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[1] We present a physical model that describes the behavior of spontaneous earthquake
ruptures dynamically propagating on a fault zone and that accounts for the presence
of frictional melt produced by the sliding surfaces. First, we analytically derive the
solution for the temperature evolution inside the melt layer, which generalizes previous
approximations. Then we incorporate such a solution into a numerical code for the solution
of the elastodynamic problem. When a melt layer is formed, the linear slip‐weakening
law (initially governing the fault and relying on the Coulomb friction) is no longer valid.
Therefore we introduce on the fault a linearly viscous rheology, with a temperature‐dependent
dynamic viscosity. We explore through numerical simulations the resulting behavior of the
traction evolution in the cohesive zone before and after the transition from Coulomb friction
and viscous rheology. The predictions of our model are in general agreement with the data
from exhumed faults. We also find that the fault, after undergoing the breakdown stress drop
controlled by the slip‐weakening constitutive equation, experiences a second traction drop
controlled by the exponential weakening of fault resistance due to the viscous rheology. This
further drop enhances the instability of the fault, increasing the rupture speeds, the peaks in
fault slip velocity, and the fracture energy density.

Citation: Bizzarri, A. (2011), Dynamic seismic ruptures on melting fault zones, J. Geophys. Res., 116, B02310,
doi:10.1029/2010JB007724.

1. Introduction

[2] The melting process is a phase change of a substance
from its solid state to the liquid state. The application of
pressure or heat causes the internal energy of the substance
to increase, resulting in a temperature rise up to the melting
point, at which the solid undergoes to a less‐ordered state
(liquid phase).
[3] Ice melting is familiar in skiing and it has recently

considered a possible cause of Arctic warming [Screen and
Simmonds, 2010]. In rock mechanics it is now clear that
the most of the energy dissipated on a seismogenic fault is
ultimately converted into frictional heat [e.g., Pittarello et al.,
2008] and that the temperature increase (DT) due to seismic
slip can exceed the melting temperature of crustal rocks.
[4] Although rare field evidence for melting on exhumed

faults engenders skepticism for the relevance of melt during
earthquakes [Rempel and Rice, 2006], partial melting at local
asperity contacts can occur [Jeffreys, 1942; McKenzie and
Brune, 1972] and a continuous macroscopic melt layer may
be present after some cosesimic slip.
[5] Indeed, large temperature increases leading to melting

have been already obtained in dynamic models of spontane-
ously spreading earthquake ruptures obeying different fault

governing laws. It has been found in numerical models that,
for localized shear, both the thermal pressurization of pore
fluids [Bizzarri and Cocco, 2006a, 2006b] (hereinafter
referred to as BC06a and BC06b, respectively) and the flash
heating of microasperity contacts [Bizzarri, 2009] do not
reduce the frictional resistance on the fault surface enough to
prevent melting. To date, the only possible exception [Bizzarri,
2010c] is represented by a slip‐ and velocity‐dependent fric-
tion law, recently derived in high‐velocity laboratory experi-
ments by Sone and Shimamoto [2009].
[6] On the other hand, evidence of melting has also been

found in laboratory experiments, when conditions similar to
those typical of seismic deformation are attained [e.g., Spray,
1995;Tsutsumi and Shimamoto, 1997;Hirose and Shimamoto,
2003].
[7] When a continuous film of molten material is formed

within the fault structure (see section 5.3), the “classical”
governing models, essentially derived within the Coulomb‐
Amonton‐Mohr framework, are no longer valid, since the
coseismic increase in temperature affects the frictional prop-
erties of rocks [e.g., Sibson, 1977; Lachenbruch, 1980].
[8] The main goal of the present paper is to extend pre-

vious spontaneous dynamic rupture models and to account
also for non‐Coulombian rheology of a fault. We will
develop a physical model which, under some assumptions,
incorporates the melt behavior (via a Newtonian rheology of
a temperature‐dependent viscous fluid). The present study
also aims to extend previous papers [Nielsen et al., 2008,
2010], where a constant sliding velocity was assumed and
where only the behavior after the onset of melting was
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explored. On the contrary, we account here for the transition
from the “classical” behavior of rocks before melting to the
viscous behavior after the formation of a melt layer.
[9] The paper is organized as follows: In section 2 we will

describe the adopted fault model. The temperature evolution
before the melting point is briefly summarized in section 3,
while in section 4 we derive the time evolution of the tem-
perature in the molten region (analytical details and com-
parisons with previous solutions are discussed in the
appendixes). In section 5 we introduce the fault rheology (i.e.,
the fault boundary condition expressing the governing law).
Section 6 is devoted to the introduction of the two‐state
physics (Stefan problem). The results of the numerical experi-
ments on synthetic earthquakes, for a special case of melt layer
evolution, are presented and discussed in sections 7 and 8.
Section 9 discusses the shape of themelt layer, while section 10
summarizes the prominent conclusions of the present study.

2. Model of the Fault Zone and Statement
of the Problem

[10] In the present paper we consider a more general fault
structure than that adopted by BC06a and BC06b [see also
Evans and Chester, 1995; Sibson, 2003; Bizzarri, 2010a].
As reported in Figure 1, a highly fractured, damage zone
surrounds the slipping zone where the slip is concentrated.
The latter can be regarded to represent the fault core, the
ultracataclastic shear zone or the gouge layer. For simplicity,
we assume here that the slipping zone has a thickness 2w,
which is spatially homogeneous along the strike and the dip
directions of the fault. The boundaries between the slipping
zone and the damage zone are perpendicular to the normal
fault coordinate, z, which has its origin in the middle of the
slipping zone. The plane z = 0 can be associated with the
principal slipping zone and can be regarded as the mathe-
matical idealization of the fault surface (or fault plane)
where the dynamic variables, such as traction, velocity, etc.,
are formally defined.
[11] Depending on the rupture dynamics, the frictional

heat can be such that melting is produced. As a consequence
a melt layer having thickness equal to 2wm can also exist
within the slipping zone of width 2w (Figure 1). By defi-
nition, melting occurs in a specific point if the temperature
at that point exceeds the melting temperature, Tm. The re-
sulting melt layer is also centered at z = 0. This assumption is
physically reasonable, since we consider spatially homoge-
neous properties within 2w (i.e., we neglect the chemical
complexity of the minerals) and we know that in this case the
maximum temperature is developed in the middle of the
slipping zone (let us say, on the mathematical fault plane) and
decreases for increasing off‐fault distances [Andrews, 2002;
BC06a]. The thickness of melt layer increases through time,
depending on the temperature evolution within 2w, and its
rate of increase, (d/dt)wm(t) ≡ _wm(t), in full of generality can
be variable through time. In the remainder of the paper, we
will denote the left and right boundaries separating the solid
and themelted rocks as z = −wm(t) and z =wm(t), respectively.
These quantities, as well as _wm(t), are a priori unknown.
[12] Since we presently do not have enough observational

constrains to physically describe the physics of the damage
zone, where elastoplastic processes are expected to take
place, in the model we will consider times up to the time

level at which the whole slipping zone has molten; that is,
we prescribe that wm ≤ w. In other words, we do not allow
for the melting of the damage zone. Moreover, we do not
account in the present model the melt removal by extrusion
outside the slipping zone, through the so‐called injection
veins [Sibson, 1975].
[13] In the following, for brevity of notation, we will omit

the explicit dependence on the on‐fault coordinates x1 and
x3 while we only put the possible dependence on z. We
will denote with the symbol �^ the quantities pertaining to
the melt layer and with tm the time instant when melting
starts locally (i.e., at asperity contacts level). Time tm is
formally defined by the following condition:

tm such that T f tmð Þ � T � ¼ 0; t ¼ tmð Þ ¼ Tm: ð1Þ

Also tm is a priori unknown since it depends on the rupture
dynamics (which in turn controls the temperature evolution,
T(z, t), within the slipping zone).
[14] Finally, in the following analysis we will assume that

thermal pressurization is unimportant (i.e., we assume per-
fectly drained configurations) and other weakening me-
chanisms are not operating. Of course, the inclusion of pore
pressure variation can alter the dynamics of the fault
[Andrews, 2002; BC06b] and ultimately the temperature
developed by frictional heat.

