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[1] We have analyzed the most relevant features of three different analytical
representations of the time evolution of the cosesimic slip velocity derived from theoretical
basis; the so-called modified Yoffe function (MY), which pertains to a singular crack
solution, the solution for a nonspontaneous crack obeying a position-weakening governing
equation (PR) and the solution for a 1-D fault model subject to a linear slip-weakening
friction law (B). By considering the same input parameters, we quantitatively compare
these slip velocity functions (SVF) and we found that the time evolutions of the velocity
and the correspondent slip predicted by the MY and B functions are very similar, while the
PR predicts a very sharp peak. Correspondingly, the PR SVF is richer in high frequency
and the fall off of its spectrum at high frequencies goes roughly as w–1.5, while those of
MY and B more closely follow w–2. Then we select two spontaneous, 3-D, dynamic,
subshear models, representing a crack-like or a pulse-like rupture and we account for both
homogeneous and heterogeneous configurations. We then compare the three SVF in
order to see how they are able to reproduce the 3-D solutions; we also show how the input
parameters of the SVF can be constrained from the results of the dynamic models.
In the homogeneous cases our results indicate that the MY and the PR SVF reproduce
adequately well the main features of a dynamic solution in the case of a crack-like rupture.
The PR function overestimates vpeak and the MY SVF predicts a too rapid deceleration.
In the case of a pulse-like rupture both the MY and the B SVF tend to underestimate
vpeak , but all of them capture very well the final cumulated fault slip. Moreover,
the B function fits better that the MY the overall behavior of the fault slip. The considered
SVF are able to reproduce the spectral fall off of a 3-D solution at intermediate frequencies
(for w < 20 Hz), the MY and the PR for a crack-like rupture and the MY and the
B SVF for a pulse-like rupture. In particular, for w < 10 Hz the spectral content of the
B function is practically indistinguishable from that of the spontaneous pulse-like solution.
In the heterogeneous configurations the analytical functions cannot reproduce all the
spectral details of the numerical solutions, but we see how it is possible to fit the overall
behavior of a single pulse in fault the slip velocity time history. The thorough analysis
performed in this work can contribute to the discussion about the debated choice of the
source time function to be used in the kinematic models, which in turn is extremely
important in the contest of hazard assessment and ground motions generation,
although stress heterogeneities, geometrical irregularities, attenuation and free
surface effects can definitively smear the details of the analytical functions.
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1. Introduction

[2] It is well known that spontaneous (i.e., without prior
assigned rupture speeds), dynamic rupture problems for
extended 3-D faults do not have closed-form analytical solu-
tions, even in homogeneous conditions [Bizzarri, 2011b].
The only possible exception is represented by the 2-D, purely
in-plane case [see Kostrov, 1974], even if a large number of
integrals have to be solved numerically so that the advantage
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of using an analytical approach partially vanishes. The
dynamic modeling of earthquake ruptures thus relies on
numerical models, which can also handle heterogeneous con-
figurations and additional complications, expressed in terms of
the fault geometry, the presence of multi-phase materials, the
stress interaction phenomena, etc.
[3] On the other hand, the kinematic description of the

earthquake processes needs the introduction of the so-called
source time function, which is a proxy of the true slip
velocity history arising from a dynamic (forward) model of
the earthquakes. In the literature a large number of functions
has been introduced; far of being exhaustive, we mention
here the Dirac delta function, the box-car, the Gaussian, the
Yoffe function, the Gabor signal, the Bouchon-ramp, the
power laws [Yoffe, 1951; Bouchon, 1981; Cotton and
Campillo, 1994; Liu and Archuleta, 2004]. Some of these
functions are singular, others not ballistic, but nevertheless
some of them have been widely used for their inherent
simplicity and because their numerical implementation is
straightforward, others for ad hoc choices to reproduce
specific features of the rupture models and others for the-
oretical reasons [Nakamura and Miyatake, 2000; Piatanesi
et al., 2004]. Indeed, as pointed out in many papers [e.g.,
Hisada, 2000, 2001; Guatteri et al., 2003; Page et al.,
2005], the arbitrary choice of the source time function
has relevant effects in the resulting ground motions gen-
eration and therefore it plays a fundamental role in the
contest of the strong motion prediction and hazard
assessment.
[4] In this paper we consider three rather different, non-

singular slip velocity functions (SVF henceforth) proposed
in the literature, with the special aim to clarify whether
they are able to reproduce the most important features of the
time evolution of the fault slip velocity resulting from
spontaneous, dynamic rupture models. All the considered

functions are not arbitrary mathematical equations, but they
have a strong theoretical basis; the first is a modification of
the Yoffe function (proposed by Tinti et al. [2005]), origi-
nally expressing the solution for the Kostrov problem
[Kostrov, 1964; Nielsen and Madariaga, 2003]. The second
comes from the solution found by Palmer and Rice [1973]
for a crack propagating with a fixed rupture speeds under
the position-weakening friction law. The third function
represents the solution for the 1-D dynamic problem for a
fault governed the linear slip-weakening constitutive model.
We will describe in detail these functions in sections 2 to 4;
Table 1 compendiously summarizes the prominent features
of these SVF.
[5] Then we quantitatively compare these SVF in section 5.

The most ambitious goal of the paper (i.e., try to reproduce
with these SVF a given fault slip velocity time history as
resulting from a spontaneous spreading rupture over an
extended fault) is pursued in sections 6, 7 and 8 where we
consider two rather different behaviors, a crack-like rupture
(section 6) and a pulse-like rupture (section 7). (For a formal
definition of crack-like and pulse-like the reader can refer
to section 2.2.4 of Bizzarri [2011b].) In section 8 we also
consider a heterogeneous case, where the frictional properties
are spatially variable. Finally, the last section of the paper
summarizes the conclusions of the present study.

2. The Modified Yoffe Function

[6] Self-healing ruptures (characterized by a slip velocity
time history having a compact support, i.e., vanishing after a
time interval) were early investigated by Yoffe [1951], who
found a steady state solution for a fixed width, propagating
pulse in the mode I of rupture (i.e., for opening cracks). This
solution, which has been further extended by Broberg [1978,

Table 1. Synoptic Comparison of the Most Important Features of the Considered Slip Velocity Functions

Feature

Modified Yoffe
(MY)

Equation (1)

Palmer and Rice
(PR)

Equation (12)

Bizzarri
(B)

Equation (15)

Number of functions building
the equation of the SVF

7 1 2

Class of continuity C 1 yes yes yes
Number of free parameters 3 6 7
Free parameters utot, tR, tS vS, vP, G, Dtb, vr, EG vS, G, m, k, v0, Dtb, EG

Range of allowed
rupture speeds

0 ≤ vr ≤ vS
a 0 ≤ vr ≤ vR in

mode II
0 ≤ vr ≤ vS
in mode III

0 ≤ vr ≤ vS
b

Modeling of the short
range slip healing

yes no yes

Explicit control of the
slip duration, tpulse

yes, equation (4):
tR + 2 tS

n/a no; see equation (23)

Explicit control of the
peak slip velocity, vpeak

yes, approximate
estimate from equation (5):
0:9 utot

tR0:47 tS 0:54

yes, approximate estimate
from equation (14):
1:52 Dtb

G
vr

F vrð Þ

no; see equation (24)

Explicit dependence on the
properties of the medium
surrounding the fault

no yes yes

Explicit dependence on the
energetics of the system
(breakdown stress drop /
fracture energy density)

no yes yes

aThe Yoffe function, modified as described in section 2, represents the solution for a mode III crack [see also Nielsen and Madariaga, 2003].
bThe expression of c for the radiation damping term (see equation (16)) is formally appropriate for the mode III propagation.
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1999] and Freund [1979] to the mode II crack propagation,
is singular at the crack tip, because it reads

v Yð Þ ¼ 2

p tR
H tð ÞH tR � tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tR � t

t

r

where H(.) is the Heaviside function and tR is the risetime
(or slip duration) and t the time after the rupture onset.
Tinti et al. [2005, equation (3)] propose a regularization of
such a function by convolving it with a triangular function.
The modified Yoffe (MY thereinafter) function is character-
ized by 3 parameters, the total (cumulative) slip developed
at the target fault node (utot), tR and the half-duration of the
applied smoothing operator (tS). (These quantities are indi-
cated with symbols Dmax, tR and tS, respectively, in Tinti
et al. [2005].)
[7] When tR > 2 tS the resulting slip velocity function is

expressed as the combination of seven different functions:

v MYð Þ tð Þ ¼ K

0 ;t < 0
C1 þ C2 ; 0 ≤ t < tS
C1 � C2 þ C3 ;tS ≤ t < 2tS
C1 þ C3 þ C4 ; 2tS ≤ t < tR
C3 þ C4 þ C5 ;tR ≤ t < tR þ tS
C4 þ C6 ;tR þ tS ≤ t < tR þ 2tS
0 ;t ≥ tR þ 2tS

