
lution for slip below d0

eq (recall equation (1)). In Figures 8c
and 9b we can see that in these supershear ruptures EG

roughly increases linearly for increasing dynamic stress
drop. In general, we can conclude that in both supershear
cases, FH pulse and RD ruptures, the behavior predicted by
equation (11) is not satisfied.

7. Do Heterogeneities Play a Role?

[34] Frictional sliding is usually a very irregular process,
due to inhomogeneous conditions on the sliding surfaces
[Broberg, 1978]. To account for this, following Bizzarri
et al. [2010], in the present section we assume that the
magnitude of the initial shear stress has a k−1 behavior at
high wave numbers. Namely, t0 has a power spectral den-
sity (PSD) which is

ffiffiffiffiffiffiffiffiffiffi
P kð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1þ k

kc

� �2
 !1þD,vuut ; ð21Þ

where k ¼ jjkjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k23

p
, with k1 and k3 being the

horizontal (along strike) and vertical (along depth) wave
numbers, respectively. In (21) kc is the radial wave number
corresponding to the correlation length Lc (kc = 2p/Lc), and
D is the dimensionless Hurst exponent [see Mai and
Beroza, 2002]. In equation (21) we choose D = 0, which
corresponds in the static limit to the well‐known “k‐square”

Figure 8. The same as in Figure 4, but now for two clas-
sical RD models (equation (19)). Full circles refer to a case
with a = 0.012 and b = 0.020, while open circles refer to a
case with a = 0.010 and b = 0.022.
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Figure 9. The same as in Figure 5, but now for the RD model reported in Figure 8, with a = 0.012 and
b = 0.020.

Figure 10. (a) Magnitude of the initial shear stress adopted in heterogeneous simulations; the fluctuations with respect to
the reference value of t0 listed in Table 1 (green color) follow the desired power spectral density (see section 7 for details).
(b) Resulting Fourier amplitude spectra as a function of the radial wave number k; the dashed red curve emphasizes the
required k−1 behavior. (c) Distribution of rupture velocity on the fault plane in the case of classical RD law. (d) Same as
Figure 10c, but in the case of the SW law.
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Figure 10
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model [Herrero and Bernard, 1994] of slip at high wave
numbers, corroborated by several inversions of ground
motion data. We also set Lc = 1000 km in order to have a
power law spectrum of the initial shear stress for all mod-
elled wavelengths.
[35] The distribution of the initial shear stress adopted in

the heterogeneous numerical experiments is reported in
Figure 10a, where the green color identifies the reference
value of t0, reported in Table 1. The resulting one
dimension (1D) spectrum is plotted in Figure 10b, from
which we can see that its PSD behaves like k−1, as desired
(dashed red curve); the RMS of such a distribution is
5.52 MPa. We apply the heterogeneous stress of Figure 10a
in two numerical experiments, one with the classical RD
law (equation (19)) and the other one with the SW law
(equation (18)). In the latter case, the heterogeneities in t0
will affect rupture times, rupture velocity, and total
cumulative slip, but when tu, tf, and d0 are spatially
homogeneous, the resulting EG will be constant (see
equation (2)), as in a homogenous simulation. Therefore, to
allow for a variable EG in the SW case, we also add
heterogeneities in tu, which is spatially variable, such that
the strength excess tu − t0 is constant (and equal to the
reference value of the homogeneous configuration reported
in Table 1). The other constitutive parameters are those
tabulated in Table 1.
[36] The two resulting models behave very differently;

this is clear from the comparison of Figures 10c and 10d,
where we report the distribution of vr on the fault plane. On
the basis of the fluctuations of t0, in the RD case there are
multiple points on the fault where the rupture starts to
propagate dynamically. This behavior is similar to that
obtained by Bizzarri and Spudich [2008, Figure 11]; the
multiple ruptures interact with one another and insert a
further complication into the model, other than the imposed
heterogeneity of t0. On the contrary, the SW simulation
exhibits a more usual behavior; rupture initiates within the
nucleation patch and then propagates dynamically. In both
cases, the presence of heterogeneities complicates the evo-
lution of the rupture front and furthermore it causes, espe-
cially in the SW model, local acceleration to supershear
rupture speeds. In these two models, both subshear and
supershear rupture patches exist. Correspondently, the dis-
tributions on the fault plane of utot and EG are quite dif-
ferent between two simulations (compare Figure 11a with
Figure 11b and Figure 11c with Figure 11d).
[37] We report in Figure 12 the resulting behavior of EG

