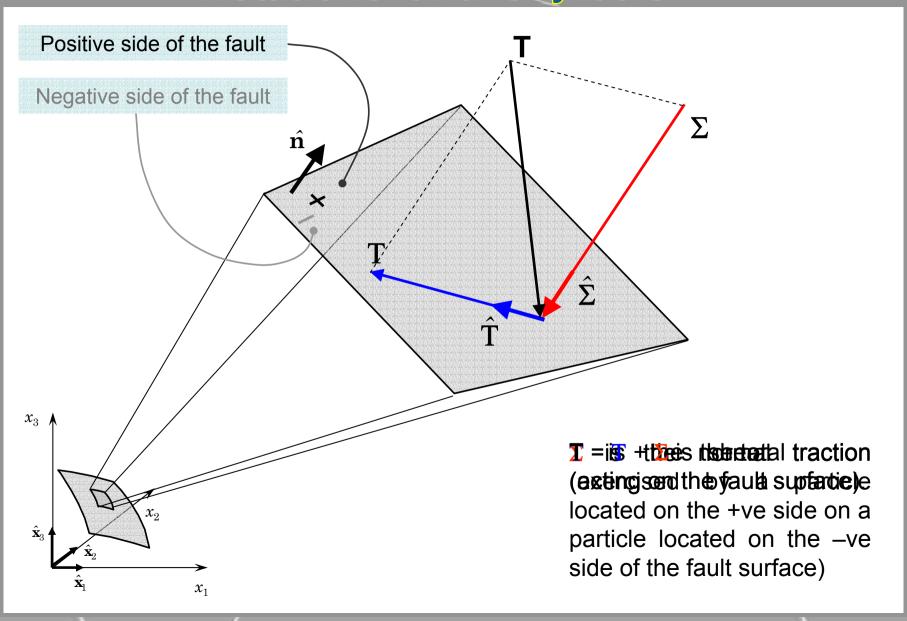


Notations and symbols



$$T = T + \Sigma$$

total traction (acting on the fault surface).

$$T_j = n_i \sigma_{ij}^{eff}$$

Cauchy's formula, where $\mathbf{T}=(T_1,\ T_2,\ T_3),\ \mathbf{n}=(n_1,\ n_2,\ n_3)$ and

$$\sigma_{ij}^{eff} = \sigma_{ij} - p_{fluid} \; \delta_{ij} = egin{bmatrix} \sigma_{11} - p_{fluid} & \sigma_{12} & \sigma_{13} \ \sigma_{12} & \sigma_{22} - p_{fluid} & \sigma_{23} \ \sigma_{13} & \sigma_{23} & \sigma_{33} - p_{fluid} \end{bmatrix}$$

$$T_i = n_i \sigma_{ij}^{\text{eff}} - n_i (n_i \sigma_{ij}^{\text{eff}} n_i^{\text{T}})$$

shear traction

$$\Sigma_i = n_i (n_i \sigma_{ij}^{eff} n_i^{\mathsf{T}})$$

normal traction

Fracture Criteria & Constitutive Laws

1. FRACTURE CRITERION

Condition that specify, at a given fault point and at a given time, if there is a rupture or not.

- It can be expressed in terms of energy, in terms of maximum frictional resistence, and so on.
- It is based on (i) the Benioff (1951) hypothesis: The fracture occours when the stress in a volume reaches the rock strength or, analogoulsy,
 - (ii) the Reid (1910) statement: The fracture takes place when the stress attains a value greater than the rock can endure.

2. CONSTITUTIVE LAW

Analytical relation existing between the components of the stress tensor and physical observable(s), like the slip, the slip velocity, the state variable, etc..