;

8>>>>>>>><
>>>>>>>>:

ð1Þ

where

K≡
2utot
ptRtS2

; ð2Þ

which corrects equation (A.7) of Tinti et al. [2005],

C4 ≡
tR
4

þ t

2
� tS

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � 2tSð Þ tR � t þ 2tSð Þ

p
� tR tR � t þ 2tSð Þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � 2tS
tR

r� �

� 3tR2

4
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tR � t þ 2tS
t � 2tS

r� �
ð3Þ

which corrects equation (A.18) of Tinti et al. [2005], and
the remaining functions C1, C2, C3, C5 and C6 are listed in
equations (A.15), (A.16), (A.17), (A.19) and (A.20) of Tinti
et al. [2005], respectively. In (1), (3) and in all the above
mentioned equations t should be interpreted as the time
elapsed after the onset of slip, not as the absolute time.
[8] From its definition it is apparent that the MY function

is specifically appropriate to describe a slip pulse, because it
explicitly predicts the healing of slip after the duration

t MYð Þ
pulse ¼ tR þ 2tS : ð4Þ

We finally note that, in spite of the multiple functions which
build equation (2), v(MY) it is of class C1 (i.e., it is a contin-
uous function with continuous time derivative).
[9] The peak slip velocity (vpeak) is realized in the interval

tS ≤ t ≤ 2 tS, more precisely it is realized at t ≅ 1.3 tS [Tinti

et al., 2005, equation (6)]. At this time the value of v(MY)

from equation (1) is modulated by the factor utot, but it still
depends on both tR and tS. Numerically, it has been found that

v MYð Þ
peak ≅ 0:9

utot
tR0:47 tS0:54

: ð5Þ

Approximating the exponents above with square roots, by
combining equations (4) and (5) it is possible to obtain the
value of tR necessary reproduce a slip velocity pulse with given
tpulse and vpeak:

tR
2 � tpulse tR þ 2

0:9utot
vpeak

� �2

¼ 0; ð6Þ

where the larger root is appropriate for the case of v(MY)

written as in equation (1) and the lower root refers to the case
when tR < 2 tS, for which a different form of v(MY) holds [Tinti
et al., 2005]. (Once tR has been estimated from equation (6) the
value of tS can be obtained from equation (4).)

3. Nonspontaneous Solution for the Position-
Weakening Model

[10] By considering a nonspontaneous model (namely, a
rupture developing on a planar surface with a prior-assigned
and constant rupture speed vr) where the fault friction linearly
decreases with the increasing distance x from the nucleation
point [see Bizzarri [2011b, equation (24)], Palmer and Rice
[1973] found a solution for the displacement discontinuity
across the interface (i.e., the fault slip u; their equation (46)).
Expressing the fault slip velocity as v = vr du/dx we obtain

v PRð Þ tð Þ ¼ 9

8

vr �u

R0

 
2

ffiffiffiffiffiffiffiffiffiffiffi
vr t

R0

r
þ 1� vr t

R0

� �
ln

1þ
ffiffiffiffiffiffiffiffiffiffi
vr t
R0

q
1�

ffiffiffiffiffiffiffiffiffiffi
vr t
R0

q
�������

�������
!

;

ð7Þ

where ū is a characteristic displacement (formally defined by
Palmer and Rice [1973, equation (8)]) and R0 is the charac-
teristic distance of the position-weakening model (which is the
counterpart of the characteristic slip d0 in the linear slip-
weakening friction law [see Bizzarri, 2011b, equation (25)].
The left hand side of equation (8) of Palmer and Rice [1973]
expresses the so-called fracture energy density EG [see
Bizzarri, 2010b, equation (1)] so that we can write

�u ¼ EG

tu � tf
; ð8Þ

where tu is the upper yield stress and tf is the residual level of
friction after the stress release.
[11] On the other hand, the distance R0 can be expressed as

[see Poliakov et al., 2002]

R0 ¼
9p
16

G

1� n
�u

tu � tf
¼ 9p

16

G

1� n
EG

tu � tf
� 	

2
; for mode II

9p
16

G
�u

tu � tf
¼ 9p

16
G

EG

tu � tf
� 	

2
; for mode III

8>><
>>:

ð9Þ
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where the last equalities exploit equation (8). As observed
by Rice [1980], in the case of a dynamic rupture the quasi-
static estimate R0 expressed in equation (9) is replaced by

R ¼ R0F vrð Þ ¼ 9p
16

G EG

tu � tf
� 	

2
F vrð Þ; ð10Þ

where F(vr) is a function of the rupture speed which depends
on the rupture modes [cf. Bizzarri, 2010b, equation (8)]:

F vrð Þ ¼ 1� nð Þ 4aSaP � 1þ aS
2ð Þ2

aS 1� aS
2ð Þ ; for mode II

aS ; for mode III

8<
: ð11Þ

being aS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr2

vS2

q
and aP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr2

vP2

q
. We emphasize

that equation (10) holds for both mode II and mode III. (The
inverse of the two functions F in equation (11) have been
sometime indicated with symbols fII and fIII, respectively, in
previous literature [e.g., Poliakov et al., 2002]). Substituting
R0 with R, from equation (7) simple algebra gets

v PRð Þ tð Þ ¼ 2

p
Dtb
G

vr
F vrð Þ

 
2

ffiffiffiffiffiffiffiffiffiffiffi
vr t

R

r
þ 1� vr t

R

� �

ln
1þ

ffiffiffiffiffiffiffiffiffiffi
vr t
R

q
1�

ffiffiffiffiffiffiffiffiffiffi
vr t
R

q
�������

�������
!

; ð12Þ

where we have introduced the breakdown stress drop
Dtb = tu � tf [Bizzarri, 2011b, equation (12)]. Incidentally,

we recall here that R (II), (III) is linked to the stress intensity
factor K (II), (III) as it follows [e.g., Poliakov et al., 2002]:

R IIð Þ; IIIð Þ ¼ 9p
32

K IIð Þ; IIIð Þ

Dtb

� �2

: ð13Þ

Due to the definition of F it emerges that the analytical
solution (12) fully covers the admissible range of rupture
speeds for the mode III (for which the limiting velocity is
vS), but it describes only the sub-Rayleigh range for the
mode II of propagation (note that F < 0 for v > vR, vR being
the Rayleigh velocity; in other words, it does not allow to
consider the supershear rupture propagation). The behavior
of the ratio vr/F(vr) for vP and vS as in Table 2 is reported in
next Figure 2b.
[12] In the remained of this paper we will refer to

equation (12) as the PR slip velocity function. As for
equation (1), also in equation (12) t represents the time
elapsed after the onset of slip.
[13] Due to the analytical formulation of (12) it is not pos-

sible to express vpeak
(PR) in a closed-form equation; a numerical

estimate can be written as

v PRð Þ
peak≅1:52

Dtb
G

ur
F urð Þ : ð14Þ

[14] Notably, a similar relation has been inferred from lab-
oratory experiments of mode II cracks developing at relatively
low speeds on granite samples by Ohnaka et al. [1987] (see
also further discussions in Ohnaka and Yamashita [1989,
equation (47)] and in Ohnaka and Shen [1999, equation (26)].
On the other hand, in his numerical experiments Bizzarri
[2012a] shows that the dependence of vpeak on vr is more
than linear; this has been shown also in the case of supershear
events, for which the SVF considered in the present study do
not apply.
[15] Finally, we remark that equation (12) is a good example

which illustrates that the introduction of a constitutive model
characterized by a scale length (in this case the position-
weakening law with the characteristic distance R0) removes

the 1
. ffiffiffi

t
p singularity at the crack tip.