3. Temperature Evolution Before the Melting
Time

[15] For times t < tm the whole slipping zone thickness is
composed only by material (rocks, gouge,…) in the solid
state; the temperature evolution is the solution of the heat
conduction equation:

@

@t
T �; tð Þ ¼ �

@2

@�2
T �; tð Þ þ 1

c
q �; tð Þ ð2Þ

where c is the thermal diffusivity of the material in its solid
state (c = �/rCp, where � is the thermal conductivity),
assumed to be uniform along z, c ≡ rCp is the heat capacity
for unit volume of the bulk composite (r being the cubic
mass density of the composite and Cp its specific heat at
constant pressure), and q is the heat generated for unit
volume and for unit time ([q] = J/(m3 s) = W/m3). Physi-
cally, c expresses the ability of a substance to adjust its
temperature to that of its surroundings (materials with a high
value of c conduct the heat quickly, compared to their
volumetric heat, and therefore they rapidly adjust their
temperature). q represents the heat source due to frictional
heat and its integral over the coordinate z gives the heat flux
(i.e., the heat produced per unit area on the fault and per unit
time). Equation (2) has the exact solution (see BC06a, their
equation (A4)):

T �; tð Þ ¼ T0 þ 1

4cw

Zt�"

0

dt′ erf
� þ w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� t � t′ð Þp !(

� erf
� � w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� t � t′ð Þp !)

� t′ð Þv t′ð Þ; ð3Þ
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Figure 1. Sketch representing the considered fault structure. At a generic time after the onset of melting,
a melt layer of thickness 2wm(t) and enlarging with rate _wm(t) exists within a slipping zone 2w thick. The
latter is surrounded by the damage zone. The plane z = 0 defines, in the Cartesian reference system
Ox1zx3, the center of the slipping zone (i.e., the idealized fault plane). The coordinate x is normal to
the fault plane and is anchored to the melt‐solid boundary (x ≡ z − wm(t)).
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where T0 is the initial temperature distribution (i.e., T0 ≡
T0(z, 0)), erf( ) is the error function

erf zð Þ¼
df

2ffiffiffi
�

p
Zz
0

d x e�x2

0@ 1A;

2w is the thickness of the slipping zone, and " is an arbitrarily
small positive real number (see BC06a for further details).We
assume here that 2w is spatially homogeneous and constant
through time, although temporal variations in the slipping
zone thickness can have relevant effects in the time scale of the
seismic cycle of the fault [Bizzarri, 2010e]. In equation (3),
v denotes the magnitude of the fault slip velocity and t denotes
the magnitude of the fault traction, expressed by the governing
law in the unmelted regime, which can be the slip‐weakening
law [e.g., Ida, 1972], a rate‐ and state‐dependent friction law
[e.g., Dieterich, 1979], the law for the flash heating of micro-
asperity contacts [Noda et al., 2009, and references therein],
etc. (see Bizzarri [2010a] for a discussion). On the fault plane
(i.e., in the limit z = 0), equation (3) reduces to (see also
BC06a, their equation (6)):

T f tð Þ � T 0; tð Þ ¼ T f
0 þ 1

2cw

Zt�"

0

dt′ erf
w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� t � t′ð Þp !

� t′ð Þv t′ð Þ;

ð4Þ

where T0
f ≡ T(0,0), that is, the initial temperature distribu-

tion on the fault plane. We simply recall here that solutions
(3) and (4) pertain to the heat source

q �; tð Þ ¼
� tð Þv tð Þ
2w

; t > 0; �j j � w

0 ; �j j > w

8><>: ; ð5Þ

which implicitly assumes that all the work spent to allow the
fault sliding is converted into heat [see also Fialko, 2004;
BC06a; BC06b; Pittarello et al., 2008; Bizzarri, 2009].

4. Temperature Evolution After the Melting
Point: Behavior Inside the Melt Layer

[16] After the melting point tm we have a phase transition
(from solid to molten materials) and therefore we have to
consider a Stefan‐like problem, accounting for two‐state
physics (see section 6). Here we will focus on the behavior
of the temperature field inside the molten region. Specifi-
cally, we have to solve the following PDE:

@

@t
T
^

�; tð Þ ¼ �
^ @2

@�2
T
^

�; tð Þ þ d

dt
wm tð Þ @

@�
T
^

�; tð Þ þ 1

c
^ q

^
�; tð Þ: ð6Þ

As discussed in detail by Nielsen et al. [2010], the term on
the left‐hand side of equation (6) and the diffusion term

d

dt
wm tð Þ @

@�
T
^

�; tð Þ

can be neglected because they are dominated by the heat
source term

1

c
^ q

^
�; tð Þ

(as also checked numerically in Appendix B). Consequently,
we have to solve the approximated equation

�
^ @2

@�2
T
^

�; tð Þ ¼ � 1

c
^ q

^
�; tð Þ; ð7Þ

where ∣z∣ ≤wm(t) and t ≥ tm. Let now consider the elementary,
nonsingular, heat source function:

q
^el

�; tð Þ ¼ h e
� �2

2w2m tð Þffiffiffiffiffiffi
2�

p
wm tð ÞQ t � tmð Þ; ð8Þ

which has been frequently employed in the literature [e.g.,
Andrews, 2002; Noda et al., 2009] and assumes that the
inelastic strain is distributed as a Gaussian in the distance z,
with a standard deviation equal to the half thickness of
the melt layer (so that 68% of the deformation occurs in a
thickness of 2wm). In equation (8), Q( ) is the Heaviside step
function and [h] = Pa/(m s), so that [q

^el] = Pa/s. The ele-
mentary problem is completed by the boundary conditions:

T
^

� ¼ �wm tð Þ; tð Þ ¼ Tm

T
^

� ¼ wm tð Þ; tð Þ ¼ Tm;

; 8 t � tm: ð9Þ

The elementary problem (equations (7) with (8)) has the
following solution:

T
^ el

�; tð Þ ¼ C1 þ C2� � h

� erf
�ffiffiffi

2
p

wm tð Þ

 !
þ

ffiffiffi
2

�

r
e
� �2

2w2m tð Þwm tð Þ

2 c
^
�
^

ð10Þ

with t ≥ tm. Note that, formally, the time dependence in T
^
el is

implicit (it is due to time variability of wm). In equation (10)
the two constants of integration C1 and C2 are determined
by considering the boundary conditions in equation (9) that
lead to

T
^ el

�; tð Þ ¼ Tm � h

� erf
�ffiffiffi

2
p

wm tð Þ

 !
2 c

^
�
^

þ h

ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

� ffiffiffiffiffiffi
2�

p
e
� �2

2wm tð Þ2

 !
wm tð Þ

2� c
^
�
^

ð11Þ
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where again t ≥ tm. Simple algebra shows that equation (11)
satisfies both conditions in equation (9), for arbitrary value
of half‐layer thickness (or in other words for all arbitrary
times t ≥ tm). We remark that the solution (11) depends on
wm(t), which is still unknown; here we simply note that
we have the following condition for wm(t):

wm tð Þ ¼ 0; 8 t � tm; ð12Þ

stating the obvious fact that the thickness of the melt
layer is null at the melting instant and does not exist
before that time.
[17] Let now we consider the heat input h = �

^
(z, t) v(t);

this gives the actual heat source:

q
^

�; tð Þ ¼ �
^

�; tð Þ v tð Þ e�
�2

2w2m tð Þffiffiffiffiffiffi
2�

p
wm tð Þ Q t � tmð Þ: ð13Þ

In equation (13), �
^
(z, t) is the traction when t ≥ tm, which

is described with more details in section 5. By using
equation (13), the general evolution of the temperature
inside the melt layer can be expressed as follows:

T
^

�; tð Þ ¼ Tm �
� erf

�ffiffiffi
2

p
wm tð Þ

 !
2 c

^
�
^

266664

�

ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

� ffiffiffiffiffiffi
2�

p
e
� �2

2w2m tð Þ

 !
wm tð Þ

2� c
^
�
^

377775
� �^ �; tð Þv tð Þ; ð14Þ

where again t ≥ tm. Interestingly, we can note that at t = tm
the second term inside the square brackets vanishes (because
of equation (12)), as does the first term too (we recall that
equation (14) holds for z in the interval [−wm(t),wm(t)], which

at t = tm simply reduces to z = 0), so that T
^
(0, tm) ≡ T

^
f(tm) = Tm,

in agreement with equation (1).
[18] In the limit z = 0 (exploiting again the condition

(12)), equation (14) can be written as

T
^

f tð Þ � T
^

0; tð Þ ¼ Tm þ

ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

� ffiffiffiffiffiffi
2�

p
 !