as a function of rupture velocity (Figure 12a), total cumu-
lative fault slip (Figure 12b), and dynamic stress drop
(Figure 12c). We can clearly see that EG exhibits large
fluctuations due to frictional heterogeneities. In this case it is
hard to find a clear and well‐defined trend of EG as a
function of vr. We can also see that in the RD model EG

increases roughly linearly for increasing utot (Figure 12b, red
symbols), as previously observed in the homogeneous sus-
tained supershear RD simulations (Figures 8b and 9a). In the
SW case, EG does not have a strong dependence on utot
(Figure 12b, blue symbols); it is oscillating above and below
a constant value, slightly greater to the reference value of
fracture energy density pertaining to the homogeneous
configurations (equation (2)). Large fluctuations are also

present in the EG versus Dtd curve (Figure 12c), which
indicate a linear increase of EG for increasing Dtd.

8. Discussion

[38] In previous sections, we have reported the results of
different numerical simulations that are representative of
different fault governing laws, rupture regimes, and initial
conditions. We have considered a grid‐by‐grid analysis to
show the behavior of fracture energy density as a function of
physical observables. In this section, we summarize results
of a different kind of analysis, which is performed by con-
sidering event by event. In particular, we take into account
the whole ensemble of simulations, comprised of 40
numerical experiments of fully dynamic and spontaneous
seismic ruptures that cover a broad magnitude range (M0

from 4.25 × 1017 Nm up to 1.07 × 1019 Nm; corresponding
to Mw from 5.8 to 6.7). For each synthetic event we consider
the spatial averages, over the fault nodes experiencing the
rupture, of EG, vr, utot, and Dtd (in the following we denote
them with symbols hEGi, hvri, hutoti, and hDtdi, respec-
tively.) The results are shown in Figure 13. First of all, we
emphasize that it is impossible to compare data against a
single curve, exactly representing the theoretical predictions
discussed in section 2, because they contain quantities that
cannot be spatially averaged. For example, in equations (11)
and (13) the quantity r denotes the distance of a rupturing
fault node from the hypocenter H, a quantity which cannot
spatially averaged. On the other hand, Lpulse is equation (7)
depends on the specific rupture we consider; thus, that
multiplier factor is different from one event to another.
[39] A first observation coming from Figure 13 is that the

results are quite sparse; this is not surprising, given the broad
range of input parameters. On the other hand, the values
estimated by kinematic inversion for different real earth-
quakes [Tinti et al., 2005; see also Abercrombie and Rice,
2005], represented by shaded triangles in Figure 13, also
appear to be quite sparse.
[40] From Figure 13a we can see that, for subshear ruptures

(open symbols), EG behaves roughly like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
S

� �q
(black curve in Figure 13a), as previously observed (Figure 4a).
On the contrary, for supershear synthetic events (full sym-
bols), data appear to be clustered around a value of hvri nearly
equal to Eshelby’s speed (vE =

ffiffiffi
2

p
vS), but there is a large

variability of hEGi. In this rupture regime it is difficult to find
a specific behavior of fracture energy density as a function of
rupture velocity, in agreement with results previously dis-
cussed (see Figures 6a, 7b, 8, and 9b). It is apparent from
Figure 13b that our results seem to agree better as a linear fit
with hutoti, as suggested byMcGarr et al. [2004] (green curve
in Figure 13b). This also confirms what we have observed in
Figures 8b and 9a for a cracklike rupture. From Figure 13c
we can see that hEGi roughly goes like hDtdia, where a
is in between 1 and 2, as also found above (see Figures 4b
and 12c). The only exception is represented by the sus-
tained supershear FH pulses (group of pink diamonds on
the right), that have extremely high dynamic stress drop
(55 MPa for the case reported in Figures 6c and 7b).
[41] We have also checked if two parameters quantifying

a faulting episode as a whole, the total fracture energy (UG;
see equation (5)) and the scalar seismic moment (M0), cor-
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Figure 11. Distribution on the fault plane of (top) utot and (bottom) EG pertaining to the heterogeneous
rupture of (left) Figure 10c and (right) Figure 10d.