4. Analytical Solution for the Slip-Weakening
Friction Law

[16] By considering a 1-D spring-slider analog fault sys-
tem subject to the linear slip-weakening friction law Bizzarri
[2012b] founds a closed-form, analytical solution of the
equation of motion, which reads:

Table 2. Parameters Adopted in the Comparison Between the
SVF Presented in Section 5

Parameter Value

Medium and Discretization Parameters
Rigidity, G 27 GPa
S wave velocity, vS 3 km/s
P wave velocity, vP 5.196 km/s
Time step, D t 2.78 � 10�4 s
Breakdown stress drop, Dtb = tu – tf 12 MPa
Fracture energy density, EG 0.6 MJ/m2

Mass per unit fault surface, m 1.11 � 106 kg/m2 a

Stiffness, k 7 MPa/ma

Initial fault slip velocity, v0 0.1 mm/s

aFor the adopted values of m and k the resulting period of the analog
freely slipping system, T = 2p

ffiffiffiffiffiffiffiffiffiffi
m=k

p
, equals 2.5 s.

v Bð Þ tð Þ ¼

v0
2D2

� c� D2ð Þexp � c� D2ð Þ t

2m

� �
þ cþ D2ð Þexp � cþ D2ð Þ t

2m

� �� �
; t ≤ tf

exp � c ~t

2m

� �
4k m2 w

4k m2 w vf cos w ~tð Þ � 2c k m vf þ c2 D1 þ 4 D1 m
2 w2

� 	
sin w ~tð Þ
 �

; t > tf

8>>>><
>>>>:

ð15Þ
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in which

c ≡
G

2vS
; c½ � ¼ Pa s

m

D1 ≡ d0 k �Dtb ; D1½ � ¼ Pa

D2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2d0 � 4m D1

d0

s
; ½D2� ¼ Pa s

m

t̃ ≡ t � tf ; ½ t̃ � ¼ s

w ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k m� c2

p

2m
; ½w� ¼ Hz

ð16Þ

and v0 is the sliding velocity at t = 0 (assumed to be equal
to the velocity of the loading point in the mass-block model),
m is the mass-equivalent of the fault (per unit surface;
m = k(T/2p)2, being T the vibration period of the fric-
tionless oscillator), k is the elastic constant of the spring
(accounting for the elastic medium cut by the fault sur-
face), and the constant c expresses the so-called radiation
damping term, introduced to simulate the energy lost as
propagating seismic waves. In equation (15), referred to
as B slip velocity function in the reminder of the paper,
tf is the time when the developed fault slip u first reaches
the characteristic slip-weakening distance d0 and vf is the
slip rate at this instant (vf corresponds to the quantity v0 in
Bizzarri and Cocco [2003; see also their Figure 2a].
[17] As discussed in Bizzarri [2012b], the following con-

ditions have to be met in order to have a real-valued function
(i.e., an admissible solution) and an unstable behavior:

D1 < 0
w∈Rþ

0
, d0k � Dtb < 0

4km � c2 > 0
;

��
ð17Þ

which can be rewritten in the compact form

c2

4m
< k <

Dtb
d0

; ð18Þ

which, for assigned Dtb and d0, gives the maximum
admissible value of k. (Incidentally we note that the first
condition in (17) ensures that the constant D2 in (16) is a real
number.)
[18] There are some attempts to relate the stiffness of the

spring-slider analog model to the “stiffness” of a seismo-
genic extended fault. Walsh [1971] proposed the following
approximation

k≅
G

Wf
; ð19Þ

whereW f is the fault width. Another possible estimation can
be written as k = 1/C, where C is the local compliance
[Bizzarri et al., 2001] which represents the proportionality
constant existing between the instantaneous traction and the
fault slip. We can write [Bizzarri and Cocco, 2005]:

k ¼ G

4wCFL
2 Dx

ð20Þ

being wFLC the Courant-Friedrichs-Levy (CFL) ratio,
wFLC = vS Dt/Dx (where Dt and Dx are the spatial and
temporal sampling, respectively). In the present paper we

use the following relation [Cao and Aki, 1986], which
directly relate the stiffness to two dynamic observables:

k ¼ Dtb
utot

: ð21Þ

On the other hand, the quantity m can be approximated as

m ¼ r l; ð22Þ

where r is the cubic mass density of the medium surround-
ing the fault and l is the effective fault thickness (in the
direction perpendicular to the fault), approximated as l ≅ vS
tpulse [Yamashita, 1976; Cao and Aki, 1986], where, as in
equation (4), tpulse expresses the risetime (or the slip dura-
tion). Note that l does not represent the half-thickness of the
slipping zone characterizing the seismogenic fault zone (see
section 2 in Bizzarri [2009b] and references cited therein).
[19] In equation (15) t is the time elapsed since

tfirst = tu/(k v0), which formally defines the time when the
frictional resistance of the fault, loaded by a constant
loading rate ṫload = kv0, first reaches the upper yield tu.
Within the framework of the linear slip-weakening con-
stitutive model this condition formally defines the onset of
slip. Therefore the meaning of t for all the considered slip
velocity functions (the MY of equation (1), PR of equation
(12) and B of equation (15)) is exactly the same.
[20] Simple algebra shows that it is possible to obtain a

closed-form expression for the slip duration

t Bð Þ
pulse ¼ tf þ 1

w

� arccos c2 D1 þ 2c k m vf þ 4D1 m2 w2

c2 þ 4m2 w2ð Þ c D1 þ 2k m vf
� 	 2 þ 4D1

2 m2 w2
� �

0
@

1
A;

ð23Þ

but it is useless for practical purposes, in that tf and vf are a
priori unknown. At the same time, also the peak slip velocity
can be expressed in a closed-form:

v Bð Þ
peak ¼ v Bð Þ t̃ ¼ t̃peak

� 	
t̃peak ¼ 1

w

� arccos s
c2 c D1 þ 2k m vf
� 	þ 4m2 w2 c D1 � 2k m vf

� 	
c2 þ 4m2 w2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c D1 þ 2k m vf
� 	2 þ 4D1

2 m2 w2

q
0
B@

1
CA

s ≡ sign c2 D1 þ 4c k m vf þ 4D1 m
2 w2

� 	
; ð24Þ

but again it is useless because vf is a priori unknown.

5. Numerical Results

[21] In this section we compare the different SVF
described in sections 2 to 4, namely the MY (equation (1),
the PR (equation (12)) and the B function (equation (15)).
The most important features of these three SVF are pre-
sented in the synopsis of Table 1.
[22] To perform a quantitative comparison we adopt the

parameters tabulated in Table 2. For the given value of EG

andDtb we can also have the value of the characteristic slip-
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weakening distance d0 appearing in equation (15); from
Bizzarri [2010b, equation (2)] we have: d0 = 0.1 m. First of
all we compute the B function; it exhibits a total slip of
1.74 m and a peak of slip velocity of 1.75 m/s. We can also
estimate the pulse duration as 2.55 s. To compute the MY
we need to assign utot (which is 1.74 m) and the two free
parameters tR and tS. They can be easily estimated through
equations (4) and (6), from which we obtain tR = 1.436 s,
tS = 0.557 s. Finally, to compute the PR we need to assign
the rupture velocity vr. From equation (14) we can found
the value of the ratio vr/F(vr) which makes vpeak

(PR) equal to
1.75 m/s. Moreover, due to the definition of the function F
(see equation (11)), we found numerically vr = 2.247 km/s
for the mode II and vr = 1.976 km/s for the mode III. Finally
we apply a time shift of 0.82 s and 1.5 s for the MY and the
PR functions, respectively, in order to have the peak slip
velocities coincident in all the cases.

[23] We emphasize that this is one possible method to
associate the parameters of the different SVF, but it has not
been chosen arbitrarily. Indeed, we note that it is not feasible
to start the comparison from the PR function, because, by
definition, it cannot give the total slip, which characterize the
other two SFV. On the other hand, we cannot control a priori
the value of the total developed slip predicted by the B
function, so that it cannot be feasible to start the comparison
from the MY SVF; we would have to search for the optimal
parameters of the B function which produce the value of utot
given by the MY. In conclusion, the proposed method is the
most computationally convenient and it has precise motiva-
tions. Finally, we also recall here that one of the main pur-
poses of the present study is to see whether it is possible to
reproduce the time evolution of the fault slip velocity pre-
dicted by a dynamic rupture model with an analytical, the-
oretically-based SVF. For this reason we first assign the
fracture energy density and the breakdown stress drop.
[24] The results are reported in Figure 1. We can clearly