2� c
^
�
^

�Q t � tmð Þwm tð Þ �
^

tð Þv tð Þ: ð15Þ

5. Fault Rheology

5.1. Coulomb Friction Before Melting

[19] In sections 3 and 4 we have invoked the shear trac-
tion t for the phase prior to melting (section 3) and �

^
after

the melting instant (tm). In this section we will discuss in
more details how to incorporate the fault rheology (i.e., the
fault governing law) in our dynamic model.
[20] For t < tm the quantity t is expressed by one of the

“classical” friction laws based on the Amonton‐Coulomb‐
Mohr theory, stating a linear proportionality between t and
effective normal stress sn

eff, through the friction coefficient
m (t = msn

eff ). For simplicity and to better understand the
effects of the presence of melting we adopt here the widely
adopted linear slip‐weakening (SW henceforth) constitutive
relation, recalled here for convenience:

� SWð Þ ¼ �u � �u � �f
� � u

d0
; u < d0

�f ; u � d0

(
; ð16Þ

where tu defines the upper yield stress (tu = musn
eff ), tf

defines the upper kinetic stress (tf = mf sn
eff ), and d0 is the

characteristic SW distance, quantifying the amount of cumu-
lative slip required to complete the breakdown process (i.e.,
the stress release).

5.2. Governing Law for a Continuous Melt Layer

[21] In the presence of melting the relation t = msn
eff is no

longer valid, owing to a more complex coupling between
traction and normal stress.Nielsen et al. [2008, equation (57)]
found an approximate behavior for �

^
at high slip rates

(namely, for

v � W �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8T
^

c�
^
c
^

�
^

c

vuut

which is nearly equal to 0.4 m/s for typical parameters; see
Table 1). However, this approximation holds only in the
special case of steady state motion, and not in the case of
variable slip velocity as in spontaneous rupture models.
[22] Following Fialko [2004], in a molten film of width

2wm most of the resistance to slip comes from viscous
deformation of the molten layer. By assuming a Newtonian
fluid, postulating a linear dependence between the applied
stress and the resulting rate of shear strain _e

^

, we have

� NFð Þ ¼�
^
_e
^

; ð17Þ
where �

^
is the dynamic viscosity of the melt material (�

^
=

�
^
(z, t); note that the dependence of �

^
on z and t is

implicit, since �
^

= �
^ðT^Þ and T

^
depends on z and t).

Several studies [e.g., Shaw, 1972; Dingwell, 1998] indi-
cate that the temperature dependence of viscosity can be
satisfactorily described by the Arrhenius law:

�
^

�; tð Þ ¼K
^
e

T
^
a

T
^

�;t�"ð Þ þ 273:15; ð18Þ
where K

^
is an empirical constant ([K

^
] = Pa s) and T

^

a is the

activation temperature (T
^

a = E
^

a/R, being E
^

a the activation

energy and R the universal gas constant [see also Fialko and

Khazan, 2005]). Both the constants K
^
and T

^

a depend on the
rock composition. In equation (18) the temperature has to
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be expressed in K (as T
^

a) so we apply to T
^
the usual shift

(because [T
^
] = °C). Moreover, we note that in equation (18)

the melting temperature is computed at the previous
time level and therefore it enters into the heat source
(equation (13)) as a known quantity. We will discuss in
more details this approximation in Appendix C. On the
other hand, we can express the deformation rate in the limit
z = 0 as

_e
^

¼ v

2wm
; ð19Þ

so that equation (17) becomes [see also Fialko, 2004]

� NFð Þ ¼�
^ v

2wm
: ð20Þ

[23] Finally, on the fault plane, by combining equations (20)
and (18), we obtain

� NFð Þ tð Þ ¼ K
^
e

T
^
a

T
^ f

t�"ð Þ þ 273:15
v tð Þ

2wm tð Þ ; ð21Þ

where T
^
f is given by equation (15). In the limit of iso-

viscous melt (i.e., if we neglect the temperature dependence
of viscosity), we will simply have

� NFð Þ tð Þ ¼ �
^

m
v tð Þ

2wm tð Þ ; ð22Þ

where

�
^

m � �
^

T
^¼ Tm

� �
¼ K

^
e

T
^
a

Tm þ 273:15

is the reference dynamic viscosity at the melting point.
Equations (20) and (22) can be regarded as the simplest case
of a viscous fault rheology, which in general can be expressed
as tn = van, where n is a constant and an effectively controls
the strength of the fault [see alsoHetland et al., 2010]; when
n = 1 (linear viscous rheology), a1 = �

^
/(2wm).

5.3. Transition From Frictional Resistance to Viscous
Shear

[24] First we notice that the frictional resistance t(NF)

given by equation (21) (or by equation (22)) for small values
of wm can be greater than the average Coulomb‐Mohr failure
stress for the upper crust and greater than t(SW) expressed by

Table 1. Parameters Adopted in the Present Studya

Parameter Value

Medium and Discretization Parameters
Lamé constants, l = G 35.9 GPa
S wave velocity, vS 3.464 km/s
P wave velocity, vP 6 km/s
Fault length, Lf 16 km
Fault width, W f 11.6 km
Spatial grid size, Dx1 = Dx2 = Dx3 ≡ Dx 25 m
Time step, Dt 6 × 10−4 sb

Constitutive Parameters
Effective normal stress, sn

eff 120 MPa
Initial shear stress (prestress), t0 73.8 MPa
Upper yield stress, tu 81.24 MPa
Kinetic friction level, tf 55.2 MPac

Characteristic slip‐weakening distance, d0 0.4 m

Thermal Parameters
Initial temperature in the center of the slipping zone, T0

f 210°C
Melting temperature, Tm 1200°Cd

Latent heat of fusion, L 350 × 103 J/kg
Slipping zone thickness (reference), 2w 2 mm

Thermal Parameter

Value

Solid State Molten State

Cubic mass density, r or �
^e 2990 kg/m3 2591 kg/m3

Heat capacity for unit volume of the composite, c or c
^e 2.838 × 106 J/(m3 °C) 3.845 × 106 J/(m3 °C)

Thermal diffusivity, c or �
^e 0.344 × 10−6 m2/s 0.8 × 10−6 m2/s

Arrhenious constant, K
^

n/a 145.37 Pa sf

Activation temperature, T
^

a n/a 6233 Kd

aParameters refer to gabbro.
bFor the adopted parameters, the Courant‐Friedrichs‐Lewy ratio, wCFL ¼

df
vSDt/Dx, equals 0.083, and the estimate of the critical frequency for spatial grid

dispersion, facc
(s) = vS/(6Dx), equals 23 Hz.

cThis results in a strength parameter S = 0.4 (S ¼
df
(tu − t0)/(t0 − tf )).

dAs in the work of Nielsen et al. [2008], we assume a single value of Tm even if each mineral composing the material assemblage in the slipping zone can
have a different melting temperature, leading to martial melts and polyphases [see Spray, 1992].

eExtrapolation from Holland and Powell [1990]; for the solid state, we assume an average temperature between T0
f and Tm.