BIZZARRI: FRACTURE ENERGY IN 3‐D DYNAMIC MODELS B10307B10307

16 of 23



relate. In Figure 14 we report the values of UG and M0 for
the whole ensemble of synthetic earthquakes, obeying dif-
ferent constitutive laws and for homogeneous (squares) and
heterogeneous (circles) conditions. We notice that these
values refer to the rupture developed over the whole fault of
length Lf = 12 km; since the rupture is bilateral and
symmetric with respect to the hypocenter we simply double
the values obtained for the fault considered for computa-
tions, which extends only 6 km. In Figure 14 we have also
superimposed, as shaded triangles, the values estimated
from kinematic inversions by Tinti et al. [2005] for several
real events. We can clearly see that our dynamic models
exhibit a power law relationship between total fracture
energy and scalar seismic moment, with a slope that depends
very weakly on the inclusion of the fault points within the
nucleation patch. In fact, full symbols (for which UG and M0

are determined for all fault points) and open symbols (for
which nodes within Inucl are not considered in the calcula-
tion of UG and M0) indicate slopes of 1.13 and 1.14,
respectively (solid and dashed red curves in Figure 14,
respectively). This power law exponent is in agreement with
the value of 1.18 estimated in the kinematic models of Tinti
et al. [2005] (shaded curve). For comparison we also plot in
Figure 14 the power law found by Abercrombie and Rice
[2005] (see equation (15)), having an exponent q = 1.28
(black curve).

9. Conclusions

[42] In addition to the amount of dissipation occurring
during healing process [Broberg, 1978], the fracture energy
density (EG) is one of the key parameters in the physics of
the earthquake source [e.g., Kostrov, 1964]. Compared to
other source parameters, EG has been proved to be more
stably estimated from kinematic rupture models inferred
from waveform inversions of strong motion data [Guatteri
and Spudich, 2000] and has an important influence in dis-
criminating between melting and nonmelting regimes
[Bizzarri, 2010b]. The basic objective of the present paper is
to see if EG exhibits some specific dependencies on the most
prominent physical quantities (observables or dynamic
variables), such as the rupture velocity (vr), the total
cumulative fault slip (utot) and the dynamic stress drop
(Dtd). This has been done for scenarios more realistic and
more complex than (necessarily) simplified models for
which some prediction has been derived theoretically.
[43] In general, to accurately predict ground motions by a

kinematic numerical model and for simulation‐based seis-
mic hazard analysis, it is necessary not only to know the
spatial distribution of the source parameters, but also to
know the correlations among them [e.g., Song et al., 2009;
Schmedes et al., 2010].
[44] To explore these relationships we have performed

40 numerical simulations of fully dynamic and spontane-

Figure 12. Results for heterogeneous configurations of
Figures 10 and 11; red symbols refer to RD model and
blue symbols refer to the SW model. (a) EG as a function of
vr. (b) EG as a function of utot. (c) EG as a function of Dtd.
The dashed blue curve indicates the reference value of EG

for the homogeneous SW model, as given by equation (2).
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ous seismic ruptures that cover a wide size range (M0 from
4.25 × 1017 Nm to 1.07 × 1019 Nm, corresponding to Mw

from 5.8 to 6.7) and span a broad range of relevant
situations. The synthetic earthquakes are 3D ruptures (with
rake rotation allowed and a possible continuous transition

from sub to supershear regimes) and develop on a planar
fault of finite size, which is governed by different consti-
tutive laws, the linear slip‐weakening (SW) function
(equation (18)), the Ruina‐Dieterich (RD) form of rate‐ and
state‐dependent laws (equation (19)), and the RD law