see that the peaks are practically identical, as expected from
the choice of the parameters described above. Remarkably,
we note a very good agreement between MY and B, not only
concerning the pulse duration and the peak slip rate (which
are imposed to be equal), but also concerning the shape of
the functions (Figure 1b). The resulting fault slip (obtained
by numerical integration of the SVF) are indistinguishable
(see Figure 1a). The only difference is near the rupture onset;
while the B function predicts a smooth increase of v, the MY
predicts a more abrupt increase. After the peak, both these
two SVF (MY and B) exhibit a very similar behavior; both
of them has a flex at t = 1.72 s and both prescribe a very
similar deceleration phase and the final healing of slip. On
the other hand, we can clearly observe that the PR is defin-
itively different; in spite of the identical peak in v, the
resulting slip is quite different with respect the other two
SVF (Figure 1a). This is not surprising, in that the PR
function is penny shaped, it has a very abrupt increasing rate
(i.e., it predicts a very high acceleration near the rupture
onset). This also is not surprising, because the PR function
refers to a model where the position-weakening constitutive
law is known to produce a very fast acceleration stage once a
fault node fails, as the slip-weakening law [e.g., Bizzarri and
Cocco, 2003]. As it is well known, the most remarkable
difference is that the PR SVF does not predict the healing of
slip, but if describes a crack-like rupture (see section 2.2.4 in
Bizzarri [2011b] for a discussion).
[25] From the comparison between the PR and the other

two SVF it emerges that the time interval between the onset
of the rupture ant the peak in slip velocity is very small
(5.24 � 10�2 s). Basing on the method proposed by
Fukuyama et al. [2003], Mikumo et al. [2003] propose to
estimate the value of the characteristic distance over which
the traction degrades as the time integral of the fault slip
velocity for the onset of the rupture up to its peak, because
they assume that at that instant the traction is completely
release and the final, kinetic level is reached. By computing
this integral for the case of the PR function we obtain the
value of 0.073 m, which is slightly smaller than the value of
d0 = 0.1 m resulting from the prescribed value of EG and
Dtb. However, we emphasize two things. First, the curve
reported in Figure 1 is what it results from the assumption of
the two input parameters EG andDtb, which enter directly in

Figure 1. Comparison of the three different SVF consid-
ered in the present study, the MY (equation (1), the PR
(equation (12)) and the B function (equation (15)). (a)
Resulting cumulative fault slip. (b) Time evolution of the
slip velocity. The adopted parameters are listed in Table 2.
The remainder free parameters are: utot = 1.74 m, tR = 1.436 s
and tS = 0.557 s for the MY and vr = 2.247 km/s or
1.976 km/s, for the mode II or III, respectively, for the PR
function. See section 5 for the details about this choice.
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the analytical expression of the PR SFV (recall equation (10)).
Second, and more importantly, we emphasize that the method
ofMikumo et al. [2003] has been proven to be adequate in the
case of supershear ruptures, but it gives an underestimate of d0
in the case of subshear events [Tinti et al., 2004; Bizzarri,
2010a, 2012c].
[26] An interesting result is that the condition to have a

given peak of v causes the mode II and mode III versions of
the PR function to be identical. Indeed, from equation (14)
we have selected the same value of the ratio vr/F(vr); this
is realized for two different values of vr (depending on
the rupture mode), but it gives exactly the same behavior of
the PR function in the two modes (recall its definition in
equation (12); the constant vr/F(vr) appears as a multiplier

factor and the quantity vr t/R is proportional to vr/F(vr);
see equation (10)). On the other hand, we emphasize that
for the same value of the rupture speed the PR function
predicts that the peak of v in mode III is greater than that
in mode II (see Figure 2a). This theoretical result has
been also obtained numerically in 3-D for many governing
equations [see Bizzarri, 2011a, Figures 3c and 3d; Bizzarri,
2012a, Figures A1 and A2], confirming early results for a
2-D mixed-mode rupture obeying the linear slip-weakening
friction law [Andrews, 1994]. We also emphasize that the
predominance of the mode III with respect to the mode II is
not true in general; from Figure 2b we can clearly see that in
the range of admissible rupture speeds, the mode III dom-
inates up to a critical velocity (for the Poissonian medium

Figure 2. (a) Comparison between the mode II and the mode III versions of the PR function. The para-
meters are the same as for Figure 1, but now vr = 2.247 km/s in both the cases. Dashed gray line represents
the singular solution for the mode III case [see Andrews, 1976]. (b) Behavior of the ratio vr/F(vr) for vP and
vS as in Table 2. The vertical dashed lines represent the limiting rupture speeds where the function F
diverges (see equation (11)).
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considered here, this critical value is 2.559 km/s), and then
the mode II dominates up to the limiting speed of vR.
[27] Moreover, from Figure 2 it emerges that the decreas-

ing part of v described by the PR SVF closely resembles the
well-known singular solution. Indeed, the dashed gray line in
Figure 3 represents the function v = C(t – tr)

a, where C is a
constant, tr is the rupture time and a equals to 1/2 in the sub-
Rayleigh case [Andrews, 1976; see also Burridge, 1973].
[28] In Figure 3 we report the Fourier amplitude spectrum

(FAS) of the different time histories of v reported in
Figure 1. We normalize to unit slip all the three time series;
in the case of the crack-like function (i.e., PR) we sinus-taper
it, following the same strategy of Bizzarri and Spudich
[2008], in order to obtain a null value of the velocity after
2.55 s. The similarity of MY and B discussed above reflects
in very similar spectra; the high frequency content is nearly
the same for both the MY and the B SVF for frequency up to
roughly 5 Hz, and for greater frequencies the MY function is
richer in high frequency content. On the other hand, the PR
SVF has a higher FAS; this is justified by considering that it
is penny shaped, as observed above (Figure 1b). The spectra
of MY and B functions have a comparable fall off at high
frequency; we can estimate a behavior of w�a with a
slightly greater than 2 for the MY and roughly equal to 2.2
for the B SVF. On the contrary, the PR function exhibits a
fall off proportional to w–1.5.
[29] In full of generality we can chose parameters which

guarantee that the PR SVF resembles more closely the MY
and the B functions. Just for an example, in Figure 4a we
report the time evolution of the PR function where we have
changed both the fracture energy density and the breakdown
stress drop (now we have: EG = 1 MJ/m2 andDtb = 3 MPa).
As a consequence also d0 is changed with respect to the
value adopted in Figure 1; now we have: d0 = 0.67 m. Again,
the value of vr has been chosen in order to obtain the same
peak slip rate predicted by the other two SVF (in this case
we obtain vr = 2.882 km/s for mode III). Finally we apply
the time shift of 1.17 s to have the coincidence of the peaks.

In this case the PR function is not so picked as in the pre-
vious case; correspondingly the FAS (see Figure 4b) has a
reduced high frequency content compared to the previous
case of Figure 3. Also the fall off at high frequencies is now
closer to the w–2, which roughly describes the behavior of
the MY and B SVF. We can also note from the inset in
Figure 4a that the slip predicted by the PR function is now
very similar to the other two. However, it is important to
remark here that to obtain this better comparison with the
other two SVF we have chosen a different parameter setting,
in that both EG and Dtb have to be changed ad hoc.

6. Representation of Solutions From Spontaneous
3-D Ruptures: A Crack-Like Solution

6.1. Spontaneous Modeling

[30] Once the prominent features of the three considered
SVF has been explored (see section 5) the following
intriguing question naturally emerges: is it possible to fit a
solution from a spontaneous dynamic earthquake model
with the SVF presented above? In general, we can anticipate
that the agreement could not be in principle fully satisfac-
tory, in that all the three SVF do not include the whole
physics of the cosesimic process. This will be true especially
in the case of heterogeneous configurations (which will be
considered in section 8), in that the SVF come from ideal-
ized, homogeneous models. As we will see, for these het-
erogeneous models we expect to have a mismatch in the
frequency domain between the analytical SVF and the
numerical solutions. Basically, the MY refers to a mode III
pulse-like solution, the PR to a crack obeying to position-
weakening friction and the B function pertains to a 1-D
rupture governed by slip-weakening constitutive law. On the
other hand, it must be recalled that if ruptures are energeti-
cally comparable, it would be very difficult to distinguish
among two different governing models, also considering the
frequency content of the solutions [Bizzarri, 2011b].

