

UNIVERSITA' DEGLI STUDI DI PADOVA

MECCANICA DELLA SORGENTE SISMICA: UN' INTRODUZIONE

Dr. Andrea Bizzarri, Ph.D.

Istituto Nazionale di Geofisica e Vulcanologia Sezione di Bologna

February 6th 2006

1. EARTHQUAKE SOURCE DYNAMICS

- Elasto dynamic problem
- Rupture description
- Dislocation vs. crack models
- Forward modeling scheme
- Rupture stages

2. FAULT GOVERNING LAWS (CONSTITUTIVE EQUATIONS)

- Fault models
- Physical phenomena in faulting
- Fracture criteria and constitutive laws
- Strength and constitutve laws
- Slip dependend friction laws
- Rate and state dependent friction laws

3. EXAMPLES OF RUPTURE PROPAGATION IN 2 - D

- Slip weakening vs. Dieterich Ruina law
- The cohesive zone and the breakdown processes
- The estimate of d_0 and related problems
- Examples of slip complexity

4. STRESS INTERACTION AND FAULT TRIGGERING

- Fault seismic cycle modeling
- Analytical stress perturbations
- Rhealistic stress perturbations
- Example of the 2000 South Iceland seismic sequence

1. Belardinelli M. E., <u>Bizzarri A.</u>, Cocco M. (2003), JGR, 108, No. B3, 2135 **BBC2003**

B2003

- **2.** <u>Bizzarri A</u>., (2003), Ph.D. Thesis
- **3.** <u>Bizzarri A.</u>, Cocco M. (2003), JGR, 103, No. B8, 2373 BC2003
- 4. <u>Bizzarri A.</u>, Cocco M. (2005), Ann. Geophys., 48, No. 2, 279 - 299
- **5. <u>Bizzarri A.</u>, Cocco M., Andrews D. J., Boschi E.** (2003), GJI, 144, 1 – 30 **B2001**
- 6. Cocco M., <u>Bizzarri A.</u> (2002), GRL, 29, No. 11, 11-1 11-4 **CB2002**
- **7.** Cocco M., <u>Bizzarri A.</u>, Tinti E. (2003), Tectonophys., 378, 241 – 262 **CBT2003**
- 8. Tinti E., <u>Bizzarri A.</u>, Cocco (2005), Ann. Geophys., 48, No. 2, 327 – 345 **TBC2005**

Earthquake source dynamics

Elasto - dynamic problem

* Solution of the fundamental elasto – dynamic equation (i. e. the II law of dynamic for continuum media):

$$\rho(d^2/dt^2)U_i = \sigma_{ij,j} + f_i$$
; *i* = 1, 2, 3

where:

f

- ho is the mass cubic density,
- **U** is the particle displacement vector ($\mathbf{U} = \mathbf{x}' \mathbf{x}$),
- { σ_{jj} } is the stress tensor; $\sigma_{ij} = C_{ijkl}e_{kl}$; i,j,k,l = 1, 2, 3, where C_{ijkl} is the elastic constant tensor, accounting for the rheology of the medium and e_{kl} is the strain tensor ($e_{kl} = \frac{1}{2}(U_{k,l} + U_{l,k})$),
 - is the body force vector.

* Choice of the dimensionality d of the problem (1 – D, 2 – D, 3 – D). (d = rank of the U array, i. e. number of equations)

1. Wave propagation problem: Hyperbolic PDE D'Alembert wave equation: $\nabla^2 \mathbf{U} - (1/c_0) (\partial^2/\partial t^2) \mathbf{U} = 0$ where c_0 is the wave speed.

2. Rupture propagation problem

Following Scholz (1990) the rupture can be described by using:

CRACK MODELS

The energy dissipation at crack edge (or crack tip) is paramount. Describe explicitely the crack propagation.

FRICTION MODELS

The effects at the edges are not explicitley considered. Explicitely allow for the calculation of the evolution of stress tensor components in terms of material properties of the fault.

Dislocation vs. Crack Models

DISLOCATION MODELS

- * Study of displacement discontinuity
- Slip is assumed to be constant on the fault;
 The fault evolution is represented by unilateral or bilateral motion (rectangular dislocations: Haskell's model)
- * rupture from and it neglects dynamics of faulting
- **1** Long period seismic waves modeling ($\lambda \ge L_{fault}$)
- constant dislocation is inadmissible; strain energy at crack tip is unbounded; stress drop is infinite

CRACK MODELS

- * Impose finite energy flow into the rupture
- Slip is not prescribed, but it is calculated from the stres drop and from the fault strength S^{fault}
- * Crack (after nucleation processes), increases the stress outiside the crack near the crack tip) and tends to facilitate further grow of the rupture
- The motion is determined by fracture criterion (and eventually by the assumed constitutive law on the fault)
- The problem is characterized by assuming the boundary conditions on the fault plane. It has mixed b. c.: slip assigned outside the crack tip and stress tensor components inside the crack tip

Forward modeling scheme

1. Fault model:

- Fault geometry (orientation, planar or non planar, ...)
- Fault system (multiple segments, multiple faults, ...)

2. Medium surrounding the fault surface(s)

- **Properties of the medium** surrounding the fault(s): cubic mass density structure, velocity structure, anysotropy, attenuation

3. Choice of the dimensionality d' of the problem (1 – D, 2 – D, 3 – D, 4 – D). (d' = number of the independent variables in the solutions)

4. Choice of the representation

5. Choice of the numerical method

- (FE, FD, BE, BIE, SE, hybrid)

6. Specification of the Boundary Conditions

- **Domain** Boundaries Conditions (DBCs)
- Fault Boundary Condition (FBCs)
- Auxiliary Conditions (ACs)

7. Specification of the Initial Conditions

- Initial conditions on the fault: (initial slip, slip velocity, state variable, pre stress);
- Initial conditions outside the fault: (tectonic load, (state of neighbouring faults: the fault is <u>not</u> an isolated system))

8. Evaluation of the solutions

- Convergence analysis (consistency + stability)

Rupture stages

1. Nucleation (quasi – static to dynamic evolution)

- How can we simulate nucleation?
- How can we promote fault instability?
- 2. Propagation
 - What is the fault constitutive equation (governing law)?

3. Healing

- What type of healing occurs?
- What controls fault healing?

4. Rupture arrest

- What is responsible of rupture arrest?
- How can we represent it? Earthquake energy balance?

5. Fault re – strengthening

- How can we model further instabilities episodes on the fault?

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

Geometrical complexity

Kokoxili *M_w* 7.9 earthquake (Qinghai Province, China)

Dimensionality d'

1 – D Sping – Slider (mass – spring) model