- From a mathematical point of view it is a Fault Boundary Condition (FBC) that controls earthquake dynamics and its complexity in space and in time.
- Its simplest form consider only two frictional levels, τ_u and τ_f ; it accounts for stress drop (or stress realease), but the process is instantaneous: there is a singularity at crack tip. (i
- Cohesive zone models: Barenblatt (1959a, 1959b), Ida (1972), Andrews (1976a, 1976b). In these models the singularity is removed and the sress release occours over a breakdown zone distance X_b and in a breakdown zone time T_b .
- Friction laws (Rate and State dependent f. l.): Dieterich (1976), Ruina (1980, 1983). They accounts for fault

CONSTITUTIVE LAW (continues)

- "The central issue is **whether** faults obey simple friction laws, and if so, what is the friction coefficient associated with fault slip " (Scholz and Hanks, 2004).

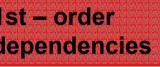
CONSTITUTIVE LAW (continues)

- In full of generality we can express the constitutive (or governing) as:

$$\tau = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, \rho_f)$$

where:

- u is the Slip (i. e. displ. disc.) modulus,
- v is the Slip Velocity modulus (its time der.),
- $\Psi = (\Psi_1, ..., \Psi_N)$ is the State Variable vector,
- T is the Temperature (accounting for Ductility, Plastic Flow, Melting and Vaporization),
- H is the Humidity,
- λ_c is the Characteristic Length of surface (accounting for Roughness and Topography of asperity contacts),
- *h* is the Hardness,
- g is the Gouge (accounting for Surface Consumption and Gouge formation),
- C_a is the Chemical Environment



Strength & Constitutive Laws

1. THE STRENGTH PARAMETER

- Hystorically introduced by Das and Aki (1977a, 1977b) to have a quantitative extimate of the ability to fracture for a fault
- Its expression can be generalized as:

$$S = (\mu_u \sigma_n^{\text{eff}} - \tau_0) / (\tau_0 - \mu_f \sigma_n^{\text{eff}})$$

where μ are the friction coefficient.

- We can also define

2. THE FAULT STRENGTH

- Is the parameter that quantify the Strenght in the more general case, in which a fault is described by a rhealistic friction laws

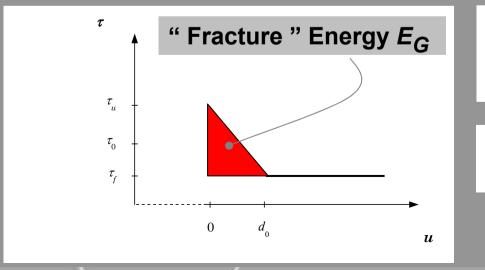
$$S^{fault} = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, \rho_{fluid})$$

Slip - Dependent Friction Laws

1. LINEAR SLIP - WEAKEING LAW

$$au = egin{cases} \left[\mu_u - (\mu_u - \mu_f) rac{u}{d_0}
ight] \sigma_n^{\ eff} &, u < d_0 \ \mu_f \sigma_n^{\ eff} &, u \geq d_0 \end{cases}$$
 ila

ilaw = 21



Barenblatt (1959a, 1959b), <u>Ida</u> (1972), Andrews (1976a, 1976b), and many authors thereinafter

 d_0 is the characteristic slip – weakening distance

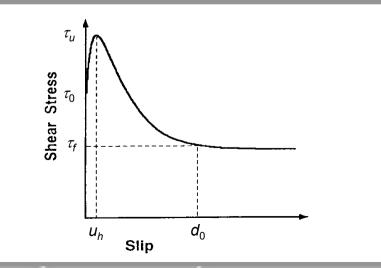
(i

2. NON LINEAR SLIP - WEAKEING LAW WITH SLIP - HARDENING

$$\tau = \left\{ \left[\left(\tau_0 - \mu_f \right) \left(1 + \alpha_{OW} \ln \left(1 + \frac{u}{\beta_{OW}} \right) \right) \right] e^{-\frac{u}{d_0}} + \mu_f \right\} \sigma_n^{eff}$$

$$\left| u_h : \frac{\mathrm{d}\tau}{\mathrm{d}u} \right|_{u_h} = 0; \qquad \begin{cases} u_h = rd_0 & \text{(e.g. } r = 0.1) \\ \tau(u_h) = \tau_u \end{cases}$$

ilaw = 23 **OW**



Ohnaka and Yamashita (1989) and the following papers by Ohnaka and coworkers

 u_h is associated with the preparatory phase of the imminent macroscopic failure in the cohesive zone. It accounts for micro-cracking