Figure 3. Fourier amplitude spectra (FAS) of the three SVF plotted in Figure 1. All the time histories
have been normalized to unit fault slip and therefore in the zero frequency limit all the FAS converge
to the same value.
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[31] In order to answer to the previous question we con-
sider first (present section and section 7) the fault slip
velocity time histories resulting from 3-D spontaneous
model of earthquake ruptures, spontaneously developing on
vertical planar faults, with homogeneous properties. (As
already mentioned, we will consider an example of hetero-
geneous rupture in section 8.) In Table 3 is summarized the
logical scheme used to constrain the free parameters of each
single SVF from the results pertaining to a dynamic rupture
model.
[32] Here we consider the solution reported in Figure 5,

which is obtained by assuming the Ruina-Dieterich gov-
erning model [Bizzarri, 2011b, equation (35)] with the
parameters listed in Bizzarri [2009a, Table 1]. The rupture
behaves as a sub-Rayleigh one, as we can see from the dis-
tribution of the rupture speeds (see Figure 5a). We select a
fault node located in the anti-plane direction (the point R in

Figure 5a), at a distance of 3 km from the hypocenter; in this
point the rupture is fully developed and there is no influence
of the nucleation procedure (which is described in Bizzarri
[2009a]). We will discuss how the results can be affected
by the choice of a different fault receiver in Appendix A.
[33] The rupture exhibits a crack-like behavior, in that the

slip velocity does not fail to zero, but it remains at a value of
v2 (see Figure 5b). We will explore in section 7 the case of a
pulse-like rupture. The present model represents an earth-
quake having a seismic momentM0 = 9.4 � 1017 Nm, which
corresponds to a magnitude Mw = 5.9, as the earthquake
which strokes the Emilia region, northern Italy, May 20,
2012.
[34] In Figure 5c we report the behavior of the traction as a

function of the cumulated fault slip (i.e., the slip-weakening
curve); from this plot we can estimate the equivalent upper
yield stress (tu

eq) and the equivalent residual level (tf
eq),

Figure 4. (a) The same as Figure 1, but now in the case of PR SVF we adopt EG = 1MJ/m2,Dtb = 3 MPa
and vr = 2.882 km/s. The inset reports the time evolution of the slip. (b) FAS of the time series of Figure 4a.
Red and blue curves are exactly those of Figures 1 and 3.

BIZZARRI: ANALYTICAL SLIP VELOCITY HISTORIES B06309B06309

9 of 21



Table 3. Schematic Summary of the Logical Scheme Used to Compare the Various SVF With a Numerical Solutiona

SVF Crack-Like Rupture Pulse-Like Rupture

Modified Yoffe (MY)
equation (1)

tpeak tpeak
vpeak tpulse
utot : u at t when v = v2 (asymptotic value) utot
tS ¼ tpeak�tr

1:3 tS ¼ tpeak�tr
1:3

tR ¼ 1
tS

0:9utot
vpeak

� � 2
tR = tpulse � 2 tS

check if tR > 2 tS
Palmer and Rice (PR)

equation (12)
vr n/a
Dtb
EG ¼ Rd

0
t � tresð Þdu

where: tres = tf or tueq – 0.95 Dtb; d: u when t = tres
Bizzarri (B)

equation (15)
n/a tpulse

utot
v0 ≡ v(t = tr)
Dtb
k ¼ Dtb

utot
m = r vS tpulse

aFor each SVF some quantities have to be retrieved from the numerical solution and used to compute its free parameters. The rupture time tr has to be
always derived from the dynamic model. This procedure has been applied in sections 6 to 8. Readers can refer to Figures 5b, 5c, 7b and 7c for the
interpretation of the various quantities mentioned.

Figure 5. Solution for a spontaneous rupture obeying the Ruina-Dieterich governing model [see Bizzarri,
2011b, equation (35)]. (a) Distribution of the rupture speed (vr) on the fault plane (note that, due to symme-
try conditions of the bilaterally expanding rupture only one half of the fault surface is reported). We com-
pute vr as in Bizzarri [2011b, equation (16)], H denotes the hypocenter, and R the fault node where the
solution of Figures 5b and 5c are plotted; R is located in the anti-plane direction at a distance of 3 km
from H. The purples region behind H indicates the nucleation region (see Bizzarri [2009a] for
numerical details). (b) Time history of the fault slip velocity. (c) Resulting slip-weakening curve. In
Figures 5b and 5c the relevant values of the dynamic model are also given (see section 6.1 for details).
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which are the counterparts of tu and tf , respectively, in the
framework of the position- and slip-weakening constitutive
models [Bizzarri and Cocco, 2003]. The fault weakening is
not linear, but more closely resembles an exponential
decrease as the fault slip increases. We therefore estimate the
equivalent slip-weakening distance (d0

eq) as the slip cumu-
lated up the time when the traction drop equals the 95% of
the breakdown stress drop (Dtb = tu

eq – tmin; see Figure 5c).
Correspondently, we compute the EG from Bizzarri [2010b,
equation (1)], with d = d0

eq and tres = tf
eq = tu

eq – 0.95 Dtb.

6.2. Representation Through the MY Function

[35] From the difference between the time when the fault
slip velocity peak is attained and the rupture time (tpeak and
tr, respectively, in Figure 5b) we have the measure of the
duration of the acceleration phase of the rupture. As pre-
viously discussed this gives us the possibility to estimate

the parameter tS of the MY: tS = (tpeak � tr)/
1.3 = 6.15 � 10�3 s, which roughly corresponds to 14 time
levels (owing to the good spatio-temporal resolution of the
dynamic model). As mentioned above, the spontaneous
model does not exhibit a saturation slip, but a possible
choice for the parameter utot of the MY function is the slip
at t = 1.8 s, where the slip velocity has reached its
asymptotic value v2 (see Figure 5b); we have utot = 0.4 m.
Then we can estimate the remaining parameter, tR by
solving equation (6), in which we recall that tpulse = tR + 2
tS (equation (4)) and where utot and vpeak are known

quantities. We therefore obtain: tR = 1
tS

0:9utot
vpeak

� �2
=

0.977 s, which is greater than 2 tS , so that the formulation
of equation (1) is correct. The resulting tpulse is then
0.989 s and the result is reported in red in Figure 6.

Figure 6. (a) Comparison between the fault slip velocity in the receiver R for the spontaneous crack-like
model of Figure 5 against the MY and the PR SVF. We report as dashed lines the asymptotic values of
final velocity v2 are predicted by the shear impedance relation (equation (25)). (b) Comparison between
the resulting Fourier amplitude spectra.
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6.3. Representation Through the PR Function

[36] The choice of the values of the parameters of the
PR function (equation (12)) is straightforward, in that all
the quantities are known. Indeed, from the spontaneous
simulation we know that the rupture speed in R is
vr = 2.573 km/s. Interestingly, this value slightly exceeds the
critical threshold of 2.559 km/s over which the mode III is no
longer paramount with respect to the mode II in the frame-
work of the PR representation of the rupture (see Figure 2b).
[37] The result pertaining to the PR function is reported in

gray in Figure 6. Even if the motion in R is basically anti-
plane, just for completeness we have also considered the
mode II version of the PR function, which is reported as thin
gray curve in Figure 6.

6.4. Discussion

[38] From the comparison of the curves in Figure 6a it
clearly emerges that the peaks of the slip rate are attained at
the same instant; this is prescribed in the case of the MY
function (red curve), but not in the case of the PR function
(gray and thin black curves).
[39] Remarkably, the final values of velocity are compa-

rable in all cases; in Figure 6 we also superimpose the final
velocity as predicted by the shear impedance relation
[Scholz, 1990; Bizzarri and Cocco, 2003], which reads:

v2 ¼ C
t0 � tf
r vS

ð25Þ

C being a dimensionless constant ranging from 1 to 2/p as
vr increases from 0 to vS. The two extreme values of this
estimate are, considering that in the spontaneous model
t0 = 70.52 MPa and putting tf = tf

eq in (25), v2 = 0.582 m/s
and v2 = 0.371 m/s. These values are reported as dashed lines
in Figure 6a. The spontaneous model agrees very well with
the case of C = 1, which is also the asymptotic value in the
case of the PR SVF.
[40] As discussed above (see section 6.3), for the rupture

speed in the target fault receiver the time evolutions of the
two versions of the PR function (in-plane and anti-plane) are
quite similar. Both of them overestimate vpeak predicted by
the spontaneous model. On the contrary, the MY function
(red curve) fits reasonably well the peak slip velocity.
[41] We also emphasize that the agreement between the

crack-like spontaneous rupture (black line in Figure 6a) and
the MY function is not obvious; indeed, the MY is specifi-
cally designed to represent pulse-like ruptures. This example
clearly shows that, once vpeak and its time occurrence are
constrained, the resulting parameters of the MY SVF make it
possible to reproduce a crack-like rupture. Of course, this
agreement is limited to a specific time window; while the
spontaneous model and the PR function predict a similar,
nonzero asymptotic value of v, the MY predicts the heal-
ing of slip (for the adopted parameters this occurs at
t = tr + tpulse = 2.3681 s).
[42] Concerning the evolution of the slip we can conclude

that the PR functions are able to reproduce very well the
spontaneous model (see the inset in Figure 6a). On the
contrary, the MY predicts a lower slip; this can be imputed
to the choice of the parameter utot, which in the case of a
crack-like rupture is somehow arbitrary, contrarily to the

case of a pulse-like rupture, were this is a well-defined and
measurable quantity.
[43] In Figure 6b we report the FAS of the four time series

of Figure 6a. It emerges that below 30 Hz the PR function is
poorer in high frequency compared to the spontaneous
model and that the MY function is in the middle of the two.
In this frequency range the overall behavior is �w–1, in
agreement with the findings of Bizzarri and Spudich [2008].
Moreover, at high frequencies we can see that the FAS of the
PR function is paramount with respect to that of the MY
SVF, as also observed in Figures 3 and 4b. Moreover, we
have that at very high frequencies the fall off of the spectra
roughly is w–2 for the MY and w–1.5 for the PR function (as
in Figure 3). The fall off of the spontaneous solution is
somehow in between these two fall offs, more close to that
of the MY function.