Figure 13
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accounting for flash heating (FH) of asperity contacts
(equation (20)). We have considered both homogeneous and
heterogeneous distributions of the initial shear stress on the
fault, and both subshear and supershear rupture events.
Overall, by taking into account all the ruptures in our
synthetic catalog, we have examined about 44 million fault
points.
[45] All of our earthquake models exhibit a well defined

residual friction that is approached at large slips and there-
fore the fracture energy density can be precisely computed
by using equation (1); incidentally, we emphasize that in the
opposite case EG would not be a precisely defined concept.
The fracture energy density EG can be regarded as meso-
scopic [see also Mai et al., 2006], comprising surface energy,
energy loss due to off‐fault yielding, micro‐cracking, fric-
tional heat, and all other dissipative processes occurring in
the rock volume surrounding the rupture tip. An increase in
energy flux at the tip of a propagating rupture is responsible
for an increase in the number of coalescent microvoids
and microcracks [Sharon et al., 1996].
[46] In the literature different analytical relations have

been reported, but they intrinsically suffer some limitations

in basic assumptions (namely, they have been derived for
rupture velocities not greater than S wave speed and in the
case of simple 2D ruptures). On the other hand, presently
available kinematic inversions of strong motion data do
not give clear indication of the dependences of EG on
observables; thus, dynamic models can help us in filling
this gap. Moreover, it is well known that fracture energy
density from laboratory experiments are 3–5 orders of mag-
nitude smaller than that inferred for earthquakes [e.g.,
Rudnicki, 1980], making it difficult to extrapolate laboratory
results to natural conditions. As a consequence, physics‐
based earthquake source models represent a powerful tool
to explore more general, and potentially more realistic,
physical scenarios.
[47] We can summarize the results we obtain from our

numerical experiments as follows.
[48] 1. As is well‐known, in homogeneous conditions the

linear SW law gives a constant value of EG, which is uni-
form on the whole fault plane and is independent on phys-
ical observables. For a single event, the comparison with the
theoretical predictions is inherently impossible in this case;
for instance, EG generally is a non‐unique function of vr. On

Figure 13. Results from the event‐by‐event analysis; the quantities EG, vr, utot, and Dtd are spatially averaged, for each
event, over the points that fail. Red symbols refer to numerical experiments in which classical RD law is adopted, blue
symbols refer to SW models, and pink symbols refer to FH simulations. Circles refer to models with heterogeneous con-
ditions; diamonds indicate pulselike solutions. Open and full symbols denote sub‐ and supershear ruptures, respectively. For
comparison we also add, as shaded triangles, the estimates obtained from kinematic inferences for some real earthquakes by
Tinti et al. [2005] (reader can refer to that work for references about source models). hEGi as a function of (a) hvri, (b) hutoti,
and (c) hDtdi. In Figure 13a the black curve reproduces the behavior ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
S

� �q
. In Figure 13b we report different fits

from the literature (various exponents of utot are indicated in the legends). In Figure 13c the triangles surrounded by a circle
are extracted from the works by Abercrombie and Rice [2005, Table 5, and references therein], by using the relation
EG = (1/2pR2)[(DtdM0 /G) − ES], where R is the source radius and ES is the radiated energy.

Figure 14. Relation between total fracture energy UG, calculated from equation (5), and scalar seismic
moment M0 calculated as described by Bizzarri and Belardinelli [2008]. Full symbols denote the
calculations of UG where points within the nucleation patch are considered; open symbols denote the
estimates of UG obtained neglecting points within Inucl. Solid and dashed red curves are the fits on
synthetic data (as including and neglecting points within Inucl, respectively). For comparison we report
the power law by Tinti et al. [2005] (shaded curve, with exponent of M0 equal to 1.18) and that found
by Abercrombie and Rice [2005] (black curve, with exponent of M0 equal to 1.28).
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the other hand, by considering different events, with
homogeneous constitutive parameters, EG can also be a non‐
unique function of Dtd (for fixed values of tu, tf and d0,
different values of t0 give different Dtd corresponding to
the same value of EG).
[49] 2. Subshear, homogeneous ruptures governed by