Rate - and State - Dependent Friction Laws

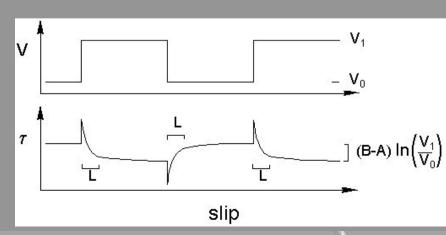
1. DIETERICH IN REDUCED FORMULATION

$$\begin{cases} \tau = \left[\mu_* - a \ln \left(\frac{v_*}{v} \right) + b \ln \left(\frac{\Psi v_*}{L} \right) \right] \sigma_n^{eff} \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi = 1 - \frac{\Psi v}{L} \end{cases}$$
 ilaw = 31

However, while in velocity stepping experiments the traction response following the velocity variation is directly controlled by the parameter *L*, its effects are much less evident during the dynamic rupture propagation.

Bizzarri and Cocco (2005)

Response to an abrupt jump in load



2. RUINA - DIETERICH

$$\begin{cases} \tau = \left[\mu_* - a \ln \left(\frac{v_*}{v} \right) + b \ln \left(\frac{\Psi v_*}{L} \right) \right] \sigma_n^{eff} \\ \frac{\mathrm{d}}{\mathrm{d} t} \Psi = -\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) \end{cases}$$

Ruina (1980, 1983), Beeler et al. (1984), Roy and Marone (1996)

ilaw = 32

RD

3. DIETERICH - RUINA WITH VARYING NORMAL STR.

$$\left\{ \begin{aligned} & \tau = \left[\begin{array}{c} \mu_* - a \ln \left(\frac{v_*}{v} \right) + b \ln \left(\frac{\Psi \, v_*}{L} \right) \right] \sigma_n^{\,\,eff} \\ \frac{\mathrm{d}}{\mathrm{d} \, t} \, \Psi = 1 - \frac{\Psi \, v}{L} - \left(\frac{\alpha_{LD} \Psi}{b \, \sigma_n^{\,\,eff}} \right) \frac{\mathrm{d}}{\mathrm{d} \, t} \, \sigma_n^{\,\,eff} \end{aligned} \right.$$

ilaw = 31
decis10=T
DR

<u>Linker and Dieterich (1992)</u>, Dieterich and Linker (1992), Bizzarri and Cocco (2005b, 2005c)

4. RUINA - DIETERICH WITH VARYING NORMAL STR.

$$\left\{ \begin{array}{l} \tau = \left[\begin{array}{c} \mu_{\star} - a \ln \left(\frac{v_{\star}}{v} \right) + b \ln \left(\frac{\Psi \, v_{\star}}{L} \right) \right] \sigma_{n}^{\,\,eff} \\ \frac{\mathrm{d}}{\mathrm{d} \, t} \, \Psi = - \frac{\Psi \, v}{L} \ln \left(\frac{\Psi \, v}{L} \right) - \left(\frac{\alpha_{LD} \Psi}{b \, \sigma_{n}^{\,\,eff}} \right) \frac{\mathrm{d}}{\mathrm{d} \, t} \sigma_{n}^{\,\,eff} \end{array} \right.$$

<u>Linker and Dieterich (1992)</u>, Bizzarri and Cocco (2006b, 2006c)

ilaw = 32

decis10=T

RD

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

(i

Thermal pressurization:

Sibson (1973), Lachenbruch (1980), Mase and Smith (1985, 1987), Andrews (2002), Bizzarri and Cocco (2006b, 2006c).