7. Another Example: A Pulse-Like Rupture

7.1. Spontaneous Modeling

[44] In this section we consider an earthquake model in
which the slip heals, leading to vanishing final fault slip
velocity. In this case the fault obeys a rate-, state- and temper-
ature-dependent friction law [Bizzarri, 2011b, equation (48)],
which is known to represent a suitable mechanism to simulate
the pulse-like propagation. Also this synthetic earthquake is a
subshear event (see Figure 7a). The adopted parameters are
the same as in Bizzarri [2010a], which in turn correspond to
those used to generate the crack-like rupture described in
section 6.1. As thoroughly discussed in Bizzarri [2010a], the
explicit dependence on the temperature developed by fric-
tional heat, provided that the deformation is concentrated in a
sufficiently thin slipping zone, causes the fault to experience
a fast restrengthening after the dynamic stress drop (see
Figure 7c). In turn, this causes the slip to heal; this occurs at
time th = 1.33 s (Figure 7b), which leads to a pulse duration
tpulse = 0.4271 s. The peak slip velocity is comparable with
the previous model (compare Figures 5b and 7b), and does
not assume the large values typically realized in other pulse-
like rupture (see for instance the flash-heating mechanism,
which is known to predict vpeak � 10 s of m/s [Bizzarri,
2009a]). The total cumulative slip in R is: utot = 0.111 m.
This value is small, compared to supershear, crack-like
earthquakes developing on long faults, for which we can
expect values of slip of some meters. The event considered
here is of moderate size; its seismic moment is M0 =
1.5 � 1017 Nm, which corresponds to a magnitude Mw = 5.4.

7.2. Representation Through the MY Function

[45] Due to the pulse-like nature of the rupture, in this case
the choice of the parameter utot is well constrained. More-
over, from Figure 7b we can estimate, in the same manner as
in section 6.2, tS = (tpeak – tr)/1.3 = 1.28 � 10�2 s. Finally,
from equation (4), by using the pulse duration mentioned
above (section 7.1) and the value of tS just computed we
obtain the value of the third parameter of the MY function:
tR = 0.4018 s. The resulting curve is reported in red in
Figure 8a.
[46] A second choice we made to fit the spontaneous

solution of our 3-D fault model with the MY SVF consists in
prescribing utot and tS exactly as described above, but con-
straining vpeak instead of the effective pulse duration. This is
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exactly what we did in the case of the crack-like rupture; see
section 6.2; from equation (6) we have: tR = 3.42 � 10�2 s,
which corresponds to an effective pulse duration of
4.70� 10�2 s (i.e.,�tpulse/9). The result is plotted as thin red
curve in Figure 8a. We note that both these two choices
verify the condition tR > 2 tS so that the analytical expression
of the MY SVF as in equation (1) is the correct one.

7.3. Representation Through the B Function

[47] From Figure 7c we have the estimate of the levels of
stress, fracture energy density and slip-weakening distance
for the spontaneous model, as well that of the breakdown
stress drop (Dtb = tu

eq – tmin =20.65 MPa; see Figure 7c).
Additionally, also v0 is known (see Figure 7b). From
equation (21) we obtain: k = 1.86 � 108 Pa/m, which is
lower than the upper bound of Dtb/d0 in equation (18)
(note that this is simply because utot > d0 ; see Figure 7c).
On the other hand, the parameter m can be retrieved from
equation (22), by putting l = vS tpulse, as discussed in section
4; since tpulse = 0.4271 s we have: m = 3.84 � 106 Kg/m2.
Remembering that T = 2p

ffiffiffiffiffiffiffiffiffiffi
m=k

p
, we finally obtain:

T = 0.902 s. With this choice, however, we would obtain a
too long pulse; by keeping T = 0.08 s (which is the smallest
period guaranteeing that the conditions in equation (17)
are satisfied for the given parameters and for the above-

mentioned value of k) we obtain the result is reported in blue
in Figure 8a; note that we apply a time shift, in order to have
at t = tr = 0.9029 s the first value of v(B) exceeding vl = 0.1 m/s
(which formally defines the rupture time in the spontaneous
model [see also Bizzarri and Belardinelli, 2008, and refer-
ences therein]).

7.4. Discussion

[48] The most apparent result emerging from Figure 8a is
that both the MY and B the functions (thick red and blue
curves, respectively) differ from the spontaneous dynamic
solution (black curve); in particular, both of them under-
predict vpeakWe can see that the MY SVF predicts a too slow
deceleration phase with respect to the 3-D solution. We also
mention that with the MY function it is possible to better
reproduce vpeak, as described in section 7.2, but in this case
the pulse will result significantly shorter than the solution
from the 3-D model; from the thin red line in Figure 6a we
have that the deceleration phase is now too rapid compared to
the spontaneous solution and only the sharp peak of the
spontaneous solution is fitted by the analytical solution.
[49] In spite of the above-mentioned discrepancies, all the

SVF are able to exactly capture the final slip in this fault
receiver, as it is visible from the inset of Figure 8a. This is not
surprising in the case of MY (where utot is in fact an input

Figure 7. The same as in Figure 5, but now for a model predicting the healing of slip (i.e., a pulse-like
rupture). The adopted governing model is a Ruina-Dieterich law with an additional explicit dependence on
the temperature [see Bizzarri, 2011b, equation (48)].
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parameter), but it is a nontrivial result for the B SVF, for
which the total slip cannot be explicitly controlled a priori.
[50] Moreover, we can clearly see that the most gentle

acceleration phase is predicted by the B function, where the
increasing part of the slip rate history is not so sharp as in
the other cases. Indeed, we recall that the B function is a
solution pertaining to a 1-D spring-slider analog dashpot
model, in which the system is loaded only by the external
load of tectonic origin (expressed as k v0 t). On the contrary,
in a 3-D fault model the considered node is also subject to
the so-called restoring forces, which physically represent the
dynamic load due to the redistribution of stress caused by the
neighboring points that are already slipping. This load is
known to have relevant effects in the dynamics of the sys-
tem, as discussed in Bizzarri and Belardinelli [2008]. As a
net result, during the dynamic motion the B function
neglects, by definition, the contribution of such an additional

load and this can explain the more slow acceleration and the
lower peak in v.
[51] From the FAS of these time histories (Figure 8b) we

can see that at low frequencies (i.e., below 10 Hz) the FAS
v(B) approximates very well the FAS v(sp. model). We remark
here that in the case of crack-like function we did not
observe such a good agreement, in terms of frequency con-
tent, with none of the considered SVF (see Figure 6b).
Another interesting outcome of our results is that above
20 Hz the B function has a reduced high frequency content
with respect to the MY SVF, as already found (see Figures 3
and 4b). For frequencies greater than 30 Hz the spectra
roughly behave as w–2, in agreement with previous findings.
Remarkably, the fall off at high frequencies of the SVF
agrees quite well with the spontaneous model. Moreover, an
interesting feature of all the spectra is a flattening in the final

Figure 8. (a) Comparison between the fault slip velocity in the receiver R for the spontaneous pulse-like
model of Figure 7 against the MY and the B SVF. (b) Comparison between the resulting Fourier amplitude
spectra. The thin curve is an alternative parameterization of the MY, which preserve the peak slip velocity,
but not the pulse duration (see section 7.2 for details).
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portion of it, at frequencies greater than 400 Hz. However,
we remark that his portion of the spectra is very far from the
resolution of the recorder signals of real earthquakes and
also above the resolution of the model achieved with the
present computation capabilities.