RD law show a general agreement with the theoretical

prediction (equation (13)) of EG /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r=v

2
S

� �q
(see

Figures 4a and 13a).
[50] 3. On the contrary, for ruptures that accelerate up to

supershear speeds it is extremely difficult to infer a clear
dependence of fracture energy density on rupture speed (see
Figures 6a, 8a, and 13b). Homogeneous simulations with
RD law roughly indicate that EG seems to be a concave
function of vr (see Figure 8a), in general agreement with the
results obtained by Bhat et al. [2007] in 2D. However, the
introduction of frictional heterogeneities further complicates
this behavior and add some fluctuations to EG so that there
is no an apparent dependence of EG on vr (see Figure 12a).
The existence of a relationship between EG and vr is
intriguing and several physical motivations have been pro-
posed to justify it (see Sharon et al. [1996] for a discussion),
but we want to emphasize here that, especially for small
earthquakes, there are some limitations in making estimates
of the local rupture velocity of a real‐world earthquake from
the inversion of seismic waves. Moreover, the results can be
non‐unique. On the other hand, by considering a purely
mode II crack growing on a granite sample, Ohnaka et al.
[1987, equation (5)] found an empirical relation relating the
peak slip velocity on the rupture plane, vpeak, vr, and Dtb,

vr ffi vpeak
G

D�b
; ð22Þ

which gives (once substituted into equation (7) and
equations (11–13)) an implicit dependence of EG on vpeak.
Equation (22) makes sense, since particle velocity and
ground motions are determined by the rupture speed and this
reinforces the fact that the fracture energy density is argu-
ably one of the most important physical property in the
earthquake source models. A strong correlation between
vpeak and vr has been also confirmed by the dynamic sub-
shear numerical simulations of Schmedes et al. [2008].
[51] 4. On average, the spatial distributions on the fault

surface of fracture energy density are correlated with the
corresponding slip distributions (see Figure 11); high slip
patches correspond to high EG, in general agreement with
the kinematic findings of Tinti et al. [2005]. This correlation
is primarily due to the correlation of characteristic slip‐
weakening distance with slip, but also to the correlation of
Dtb with utot. More specifically, our results in 3D confirm
that slip pulses noticeably exhibit a behavior like EG /
utot
2 (Figures 6b and 7a), as predicted by the theory for 2D

steady pulses (see equation (7)). On the contrary, in the
cases of cracklike solutions, both sub‐ and supershear and
both homogeneous and heterogeneous, this behavior is not
confirmed by spontaneous, dynamic rupture models (see
Figures 4b, 8a, and 12b). Our results (see Figure 13b) are in
better agreement with the seismological inferences of
McGarr et al. [2004] and results of dynamic rupture models
of Mai et al. [2006, equation (5)], from which it emerges as
a scaling exponent roughly equal to 1.

[52] 5. The proportionality between EG and Dtd
2 expected

from the theoretical predictions (see equations (11–13)) is
somewhat verified in homogeneous, subshear ruptures with
RD law (Figures 4c and 5b). On the contrary, in the cases of
supershear rupture obeying the RD law (Figures 8c and 9b),
and heterogeneous events (Figure 12c) our numerical experi-
ments roughly suggest EG / Dtd (see also Figure 13c). We
want to remark that in the present simulations we neglected
variability with depth of the effective normal stress, which
would introduce a depth‐dependence of stress drop.
[53] 6. Our spontaneous rupture models indicate that the

total fracture energy (UG; equation (5)) and the scalar seis-
mic moment (M0) correlate, with a power law dependence
with an exponent equal to 1.13 (Figure 14), according to
previous studies [e.g., Tinti et al., 2005].
[54] Overall, we notice that the values of the fracture

energy density obtained in our dynamic models are compa-
rable with values reported in previous studies [see Guatteri
and Spudich, 2000; McGarr et al., 2004 for a review]; we
emphasize here that seismological estimates (EG ∼ 105 to
107 J/m2) can be an overestimate due to low‐pass filtering
of the seismograms [Spudich and Guatteri, 2004].
[55] To finish, the dependences of the fracture energy