fWith these values of K
^
and T

^

a, we obtain the dynamic viscosity at melting point �
^
m ≡ �

^
(T
^
= Tm) = K

^
eT
^

a /(Tm + 273.15) = 1 × 104 Pa s (as in the work of
Nielsen et al. [2008]).
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equation (16). This would imply that, immediately after tm,
the fault will experience a significant increase of resistance
to slip, which in turn can stop the ongoing rupture. Indeed,
experiments by Tsutsumi and Shimamoto [1997] suggest that
viscous braking might result after melting. Moreover, when
the onset of melting is accompanied by increases in shear
stress exceeding the static friction, or the intrinsic rock
strength, the fused fault may be abandoned, and the slip may
be transferred to a new subparallel plane [e.g., Swanson,
1992; Otsuki et al., 2003]. As a consequence, it is possible
than viscous braking causes the formation of multiple melt
layers. These phenomena still require further observational
constraints and we are not able to fully include them in the
model. Therefore we make the conservative assumption that,
after tm, �

^
is still described by Coulomb friction until the melt

layer is sufficiently thick (wm = wmc
), so that t(NF) is lower

(dominant) with respect to the Coulomb friction. This con-
dition physically defines the formation of a continuous melt
layer (having an initial width of 2wmc

). The macroscopic,
continuous melt layer trapped between the fault walls, as
opposed to microscopic melting occurring at asperity con-

tacts level (at time tm), would take place after some cosesimic
slip. In many field observations this continuous layer can be
absent owing to processes such as melt extrusion, not con-
sidered here.
[25] By considering that �

^
still follows a Coulomb friction

until wm = wmc
we guarantee a continuous spreading of the

propagating rupture; we also define an effective melting
time tm

eff, at which temperature exceeds an effective melting
temperature Tm

eff > Tm:

Teff
m � Tf teffm

� � ¼ T 0; teffm

� �
such that � NFð Þ teffm

� �
< � SWð Þ teffm

� �
:

ð23Þ

[26] Practically, provided that wm(t) is determined (see
sections 6, 7, and 8), we evaluate the fault temperature as
follows:

with t(SW) as in equation (16) and t(NF) as in equation (21)
or equation (22).
[27] We finally note that the adoption of the SW law

enables us to identify the time instant when viscous shear

Figure 2. Geometry of the model. The light gray plane indicates the fault x2 = x2
f, while the gray box

marks the portion of the computational domain where the calculations are performed, owing to the exploi-
tation of the symmetry about the hypocenter H and about the fault plane (see Bizzarri [2009] for details).

T ¼ Tf
0 þ 1

2cw

Zt�"

0

dt′ erf
w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� t � t′ð Þp !

� t′ð Þv t′ð Þ ; t < tm; � ¼ � SWð Þ

T
^¼ Tm þ

ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

� ffiffiffiffiffiffi
2�

p
 !

2� c
^
�
^ wm tð Þ �

^
tð Þv tð Þ ; t � tm; �

^¼ Min � SWð Þ; � NFð Þ	 


8>>>>>>>><>>>>>>>>:
ð24Þ
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Figure 3. Comparison between results (a and c) neglecting melting and viscous shear and (b and d) con-
sidering melting and viscous shear. Figures 3a and 3b report the distribution of the rupture velocity (vr) on
the fault plane (vr is the inverse of rupture time gradient). Figures 3c and 3d report the maximum (peak)
fault slip velocity. The model without melting effects assumes a linear SW friction law (equation (16)),
while the rheology of the model with melting is described in detail in sections 5.2 and 5.3. The adopted
parameters are those tabulated in Table 1, and the melt layer evolves as in equation (27).
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takes over (tm
eff ) and correspondently the value of Tm

eff and the
critical melt layer half thickness wmc

.

6. The Stefan Problem

[28] In sections 4 and 5, wm(t) appears as an unknown
quantity, but it is necessary to evaluate the fault temperature
(equation (24)) and fault traction (equations (21) or (22)). As
mentioned above, wm(t) is determined by considering the
Stefan problem, which reads

d

dt
wm tð Þ ¼ 1

�L
c�

@

@�
T̂ �; tð Þ

����
�¼wþ

m tð Þ
� c

^
�
^ @

@�
T
^

�; tð Þ
����
�¼w�

m tð Þ

 !
wm tð Þ ¼ 0 ; 8 t � tm

8><>: ;

ð25Þ

in which t ≥ tm and L is the latent heat of fusion. Equation
(25) expresses the balance between the heat dQ required
to change state (i.e., to melt) of a rock mass dm within the

Figure 4. Solutions corresponding to Figures 3b and 3d in a fault point located at the hypocentral depth
and at a distance of 3 km from H. (a) Time evolution of frictional resistance. (b) Evolution of temperature
change (referred to T0

f and calculated through equation (24)). (c) Phase portrait (i.e., traction versus slip
velocity). (d) Evolution of the dynamic viscosity (see equation (18)). In all plots, the gray portions of the
curves (after tm

eff = 0.93 s) emphasize when the fault is governed by a viscous rheology (conversely, black
portions indicate where SW friction law is paramount).

Figure 5. Slip‐weakening curve corresponding to the solu-
tion reported in Figure 4. Circles represent data field ob-
servations from thrusts faults in Outer Hebrides, Scotland
(see text for details). Red curve is the estimate of the fault
traction as given by equation (28).
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time dt (dQ = L dm = rL dV = rL dx1dx3dwm) and the Fourier
heat flux through the melt‐solid boundary � ¼ wm tð Þ

qþ� � q
^�

� ¼

c�
@

@�
T̂ �; tð Þ

����
�¼wþ

m tð Þ
�c

^
�
^ @

@�
T
^

�; tð Þ
����
�¼w�

m tð Þ
;

all the absorbed energy goes into the phase change (from
solid to liquid), without affecting the temperature in the
surroundings. The second term on the right‐hand side of
equation (25) can be obtained from equation (14), which
we recall is the solution of the approximation (7) of
equation (6). Note also that equation (14) would also
require a physical model to describe �

^
for all z and not only

on the fault plane; this model requires observational con-
straints that are presently missed and further investigations.
On the other hand, the first term on the right‐hand side of
equation (25) cannot be calculated from equation (3), since
that solution holds only in the phase prior to melting; on the

contrary, for z > wm(t), it can be obtained by solving the
following diffusion problem:

@

@t
T̂ 	; tð Þ ¼ �

@2

@	2
T̂ 	; tð Þ þ d

dt
wm tð Þ @

@	
T̂ 	; tð Þ þ 1

c
q̂ 	; tð Þ

T̂ 0; tð Þ ¼ Tm ; 8 t � tm

8><>: :

ð26Þ

In equation (26) the spatial coordinate x quantifies the
distance from the moving melt‐solid boundary and is
related to z used above through the relation x ≡ z − wm(t)
(see Figure 1) and q̂ indicate possible additional heat
sources or sinks. Similar equations in x′ ≡ −z − wm(t) give T̂
for z < −wm(t). (The use of symbol T̂ in equations (25) and
(26) emphasizes that the temperature is not the same as in
equation (3), because we are now dealing with a two‐phase
problem.)
[29] The problem in equation (26) can be treated analyt-

ically by using the Laplace transform, which gives a sub-
sidiary second‐order ODE in x for the Laplace‐transformed

function êT (x; w), which depends on the temporal frequency

Figure 6. Effects of different time evolutions of the melt layer thickness in the case of a slipping zone
2 mm thick. The wm follows equation (27), and the different values of _wm are reported in the legends (the
other parameters are those of Table 1). (a) Time evolution of traction. (b) Time evolution of temperature
change. (c) Slip‐weakening curve. (d) Phase portrait. Vertical lines indicate when melting locally starts
(tm); big colored circles eventually denote the point where the wm = w (end limit of our simulations).
Black curves pertain to the reference simulation, where melting effects are not considered.
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w. Even in the absence of heat sources or sinks (q̂ = 0) the
function êT (x; w) does not admit a closed‐form inverse
Laplace transform, so that the analytical solution for T̂ (x; t)
(and for T̂ (z; t)) remains implicit. As a consequence, the
problem in equation (26) has to be solved numerically; this
would be the matter of a future study.