8. Application to a Heterogeneous Earthquake
Event

[52] The homogeneous models presented in sections 6 and
7 have to be regarded as idealizations of the true behavior of
a crustal earthquake. Indeed, we know that complex geom-
etries (such as bending and branching), fault segmentation
and rheological heterogeneities can play a central role in the
origin of the slip complexity on the fault surface and in the
high frequencies content of the recorded seismograms [see
also Madariaga, 1983]. The heterogeneities of the fault
properties are responsible of possible multiple slipping as
well as of very complex patterns of slip (and slip velocity)
distribution, which will definitively affect the spectral
properties of the time histories.
[53] In this section we consider a heterogeneous model

where a linear slip-weakening friction law [Bizzarri,
2011b, equation (25)] is assumed to govern the fault. The
initial shear stress is not uniform, as in previous cases (see
sections 6.1 and 7.1), but it is characterized by a magnitude
which decays as k�1 at high spatial wave numbers k [see
Bizzarri and Spudich, 2008, Figure 11a]. Namely, its spatial
spectral density follows Bizzarri [2010b, equation (21)].
[54] To perform the comparison between the numerical

solution and the predictions from the analytical SVF we
select three fault receivers, where the rupture speed is lower
than the S wave speed. Then we determine the parameters of
the SVF exactly as described in the previous section 7 and
summarized in Table 3. There is no reason to overemphasize
that the procedure described in Table 3 is sufficiently general
to be applied in many different receivers and configurations.
[55] The results of our comparison are reported in Figure 9,

where the black lines still refer to the spontaneous modeling,
the red lines refer to the MY and the gray lines refer to the PR
function. In a heterogeneous configuration it is possible to
have multiple slipping episodes (clearly denoted by the
multiple peaks of fault slip velocity in Figures 9b and 9c),
which correspond to further stress releases. With a single
analytical function is impossible to fit all these details (as
well as their high frequency content), and therefore we
decided to focus on the first peak of v, which formally
represents the primary rupture front defining the rupture
onset in a given fault receiver. We can see that there is a
serious mismatch in the frequency domain between the ana-
lytical functions and the numerical solutions. This is rather
obvious, due to the analytical nature of the SVF. Neverthe-
less we can see that the MY is able to fit the peak in v, in
terms of amplitude and duration. This is not obvious, since
the MY — we recall it again — formally pertain to a pulse-
like solution. Another interesting conclusion emerging from
this analysis is that, in general, the MY performs better than
the PR, especially when vpeak is high (see Figure 9a). We
cannot exclude that an ad hoc tuning of the parameter Dtb
will better fit to numerical solution, but it would be a com-
pletely arbitrary choice; we use exactly the value of the
breakdown stress drop inferred from the spontaneous model.

At the same time, the decelerating phase of the rupture (i.e.,
the decreasing part of the first peak of v) is reproduced only
qualitatively by the SVF.
[56] Overall, we can therefore conclude that in the pres-

ence of the frictional heterogeneities we are unable to fit (at
least with a single analytical function) all the details of a
numerical solution pertaining to a spontaneous rupture,
especially in the frequency domain. In general, we have seen
that the MY SVF exhibits a better agreement with respect to
the PR function, especially considering the amplitude of the
peak slip velocity corresponding to the rupture front and the
first part of its decrease.

9. Conclusions

[57] In this paper we have considered three different slip
velocity functions (SVF), which describe the time evolution
of the fault slip velocity; the first is the so-called modified
Yoffe function (MY SVF; equation (1)), which comes from
the singular crack solution from Broberg [1978, 1999] and
Freund [1979], the second (PR SVF; equation (12)) derives
from the solution of Palmer and Rice [1973] for a non-
spontaneous crack obeying a position-weakening constitutive
model and the third is the solution (B SVF; equation (15)) for
a 1-D spring-slider model subject to a linear slip-weakening
friction law. All of them are based upon theoretical argu-
ments, described in detail in previous sections 2 to 4, and they
do not are merely analytical equations used in kinematic
modeling of faults. It is important to state an important
restriction in these formulations; they are appropriate to
describe subshear ruptures, but they cannot tell anything
about the supershear regime.
[58] As summarized in Table 1, the above-mentioned SVF

depend on some parameters. The MY is characterized only
by the duration of the pulse, the acceleration time and the
total cumulative slip. The PR and the B SVF depend on
quantities more strictly related to the energetics of the rup-
ture; the fracture energy density, the breakdown stress drop
or the rupture speed, as well as one the physical properties of
the medium where the fault is embedded (see Table 1).
Indeed, the adoption of a SVF described by few free param-
eters makes the inversion of strong motion data more stable as
compared to the multiple time window technique that is fre-
quently used [e.g., Hartzell and Heaton, 1983; Wald and
Heaton, 1994; Sekiguchi et al., 1996]. On the other hand the
explicit control in the SVF of the most relevant parameters
which characterize a dynamic rupture make more physically
robust the comparison with a solution arisen from spontane-
ous dynamic models.
[59] In this paper we have first scrutinized the properties

of all the three SVF; first of all we have discussed their most
important features and their shortcomings, basically focus-
ing on the prediction of the peak slip velocity (vpeak) and the
pulse duration. A synoptic review is also summarized in
Table 1. Then, by considering the same parameters, we have
quantitatively compared the various SVF (section 5). An
important outcome emerging from this analysis is that the
time evolutions of the slip and slip velocity predicted by the
MY and B functions are very similar, while the PR predicts a
very sharp peak (which corresponds to a smaller cumulative
slip; see Figure 1). Correspondingly, the PR SVF is richer in
high frequency and the fall off of its spectrum at high
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Figure 9. Results pertaining to a heterogeneous earthquake model (described in detail in section 8).
Black curves refer to the spontaneous model, red curves to the MY SVF and the gray curves to the PR
SVF. The absolute coordinates of the receivers (reader can refer to Bizzarri and Spudich [2008, Figure 11a]
for the representation of the fault plane) are (a) (3.2,2.4) km, (b) (2.4,3.2) km and (c) (4.8,4.0) km. All the
parameters of the different SVF are reported for each panel.
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frequencies goes roughly as w–1.5, while those of MY and B
more closely follows w–2 (see Figure 3). This mismatch is
not surprising, in that PR function describes a crack-like
rupture, while the other two SVF are appropriate to describe
a pulse-like rupture, where the slip heals after some time.
A better agreement with the three SVF can be obtained by
choosing ad hoc values of some parameters of the PR
function (see Figure 4a), which guarantees a more similar
time evolution of both u and v and a less different FAS
(Figure 4b).
[60] We have then tried to reproduce a given slip velocity

time history, as resulting from a spontaneous modeling of a
3-D fault obeying different friction laws, either rate- and
state-dependent or linear slip-weakening, by using the three
SVF. We have considered rather different models, two
subshear ruptures which homogeneous rheological proper-
ties (one representing a crack-like and the other one repre-
senting a pulse-like rupture; sections 6 and 7, respectively)
and a highly heterogeneous rupture (section 8). In all cases
we have described in detail how it is possible to retrieve the
input parameters of the different SVF from the given time
evolution of v; see sections 6.2, 6.3, 7.2, 7.3. In Table 3 we
have reported a compendious summary describing this pro-
cedure, which is sufficiently general to be applied to an
arbitrary, single instance rupture event. With this kind of
comparison we aimed to explore if, for prescribed dynamic
parameters which characterize a spontaneous earthquake
model, the various SVF considered are able to reproduce the
behavior of v as resulting from the forward, spontaneous
modeling.
[61] In the case of a crack-like rupture (section 6) it

emerges that the PR function fits very well the occurrence of
vpeak and it reproduces well the final, asymptotic value of v
(see Figure 6a). Surprisingly, also the MY is able to describe
the behavior of v, if we restrict our analysis to the time
window in which v(MY) is nonzero. Moreover, the peak of v
predicted by the BY SVF (which also fits the time of its
occurrence, by construction) is in a good agreement with
that obtained from the spontaneous model. For frequencies
below 30 Hz the spectra of these two SVF are poorer in
frequency content with respect to that of the spontaneous
solution (see Figure 6b). At higher frequencies the fall offs
of the spectra exhibit some differences; both the 3-D model
and the MY roughly decay as w–2, while the FAS of PR
function goes like w–1.5. These behavior are in agreement
with previous findings (see Figures 3 and 4b).
[62] In the case of pulse-like rupture (section 7) both the