density on rupture velocity, on cumulative fault slip, and on
dynamic stress drop as discussed above depend on the
adopted governing equation (the choice of which is still
matter of a lively debate [e.g., Bizzarri and Cocco, 2006b]
and, what is more, on the rupture regime (cracklike or
pulselike; as well as sub‐ or supershear speed). Moreover,
these dependencies appear to be in favor of the idea [see also
Okubo and Dieterich, 1986; Abercrombie and Rice, 2005]
that EG should not be regarded as an intrinsic material
parameter.

Appendix A: Effects of the Nonzero‐Offset
Correlation Analysis

[56] In the grid‐by‐grid analysis presented in sections 5–7
we have considered a zero‐offset distance correlation anal-
ysis. In other words, we have considered the value of the
fracture energy density and of the other physical quantities
in the same fault node. Here, we consider a nonzero‐offset
distance correlation, in which the observables are defined in
different points of the fault plane.
[57] Let us consider two spatially distributed 2D arrays,

X ≡ {xi,k} and Y ≡ {yi,k} (with i = 1, .., iend and k = 1, ..,
kend), characterized by their average values, hX i and hY i,
respectively, and by their standard deviations, sX and sY,
respectively. We will consider the normalized covariance
between them, C, defined as [e.g., Goovaerts, 1997]

C ¼ E X � Xh ið Þ ~Y � Yh i� �� �
�X�Y

; ðA1Þ

where E(.) is the expected value operator and ~Y denotes
the arrayY translated by a vectorh≡ ((a − 1)Dx1, (b − 1)Dx3) =
((a − 1), (b − 1))Dx. More specifically, we compute C of
(A1) as

C�;� ¼
Piend��þ1

i¼1

Pkend��þ1

k¼1
xi;k � hX i� �

yiþ��1;kþ��1 � hY i� �
iend � �þ 1ð Þ kend � � þ 1ð Þ�X�Y

ðA2Þ
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with hXi =
1

iendkend

Xiend
i¼1

Xkend
k¼1

xi,k and sX =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

iendkend

Xiend
i¼1

Xkend
k¼1

xi;k � Xh i� �2vuut (and analogous expres-

sions for Y). The translation vector h defines a spatial

offset distance h =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1ð Þ2þ � � 1ð Þ2

q
Dx and an azimuth

angle 8 = arctan (b − 1)/(a − 1)).
[58] The pair (a, b) = (1, 1) corresponds to a zero‐offset

distance, so that Ca,b becomes the autocorrelation function
(A = E((X − hXi) (Y − hYi))/sXsY). The Ca,b, which is also
known as a correlogram [Goovaerts, 1997], represents
the linear dependency between the two variables X and Y,
and it varies between −1 and 1 [see also Song et al., 2009].
The evaluation of Ca,b for different values of h (i.e., for
different values of a and b) enables us to quantify the
potential spatial coherence between spatially varying vari-
ables X and Y.
[59] For the present purposes, we associate X to EG and Y

alternatively to vr, utot, and Dtd. Results pertaining to the
model reported in Figures 3, 4, and 5 are plotted in Figure A1,
where values of Ca,b corresponding to the same value of
spatial offset distance h are averaged [see Bizzarri et al.,
2010, Figure 11b]. We can clearly see that maximum spa-
tial correlation exists at the zero‐offset distance for all of the
physical observables, vr (Figure A1a), utot (Figure A1b),
and Dtd (Figure A1c). For increasing spatial offset Ca,b
decreases reaching a minimum for a value of h nearly
equal to 2.3 km. This behavior recalls that obtained by
Song et al. [2009, Figure 4], that relates slip to peak slip
velocity and rise time. The slopes of the three curves
reported in Figure A1 are slightly different, with a roll‐off
in the case of slip (Figure A1b).
[60] The maximum spatial correlation existing at zero‐

offset distance corroborates the same point, grid‐by‐grid
analysis presented in sections 5 to 7.
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