7. Numerical Results

[30] It is reasonable that the solution wm(t) of equation (25)
is a sufficiently regular, real function. We can then expand
it in a Taylor series in t with initial point in tm as follows:

wm tð Þ ¼ wm tmð Þ þ d

dt
wm

����
t¼tm

t � tmð Þ þ 1

2

d2

dt2
wm

����
t¼tm

t � tmð Þ2þ . . . :

In the remainder of the paper we will consider the first‐order
approximation of wm(t); taking into account the condition
(12) we have, for t ≥ tm,

wm tð Þ ffi _wm t � tmð Þ; ð27Þ
where

_wm � d

dt
wm

����
t¼tm

:

We will consider different configurations, by attributing to
_wm values suggested by observations. We emphasize that this
is not the exact solution of the problem in equation (25)
coupled with equation (26), but it is its first‐order approxi-
mation. The conservative assumption that the melt layer
enlarges at a constant rate makes the problem tractable
analytically and can help us in quantifying the prominent
effects of the molten material on the dynamics of a fault.
Equation (27) can be thus regarded as a proxy of the true
enlarging behavior of the melt layer.
[31] The fully dynamic, spontaneous rupture problem is

solved via the finite difference code described by Bizzarri
and Cocco [2005]. To minimize the spurious numerical
reflections originating from the domain boundaries we apply
the absorbing boundary conditions described by Bizzarri
and Spudich [2008]. The rupture nucleates in the imposed
hypocenter H (see Figure 2), located at a depth x3

H = 7 km,
and propagates at early states at a constant rupture speed
(2.4 km/s [see Bizzarri, 2010b]) and then in a fully spon-
taneous fashion; the fault slips forever, until unbreakable
barriers (located the bottom and left ends of the fault) are
reached. The adopted parameters are reported in Table 1.
[32] In Figure 3 we report a synoptic comparison between

a numerical simulation obeying the linear SW law (equation
(16)) over the whole time window considered (Figures 3a
and 3c) and another simulation where the effects of melt-
ing are accounted for (Figures 3b and 3d). Owing to the

Figure 7. (a‐d) The same as in Figure 6 but now with w = 7 mm.
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symmetry exploitation along the strike direction [Bizzarri,
2009], we plot only the one half of the fault. When melt-
ing is included into the model, we consider _wm = 0.5 mm/s
in equation (27) (a value also suggested by laboratory ob-
servations of Nielsen et al. [2008, 2010]) and the tempera-
ture is calculated from equation (24). The adopted frictional
parameters guarantee that the rupture becomes supershear
(Figure 3a). However, when a viscous rheology is consid-
ered the transition to supershear regime occurs earlier and
there are larger patches on the fault with vr > vS (Figure 3b;
vr is the rupture speed and vS is the S waves speed). This
indicates that the transition to a viscous rheology as that
assumed here enhances the fault instability and therefore
promotes the supersonic regime. Correspondently, peaks
attained by the fault slip velocity are larger in the case of
viscous rheology (compare Figures 3c and 3d). Moreover,
the value of the seismic moment at the end of the numerical
experiments is rather different; M0 = 3.01 × 1018 Nm (Mw =
6.3) in the reference (i.e., Coulombian) case, while M0 =
1.66 × 1019 Nm (Mw = 6.8) in the viscous case.

[33] Figure 4 shows the solutions for the simulation re-
ported in Figures 3b and 3d in a target fault node. In that
location the melting point is reached at t = tm = 0.86 s;
after tm, wm evolves accordingly to equation (27) and �

^

follows equation (18). The fault experiences a first traction
drop, which namely is the breakdown stress drop, Dtb =
tu − tf = 26.04 MPa. The traction remains at tf for a while
and then, at t = tm

eff = 0.93 s (see equation (23)), the time
evolutions of temperature, fault slip velocity, dynamic vis-
cosity and melt layer thickness are such that the viscous
shear is dominant with respect to the SW law (equation
(16)). According to section 5.3, after tm

eff the fault traction
is described by a linearly viscous rheology (equation (21)),
emphasized by labels in Figure 4. Owing to the decrease in
�
^

(caused in turn by the temperature increase after tm
eff, see

Figure 4b), the traction exhibits a second drop (Figure 4c),
which is roughly twice ofDtb. The total drop is then roughly
equal to 80 MPa, which is compatible with observations (see
Figure 10 of Nielsen et al. [2010], where the dependence of
the traction drop on applied normal load is shown). In this
numerical experiment the final value of traction is 1.85 MPa
(for a Coulomb rheology this would correspond to a friction
coefficient equal to 0.015).
[34] The traction versus slip curve (Figure 5) shows a

sufficiently good agreement with field data collected on
an exhumed seismic thrust fault zone in Outer Hebrides,
Scotland (surveyed in 2005 and having a focal depth
roughly equal to 10 km; T. Hirose, unpublished data, 2005)
and with measurements from Sibson [1975] performed on
the same fault zone (open and solid blue circles, respec-
tively). We can roughly estimate the value of viscous shear
as [cf. Di Toro et al., 2006]

�
^
D E

ffi 2wmE �
^

u� u teffm
� � ; ð28Þ

where wm is the average value of melt layer thickness

ðwm ¼
Ztend
teffm

_wm tð Þdt;

which in the present simulation equals _wm(tend − tm
eff ), tend

being the final time of the computation) and E is the energy
required to produce 1 kg of melt. From equation (28), by
assuming E = 1.76 MJ/kg and �

^
as in Table 1 and con-

sidering that wm = 1 mm and that u(tm
eff ) = 0.56 m, we obtain

the red curve plotted in Figure 5, which is in general
agreement with the gray curve in Figure 5 (which in turn
represents the result of our model in the viscous regime).

8. Importance of the Melt Layer Evolution

[35] In this section we will explore the effects of different
temporal evolutions of the melt layer thickness 2wm, by
assuming enlarging rates compatible with observations
[Nielsen et al., 2008, Table 4]; wm still obeys equation (27),
with the condition wm ≤ w. (Again, we recall here that
equation (27) is the first‐order approximation of the solution
of equations (25) and (26)). We consider two different
configurations, having 2w = 2 mm and 2w = 14 mm, values

Figure 8. Distribution of temperature on the fault plane a
t = 1.68 s for a slipping zone 2 mm thick and a melting zone
growth rate of 0.1 mm/s (this corresponds to yellow curves
in Figure 6).
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representative of the slipping zone thickness. The results
are reported in Figures 6 and 7, respectively, where we also
superimpose the reference solution, that is, the simulation in
which melting effects are not considered in the model (black
curves in all plots).
[36] It is clear that the time evolution of wm controls tm

eff,
that is, the instant when rheology departs from Coulomb
friction and becomes viscous (see section 5.3). In particular,
as _wm increases the fault remains at the kinetic friction level
tf for less time (Figures 6a and 7a) and for smaller amount
of cumulative slip (Figures 6c and 7c). In the extreme case
(w = 1 mm and _wm = 5 mm/s; yellow curves in Figure 6) the
transition between Coulomb and viscous behavior occurs

within the breakdown zone (i.e., for slips smaller than d0); in
this case there are no longer two separate drops in traction,
but the fault weakening is continuous.
[37] Correspondingly, the enhanced stress drop at a spe-

cific fault point causes a stress redistribution in its sur-
roundings and this increase of dynamic load ultimately
causes an increase of rupture speed. This can be clearly seen
in Figures 6a and 7a, since the rupture time at the target fault
location decreases as _wm increases. The same holds for peaks
in fault slip velocity; it increases as _wm increases (Figures 6d
and 7d). Especially in the case of localized shear (w = 1 mm),
a faster increasing rate of the melt layer causes a shorter