MY and the B functions are able to reproduce the final slip
(see the inset plot in Figure 8a); this is not surprising in the
case of the MY (in which utot is an input parameter), but is
interesting in the case of the B function, where utot is not
prescribed a priori, but it results as a part of the solution.
Nevertheless, both these two SVF underpredict vpeak (see
Figure 8a). The agreement would be better if we require the
MY to reproduce vpeak, by exploiting equation (6); in this
case, however, the resulting risetime (i.e., the duration of the
slip velocity pulse) is shorter compared to the spontaneous
solution (thin red line in Figure 8a). We also mention that the
MY better agrees with the rapid accelerating phase predicted
by the 3-D model. On the contrary, the B function predicts a
gentle slip acceleration and this is mainly due to the fact that
this SVF comes from a 1-D spring-slider dashpot model,

which by definition neglects the dynamic load due to the
other slipping points of the fault, thus reducing the total load
acting on the target point [see also Bizzarri and Belardinelli,
2008]. Remarkably, for frequencies lower than 10 Hz the
spectrum of B function is practically indistinguishable
from that of the spontaneous model (see Figure 8b). For
w > 20 Hz, we have that FAS v(B) < FAS v(MY), as in pre-
vious Figures 3 and 4b. For w > 30 Hz all the spectra
roughly go as w–2.
[63] To summarize, we have seen that none of the con-

sidered SVF is able to reproduce exactly each single details
of the slip velocity time histories obtained from a dynamic
spontaneous model. This is particularly true in the case of
heterogeneous configurations, where it is impossible to fit,
with a single analytical function, all the details of the spon-
taneous solution, which is characterized by multiple peaks
accounting for multiple stress drops (see Figure 9). Never-
theless, we have shown that: i) The MY and the PR SVF can
reproduce adequately well the main features of a dynamic
solution in the case of a crack-like rupture (Figure 6a). ii) In
the case of a pulse-like rupture both the MY and the B SVF
tend to underestimate vpeak, but all of them capture very well
the final cumulated fault slip. Due to its 1-D nature the B
function predicts a too gentle acceleration phase, but it
fits well the decelerating phase of the pulse (Figure 8a).
However, the B function fits better that the MY the over-
all behavior of the fault slip (inset in Figure 8a). iii) The
considered SVF are able to reproduce the spectral fall off
of a 3-D solution at intermediate frequencies (namely
w < 20 Hz), the MY and the PR for a crack-like rupture, the
MY and the B SVF for a pulse-like rupture (see Figures 6b
and 8b, respectively). In particular, for w < 10 Hz the spec-
tral content of the B function is practically indistinguishable
from that of the spontaneous solution. iv) At high frequen-
cies the spectra decays roughly as w–2, with the exception
of the PR function, which goes like w–1.5 (see Figures 6b
and 8b). iv) In the case of heterogeneous ruptures the MY
is able to capture the main behavior of the first peak in v,
pertaining to the rupture tip, and the first part of its decrease.
Although there is an obvious mismatch in the frequency
domain, the MY is able to reproduce the amplitude and the
duration of the numerical solutions. On the contrary, for
the dynamic parameter characterizing the spontaneous
model, the PR SVF tend to underpredict vpeak, as well as the
decelerating phase of the first peak.
[64] The choice of a source time function to be used in the

kinematic description of faults is arbitrary, but at the same
time it is of pivotal importance in the contest of hazard
assessment and ground motions generation [e.g., Hisada,
2000, 2001; Guatteri et al., 2003; Page et al., 2005]. The
thorough analysis of the three theoretically-based SVF per-
formed in this paper is inserted in this framework. We
emphasize the band-limited inversions rely on low fre-
quency ranges (roughly up to 1 Hz). In that range the details
of the shape of the SVF can be less influents than in the high
frequency ranges (typical of strong motion generation).
However, we found that for a crack-like rupture the FAS of
the MY and of the PR functions are different also at low
frequencies (see Figure 6b). Moreover, we are not aware that
possible geometrical irregularities, stress heterogeneities,
free surface effects and attenuation can definitively smear
the details of the analytical functions.
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Figure A1. Spatial distribution on the fault plane of the relevant physical observables pertaining to the
model of Figures 7 and 8. (a) Equivalent upper yield stress (tu

eq). (b) Equivalent kinetic friction level (tf
eq).

(c) Fracture energy density (EG). (d) Peak fault slip velocity (vpeak). The locations of R′ (used in
Figure A2) and R (used in Figure A3) are marked in all panels. For completeness we also report (in gray)
the location of the receiver R used in Figures 5–8.
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[65] The next step of this research, which will be the matter
of a separate study, is to perform kinematic models by adopt-
ing these SVF and see how the resulting traction evolution
differs from that used to constrain their input parameters.

Appendix A: Results Pertaining to Different
Receivers on the Fault

[66] In sections 6 and 7 we have compared the result
pertaining to a dynamic spontaneous model with the various
SVF considered in this paper by focusing, for each single
rupture model, either crack-like or pulse-like, on a fault
receiver having the same strike coordinate of the hypocenter.
[67] In the framework of the slip-weakening model the

levels of stresses are prescribed, as well as the characteristic
slip distance and therefore both Dtb and EG are constant
over the whole fault. In the case of rate- and state-dependent
rheology, we cannot exclude a priori some fluctuations in
the above-mentioned quantities from point to point, in that
the levels of stresses are not imposed as input parameters
[e.g., Bizzarri and Cocco, 2003].
[68] In order to explore the level of variability in the case

of a homogeneous rupture we plot in Figure A1 the spatial
distributions of the equivalent upper yield stress (tu

eq), the
equivalent kinetic friction level (tf

eq), the resulting fracture
energy density (EG) and the peak fault slip velocity (vpeak) in
the case of the model presented in section 7. The results are
qualitatively unchanged also in the case of the model pre-
sented in section 6.
[69] By looking at Figure A1 we can see that the variations

of the physical observables occurs if we compare receivers
aligned along the strike direction (where the propagation is
basically mode II) with receivers aligned along the depth
(where the propagation is basically mode III). This is partic-
ularly true if we consider tf

eq (Figure A1b), EG (Figure A1c)
and vpeak (Figure A1d), as tu

eq (Figure A1a) exhibits even
smaller variations from point to point. The increase of vpeak
for increasing distances from the hypocenter along the
strike direction is intimately related to the so-called shrinking
of the cohesive zone [Andrews, 1976; Bizzarri et al., 2001].

More importantly, if we look at receivers located at the strike
coordinate of the hypocenter and aligned along the depth, we
can observe that all the observables have roughly the same
values. We recall here that this is the appropriate profile
where the all the three different analytical SVF have to be
compared against the numerical solution from a spontaneous
rupture model (the B function comes from an equation of
motion which is appropriate for mode III propagation; see
details in Bizzarri [2012b]).
[70] In Figure A2 we select a fault receiver located at

a distance of 4 km from the hypocenter along the depth.
The location of this new fault receiver R is reported in Figure
A1. In this case vpeak = 5.02 m/s (instead of 4.77 m/s, as in
Figure 7b), ad tpulse = 0.46 s. We proceed exactly as done in
section 7, by following the scheme of Table 3; for the MY
SVF we have the following parameters utot = 0.116 m,
tS = 7.69 � 10�3 s and tR = 0.4446 s (thick red curve in
Figure A2). As for the receiver of Figures 7 and 8 we can
clearly see that these parameters predict and underestimate
of vpeak arising from the spontaneous model. If we constrain
vpeak instead of the pulse duration, then we obtain tR = 5.62�
10�2 s, which gives a better fit of the time history of v given
by the dynamic model (see thin red curve in Figure A2).
Concerning the B function the conclusions are exactly the
same as in section 7; if we set k = 2.18 � 106 Pa/m (from
equation (21)) andm = 3.84� 106 Kg/m2 (from equation (22))
we would obtain a too long pulse. On the contrary, if we
set T = 0.09 s (which is the smallest value which guarantees
that the conditions in equation (17) are satisfied for the given
dynamic parameters and for the above-mentioned value of k)
we obtain the blue curve reported in Figure A2. As for the
receiver shown in Figure 8a, also in this case the B SVF
gives a underestimate of vpeak and again the pulse duration is
larger than that emerging from the spontaneous solution.
[71] We have also considered an additional receiver R

(also reported in Figure A1), which is at a distance of 3 km
from the hypocenter, but is now aligned in the direction of
the mixed-mode 45� profile. We proceed exactly as in the
previous example and the results are reported in Figure A3.

Figure A2. The same as Figure 8a, but now for a receiver R located at a distance of 4 km from H.
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We can clearly see that the conclusions are the same as in the
previous case.
[72] In conclusion, we have seen that this exercise con-

firms the two main conclusions discussed in section 7; the
best estimate of the shape of the spontaneous solution is
given by the MY SVF, by constraining utot and vpeak instead
of utot and tpulse. Moreover, the B function, even with the ad
hoc calibration of the parameter T — or analogously of the
parameter m — gives a underestimate of vpeak and a larger
slip duration (and correspondingly a smaller value of the
total cumulative slip; see inset in Figure A2).
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