Figure 9. (a) Distribution of melting instant on the fault plane, showing that the minimum is located in the
hypocenter H. Purple region denotes the portion of the fault at rest. (b) Corresponding shape of themelt layer
half thickness as resulting from equation (27). The referential system Ox1zx3 of Figure 1 is reported for
clarity. Figures 9a and 9b both refer to a numerical simulation where w = 1 mm and _wm = 0.1 mm/s.
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breakdown zone time (which is the time required for traction
to drop from tu down to tf [Bizzarri et al., 2001]).
[38] With the only exception of _wm = 5 mm/s (which is in

fact larger than values observed experimentally [see Nielsen

et al., 2008]), all models with melting effects develop rea-
sonable temperatures; on the contrary, the case which does
not correctly model melting effects (black curves) would
produce arbitrarily large temperatures; when w = 1 mm the

Figure 10. Profiles of wm as a function of depth calculated at 3 km from the hypocenter along the strike
direction (as in Figures 4–7). Each curve is computed every 0.1 s up to the last time level considered in the
numerical experiments. Two representative growth rates are assumed: (a) _w = 0.1 mm/s (as in Figure 9)
and (b) _w = 1 mm/s. In both cases the slipping zone is 2 mm thick. In Figure 10b, dashed curves
emphasize when the melt layer thickness exceeds 2w (upper limit in our model; see section 2 for further
details). Values of melting instant (as defined by equation (1)) at x1 = 5 km and x3 = x3

H are also indicated.
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temperature predicted by the model at the end of the sim-
ulation is larger than the average temperature estimated for
the Earth’s core. A typical temperature distribution on the
mathematical fault plane is reported in Figure 8 for the case
of a slipping zone 2 mm wide and for _wm = 0.1 mm/s. A
fault node of the unbroken region (at rest) remains at T0

f until
rupture front reaches it; then temperature increases, exceeds
Tm and then it is controlled by the values of traction and
fault slip velocity (see equation (15)).

9. On the Shape of the Melt Layer

[39] The temperature evolution in a fault node depends on
the traction and slip velocity histories in that point, as ex-
pressed by equation (4). As a consequence, themelting instant
tm would be in fact the two‐dimensional array tm(x1, x3).
To better quantify this, we plot in Figure 9a the spatial dis-
tribution of melting instants in the case ofw = 1 mm and _wm =
0.1 mm/s. We can clearly see that minimum value of tm array
(which in turn defines the first fault node where melt occurs)
is attained at the imposed hypocenter H, which by definition
is the first point undergoing to instability.We remark here that
for homogeneous rheology and constant and spatially uni-
form _wm the heat production rate is such that the melting
temperature is always reached first in H (in other words tm is
minimum in (x1

H, x3
H)). The shape of the melt layer half

thickness, as given by equation (27), is reported in Figure 9b,
from which we can see that wm is maximum in H (where the
term t − tm is maximum).
[40] In Figure 10 are reported the increasing histories of

wm for two representative values of _wm. Each line represents
the shape of wm as a function of the depth, calculated at
3 km from the hypocenter (along the strike direction) and
every 0.1 s. These profiles confirm that the maximum
extension of the melt layer is at hypocentral depths. While
for moderate growth rates wm is quite small with respect to
w, when _wm is sufficiently high (for instance _wm = 1 mm/s
as in Figure 10b), it might happen that at the hypocenter wm

exceeds w, which represents the upper limit for our model
(as discussed above; see section 2). We emphasize that the
shape of the melting layer, during its evolution, depends on
the imposed value of _wm appearing in equation (27), but it is
also controlled by the temperature evolution (which determines
tm(x1, x3)), which in turn depends on the fault dynamics.

10. Discussion and Conclusions

[41] In this paper we have presented a physical model to
account for rocks melting during coseismic earthquake
ruptures spontaneously spreading on a fault of finite width, by
considering Coulomb friction and viscous rheology in one
framework. We have solved the equations of heat transfer in
presence of melting, and we have incorporated such a solu-
tion in a numerical code to solve the elastodynamic problem.
Our solution is in agreement and generalizes previous studies
where a constant heat input was considered [Fialko and
Khazan, 2005; Nielsen et al., 2008, 2010].
[42] In our model we have made some assumptions,

briefly recalled here.
[43] 1. We require that the melt layer can reach, at max-

imum, the boundary of the slipping zone thickness, but it
cannot affect the surrounding damage zone (see Figure 1).

This assumption is reasonable, since field data reported by
Nielsen et al. [2010] indicate that the thicknesses of melt
layer typically are of the order of a fraction of millimeter,
with a few exception reaching several millimeters.
[44] 2. We neglect extrusion dynamics; that is, we do not

consider the formation of the injection veins [Sibson, 1975].
At the present state of knowledge we do not have sufficient
information to analytically model the extrusion process in
natural faults, if any [Sirono et al., 2006].
[45] 3. Owing to the small temporal scale pertaining to the

breakdown process, during which the stress release takes
place, we can safely assume that the temperature inside the
melt layer remains well above the melting temperature, Tm, so
we can neglect the melt solidification process. This would
become potentially important in the postseismic phase of the
dynamic rupture, not considered here.
[46] 4. We have also neglected the phenomenon pre-

melting (or surface melting), describing the fact that a quasi‐
liquid layer (which is in turn temperature‐dependent) can
appear on crystalline surfaces, even below the Tm.
[47] 5. Most earthquakes happen along faults that contain

a range of mineral compositions; for simplicity we have
considered here a single value of Tm, which has to be re-
garded as an average, representative quantification of the
melting temperature of the material assemblage in the slip-
ping zone. This is reasonable, in that the boundary between
solid and melt appears quite well defined in most laboratory
samples and samples from natural faults.
[48] 6. The fault initially obeys the linear SW law and then

is governed by a viscous rheology. The transition between a
Coulomb rheology to a viscous rheology occurs spontane-
ously, as discussed in section 5.3, and depends on the evo-
lution of the temperature on the fault surface. We emphasize
that themodel proposed here can be generalized to other more
elaborated Coulombian governing models, such as nonlinear
SW equations or rate‐ and state‐dependent friction laws (see
Bizzarri [2010a] for a review). The adoption of a linear SW
friction before melting makes simple the identification of the
transition to viscous rheology.
[49] 7. We assume an analytical time evolution of the melt

layer thickness wm(t); it is a first‐order approximation of the
true behavior of the growing melt layer, which can be ob-
tained only numerically by solving the coupled equations (25)
and (26).
[50] Given all the above mentioned limitations of the

present model we are able to explore the behavior of a
dynamically propagating rupture above the melting tem-
perature (Tm). Otherwise we would have been forced to stop
the numerical simulation when Tmwas reached in a fault node.
Previous theoretical studies [Bizzarri and Cocco, 2006a,
2006b; Fialko, 2004; Bizzarri, 2009, and references therein]
clearly indicate that Tm can be easily exceeded, independent
of the adopted constitutive equation, provided that the shear
is sufficiently localized (w ≤ 1 mm for representative values
of the effective normal stress).
[51] A prominent outcome of the present model is that

after melting, the fault experiences a second traction drop
which can be twice (or more) the breakdown stress drop
predicted by the simple linear SW law (see Figures 4b, 6a, and
7a). Correspondingly, the fracture energy density, which is
the amount of energy (for unit fault surface) necessary to
maintain an ongoing rupture which propagates on a fault [see
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Bizzarri, 2010d, and references therein], increases. This is a
consequence of the conservative choice we made, that no
viscous braking can occur after melting (see section 5.3).
[52] We also found that the supershear regime is promoted

by the transition to a viscous rheology and this can have
significant effects on the resulting ground motions [Dunham
and Bhat, 2008; Bizzarri et al., 2010]. We emphasize that all
the previous features are preserved in varying the value of
the enlarging rate of the melt layer.
[53] We note that the traction during the viscous stage of

the rupture predicted by our model exhibits an exponential
decay with time, as early postulated by Lachenbruch [1980],
theoretically derived byMatsu’ura et al. [1992], observed in
laboratory experiments by Ohnaka and Yamashita [1989],
and corroborated by the more recent high‐velocity experi-
ments by Sone and Shimamoto [2009; see also Bizzarri,
2010c]. The viscous behavior we model is also in satisfac-
tory agreement (see Figure 5) with field data from an
exhumed seismic thrust fault zone [Sibson, 1975; T. Hirose,
unpublished data, 2005].
[54] The weakening rate in the viscous regime and the

duration of the second traction drop are primarily controlled
by the time evolution of the melt layer thickness. The latter
can be obtained by solving numerically equations (25) and
(26), which surpasses the purposes of the present study. In
fact, this would require a consistent physical model to fully
describe the behavior of �

^
for all the coordinates z and

not only in the mathematical fault plane (z = 0; see
Figure 1), but this needs further observational constraints.
Here we have adopted a first‐order approximation of the
function wm(t), as in equation (27), which makes the problem
tractable analytically and overcomes the previous theoretical
problem.
[55] Further development of this work may be the com-

parison between our theoretical predictions and high‐velocity
friction experiments, conducted with time‐variable slip
velocity histories compatible with those obtained in dynamic
models and normal loads representative of seismogenic
depths. Finally, systematic microstructural analysis of rock
samples can potentially illuminate us about the chemical
complexity of natural faults.

Appendix A: Properties of the Temperature Inside
the Melt Layer

A1. Comparison With Previous Solution

[56] In this appendix we will analyze the temperature
evolution within the molten region. As discussed in the main
text, the analytical solution for T

^
is given by equation (14),

which reduces to equation (15) in the center of the melt layer
(i.e., on the mathematical fault plane z = 0; see Figure 1).
[57] Nielsen et al. [2008] (and Nielsen et al. [2010] as

well) solve the heat conduction equation (6) in a static (i.e.,
time independent) configuration. Their solution cannot be
expressed in a closed form as a function of wm, so they apply
an approximation of boundary condition for the flux at the
melt‐solid boundary:

@

@�
T
^
����
�¼w�

m

ffi � �ava

2 c
^
�
^ ; ðA1Þ

where ta is the constant applied stress and va is the applied
sliding velocity (see equation (16) of Nielsen et al. [2008];
note also that in our notation, c

^
is equivalent to �

^
c
^

in the
notation of Nielsen et al. [2008]). Correcting a misprint in
their equation (B2), they obtain

T
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(see also equations (34) and (35) of Nielsen et al. [2008]).
Simple algebra shows that the function T

^
NEA (z) does not

satisfy the boundary condition T
^
NEA (±wm) = Tm for arbitrary

values of melt layer half thickness, but only if wm equals a
specific value, w*m:

w*m ¼ W �
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[58] Let we now consider our solution for T
^
f(z, t) (see

equation (14)) and let us consider the temporal averages (for
times t ≥ tm) of time variable quantities appearing therein;
we can write

T
^

�ð Þ ¼ Tm

�
� erf

�ffiffiffi
2

p
wm

� �
2 c

^
�
^ �

ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

� ffiffiffiffiffiffi
2�

p
e
� �2

2w2m

 !
wm

2� c
^
�
^

266664
377775�^v:
ðA4Þ

[59] If we associate the quantities �
^
↔ ta and v ↔ va, we

can directly compare the temperature distribution as a func-
tion of the distance from the center of the melt layer obtained
here (equation (14), or its time average, equation (A4)) with
the solution of Nielsen et al. [2010] (see equation (A2)).
[60] On the other hand, Fialko and Khazan [2005, equa-

tion (22)], in the isoviscous approximation independently

found another expression for T
^
f(z, t):

T
^FK

�ð Þ ¼ Tm þ v2a �
^

m

2 c
^
�
^ 1� �2

w2
m

� �
: ðA5Þ

The result of the comparison between the three different
equations (equation (14), or its time average in equation (A4);
(A2); and (A5)) is reported in Figure A1. We select three
representative values of the sliding speed, va = 0.1 m/s
(Figure A1a), va = 1 m/s (Figure A1b) and va = 10 m/s
(Figure A1c). Note that to make possible the comparison we
use in (A4) wm = w*m as given by equation (A3), since it is
the only value which satisfies condition (9) for the solution
of Nielsen et al. [2008, 2010]. Analogously, in equation (A5)
we also use wm = w*m.
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Figure A1. Comparison between the solution obtained by Nielsen et al. [2008, 2010], T
^
NEA(z) (see

equation (A2)), that from Fialko and Khazan [2005], T
^
NEA(z) (equation (B5)), and the time‐averaged

solution obtained in the present paper, �
^
(z) (see equation (A4)). For the comparison, we use �

^
= ta =

20 MPa and wm = w*m as given by equation (A3); the other constitutive parameters are tabulated in Table 1.
Values in ordinate axis are in degrees Celsius. (a) v = va = 0.1 m/s. (b) v = va = 1 m/s. (c) v = va = 10 m/s. The
resulting values of w*m are 23.1, 37.8, and 8.45 mm, respectively.
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[61] We can clearly see that in all three models the
maximum temperature is realized in the center of the melt
zone (as physically expected) and it gradually decreases near
the melt‐solid boundaries. For decreasing melt layer thick-
ness the temperature values are higher, as they should be, and
the curves become more peaked at z = 0. The maximum
values of temperature predicted by the present model are
smaller that those predicted by the model of Nielsen et al.
[2008, 2010] and by Fialko and Khazan [2005]. The latter
gives wrong predictions for high speeds (see Figure A1c). On
the contrary, for moderate speed all the three models are quite
comparable (see Figure A1a).
[62] We emphasize that this comparison assumes the time

averages of the time variable quantities wm, �
^
and v over the

temporal window of interest appearing in equation (14), so
that comparison is indicative of a general behavior.

A2. Time Evolution in the Center of the Melt Layer

[63] Let us now consider the solution for the temperature
evolution in the center of the melt layer. From equation (15)
we have that the prefactor

C �
ffiffiffiffiffiffi
2�

e

r
þ � erf

1ffiffiffi
2

p
� �

�
ffiffiffiffiffiffi
2�

p !

is nearly equal to 1.16. By considering thatwm, �
^
and v are all

positive quantities by definition, we have that T
^
f can assume

values greater than Tm, or, in other words, that we can have the
superheating phenomenon. This feature has been also found
in laboratory experiments by Nielsen et al. [2010], and it also
confirmed by results reported in Figure A1.

A3. Boundary Condition at z = wm
− (t)

[64] The Stefan problem (see equation (25)) relates the
spatial derivatives of solid and melt temperature calculated
at the melt‐solid boundaries (z = ±wm(t)) to the growth rate
of the melt layer _w(t). Nielsen et al. [2008] found an
approximate relation expressing heat flux q

^
z
− leading to

equation (A1) previously reported.
[65] From equation (14), by considering the time averages,

we have

@

@�
T
^

�; tð Þ
����
�¼w� tð Þ

m

ffi � 1

2 c
^
�
^ erf

1ffiffiffi
2

p
� �

�
^
v; ðA6Þ

which in agreement with equation (A1), taking into account
that erf(1/

ffiffiffi
2

p
) = 0.7.

Appendix B: A Posteriori Verification That ∂T
^
/∂t

Term in Equation (6) Can Be Neglected

[66] Equation (7) assumes that

@T
^

@t

�����
�����
 q

^

c
^

�����
�����:

By assuming q
^

as in equation (13) we obtain the solution
(14) (or solution (15) in the center of the melt layer z = 0;
see Figure 1). Let us assume that t is such that �

^
= t(NF) (see

sections 5.2 and 5.3 for further details on fault rheology in
the melting regime). The temperature (and its temporal
variation) is maximum for z = 0. Therefore, by considering
equations (17) and (19), from equation (15) we have

@T
^

f tð Þ
@t

�����
����� ¼ �

^
C

2� c
^
�
^ v tð Þ @v

@t

���� ���� ðB1Þ

with C defined above. On the other hand, we also have that
q
^
/ c
^

is maximum for z = 0; from equation (13) we have

q
^

c
^

�����
����� ¼ �

^ffiffiffiffiffiffi
2�

p
c
^
wm tð Þ

v2 tð Þ: ðB2Þ

[67] In conclusion, equation (15) is a valid solution of
equation (6) if the following condition is satisfied:

1

v tð Þ
@v tð Þ
@t

���� ����

ffiffiffiffiffiffi
2�

p
�
^

C

1

w2
m tð Þ ðB3Þ

for all arbitrary times t such that such that �
^

= t(NF).
Interestingly, condition (B3) is independent of the dynamic
viscosity; it only relates melt layer half thickness for fault
slip velocity and fault slip acceleration. Equation (B3) may
also be physically interpreted as a condition on the melt
layer thickness; until wm(t) is such that

w2
m tð Þ 


ffiffiffiffiffiffi
2�

p
�
^

C

v tð Þ
@v tð Þ
@t

���� ���� ; ðB4Þ

the equation (15) is a valid solution of equation (6). On the
contrary, when condition (B4) is violated, the analytical
solution in equation (15) is no longer valid, and therefore
equation (6) can be solved only numerically.
[68] We also conclude emphasizing that the condition

@T
^

@t

�����
�����
 q

^

c
^

�����
�����

does not conflict with the time variability of T
^
, explicitly

stated in equations (14) and (15) and obtained in our
numerical experiments.
[69] The numerical experiments presented and dis-

cussed in the present paper satisfy both condition (B3) and
condition (B4).

Appendix C: Validity of Equation (18) for Dynamic
Viscosity Evolution

[70] The Arrhenius equation applied to dynamic viscosity
of a melt material [see Shaw, 1972; Dingwell, 1998] pos-
tulates a dependence on the absolute temperature, which
reads

�
^¼K

^
e

T
^

a
T ; ðC1Þ

where K
^

is a constant preexponential factor and T
^

a is
the activation temperature. Equation (18) follows from
equation (C1) simply by putting the absolute temperature
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Figure C1. (a) Comparison between different evolution laws for dynamic viscosity of the melt material
for a typical temperature interval above the melting point. Red curve is the original Arrhenius law
(equation (C1)). Blue curve is its Nahme’s approximation (equation (C2), or equivalently (C3)). Black
and gray curves pertain to the approximation adopted in the present paper, in which the temperature
entered into the Arrhenius equation is computed at the previous time level (see equation (18)). (b)
Normalized differences of the various approximations with respect to the true prediction given by the
Arrhenius equation (equation (C1)); in the ordinate axis, for each temperature value, we plot the quantity
100(�

^(approximation) − �
^(Arrhenius))/�

^(Arrhenius). In the legends are indicated the different values of the dif-
ferences of temperature, DT

^
at time level, m, and at its subsequent time level, m + 1 (DT

^
= 5, 10, 20, and

50 K). The adopted parameters are those listed in Table 1.
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inside the melt layer (so that T in equation (C1) is expressed

as T
^
+ 273.15, where T

^
is as in equation (14) or equation (15)

is in °C). Moreover, in equation (18) we consider the tem-
perature at the previous elastodynamic time step (t − " for-
mally is t(m) −Dt, where t(m) =mDt is the discrete time at level
m and Dt is the time step).
[71] In this appendix we will quantitatively evaluate the

goodness of such an assumption by considering typical

scenarios for temperature evolution. In the synoptic com-
parison we will also consider the Nahme’s approximation of
equation (C1), which has been often considered in the lit-
erature [Costa and Macedonio, 2002; Nielsen et al., 2008,
2010]:

�
^¼ �

^

me
� T

^�Tm

T
^
c ; ðC2Þ

Figure C2. (a and b) The same as in Figure C1, but now black and gray curves refer to our approxi-
mation in equation (18) with the preexponential factor as in equation (C4); in such a way, in all cases the
dynamic viscosity at melting temperature identically equals �

^
m = 1 × 104 Pa s. The values of K

^
′ from

equation (C4) are 143.29, 141.23, 137.15, and 125.29 Pa s, for DT
^

= 5, 10, 20, and 50 K, respectively.
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where

�
^

m � K
^
e

T
^
a

.
Tm

and T
^

c ≡ Tm
2/T

^

a. After simple algebra we can rewrite
equation (C2) as follows:

�
^¼K

^
e

T
^
a 2Tm� T

^ð Þ
T2m : ðC3Þ

By assuming the same parameters as those of Nielsen et al.
[2008], �

^
m = 1 × 104 Pa s, T

^

c = 75°C = 348.15 K and Tm =
1200°C = 1473.15 K, we obtain the two parameters of
equation (C1) as listed in Table 1 (K

^
= 154.37 Pa s and T

^

a =
6233 K).
[72] In Figure C1 we report the comparison (by adopting

the above mentioned values) of the original Arrhenius law
(red curve), its Nahme’s approximation (blue curve) and the
approximation adopted in the present paper, equation (18),
as obtained by assuming that the temperature increase from
a time level to its subsequent time level is 5, 10, 20 and 50 K
(black and gray curves). In other words we assume that
DT

^
≡ T

^
(t(m)) − T

^
(t(m) − Dt) = 5, 10, 20 and 50 K.

[73] From Figure C1 we can immediately see that the
Nahme’s approximation is valid only for a small interval after
the melting point; this is not surprising, since equation (C2)
has been obtained by considering the Taylor expansion of
the term T

^

a/T appearing in equation (C1) in the vicinity of
T = Tm. Nevertheless, Figure C1 clearly demonstrates that for
temperatures greater than about 1600°C (which can be easily
realized in the center of the melt layer; see Figure 4b of
Nielsen et al. [2008]), equation (C2) significantly differs from
equation (C1), more than the approximation used in the
present paper. From Figure C1b we have that at T = 1600°C
the Nahme’s approximation differs from true value of the
Arrhenius equation more than 21% of the Arrhenius value.
On the contrary, with the approximation used in the present
study (equation (18)), these percentage differences are 0.9%,
1.8%, 3.7% and 9.6% for DT

^
= 5, 10, 20 and 50 K, respec-

tively. In other words, equation (C2) gives a biased value of
dynamic viscosity for temperature roughly greater than Tm +
300°C. On the contrary, we can notice an overall good
agreement of the approximation adopted in the present paper
(T = T

^
(t (m) − Dt) + 273.15) with respect to the reference case

of equation (C1) for a wide range of temperatures.
[74] For temperatures close to Tm the agreement between

equations (C1) and (18) remains good (see Figures C1a
and C1b), provided that the increments of temperature
from one elastodynamic time level and its subsequent are
20 K at maximum. This condition can be easily satisfied by
considering a sufficiently fine temporal discretization, as
such adopted in the numerical experiments presented in this
paper (see Table 1).
[75] The differences between equations (C1) and (18)) for

temperatures near the melting point can be easily reduced as
follows. Let us consider in equation (18) the preexponential
constant to be

K
^
′ �K

^
e
� T

^
aD T

^

Tm Tm�D T
^ð Þ ðC4Þ

instead of K
^
. In such a way at the melting temperature Tm all

the approximations give exactly the same value of dynamic
viscosity, that is, �

^
m = 1 × 104 Pa s. The replacement of K

^

with K
^
′ merely represents a shift in the ordinate axis. (In

the ideal case of arbitrarily small DT
^

we have that K
^
′ of

equation (C4) reduces to K
^
).

[76] The behavior of �
^

as predicted by the various
approximation for increasing temperatures is reported in
Figure C2a; in the present case we use in equation (18), K

^
′

as in equation (C4). From Figure C2a we can immediately see
that the agreement of our approximate relation (equation (18))
and the original Arrhenius equation is now remarkably good
over the whole range of considered temperatures (compare
the inset plots in Figures C1b and C2b). At large temperatures
the agreement remains good; at T = 1600°C the percentage
misfits are now −0.6%, −1.1%, −2.2%, and −5.6% for
DT

^
= 5, 10, 20, and 50 K, respectively (see Figure C2b).
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