Morrow et al. (1984) show that gouge contain water

Gouge behaviour:

Marone et al. (1990), Marone and Kilgore (1993), Mair and Marone (1999), Mair et al. (2002)

Frictional melting:

Jeffreys (1942), McKenzie and Brune (1972), Richards (1977), Sibson (1977), Cardwell et al. (1978), Allen (1979)

Mechanical Iubrication:

Spray (1993), Brodsky and Kanamori (2001), Kanamori and Brodsky (2001)

Acustic fluidization:

Melosh (1979, 1996)

Gouge gelation:

Goldbsy and Tullis (2002), Di Toro et al. (2004)

(i

Bi - material interface:

Andrews and Ben – Zion (1997), Harris and Day (1997)

(i

Humidity effects:

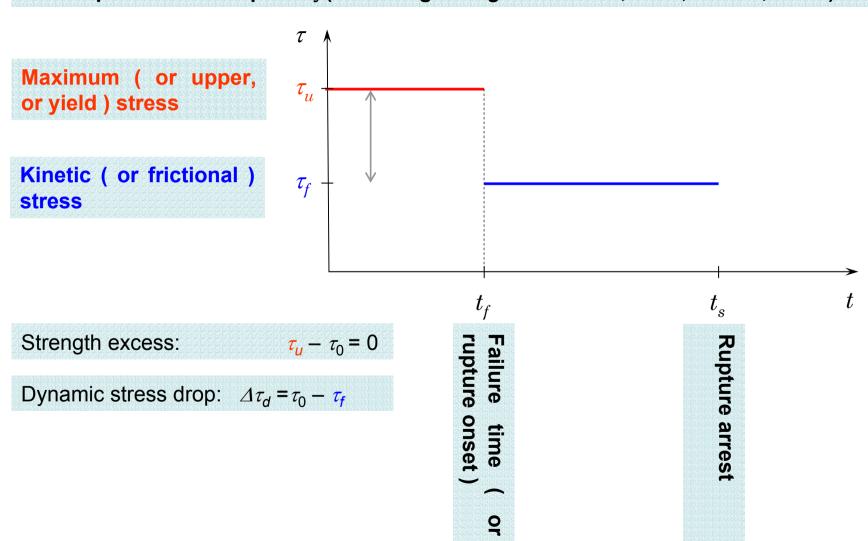
Dieterich and Conrad (1984)

Characteristic length of surface effects:

Ohnaka and Shen (1999), Ohnaka (2003)

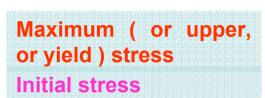
slebom noitaini teelqmiz

At a particular fault point ξ (following Savage and Wood, 1971; Scholz, 1990)



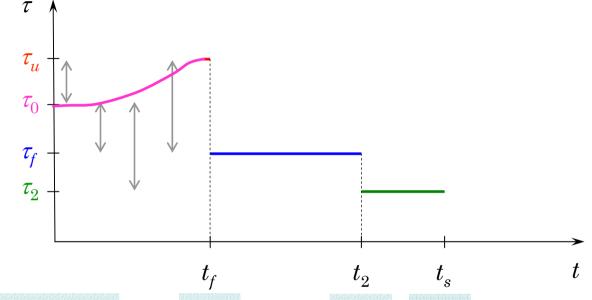
slebom noitairi teelqmiz

At a particular fault point ξ (following Savage and Wood, 1971; Scholz, 1990)



Kinetic (or frictional) stress

Residual stress



Strength excess: $\tau_u - \tau_0$

Dynamic stress drop: $\Delta \tau_d = \tau_0 - \tau_f$

Static stress drop: $\Delta \tau_s = \tau_0 - \tau_2$

Breakdown str. drop: $\Delta \tau_b = \tau_u - \tau_f$

Failure time (or rupture onset)

Dynamic overshoot

Rupture arrest

• Savage and Wood (1971) also define:

Mean stress:
$$\langle \tau \rangle = \frac{1}{2} \left(\frac{\tau_u}{\tau_u} + \tau_2 \right)$$

Seismic efficiency:
$$\eta = E_s/E$$
, where: E_s is the seismic energy E_s is the total available energy

Apparent stress:
$$\tau_a = \eta < \tau >$$

• Direct observation of the absolute stress near an earthquake is not feasible, but it is possible (*Wyss and Brune, 1968*) calculate τ_a and stress drop from physical observables.

Slip - hardening effect

* The slip — hardening (SH) phenomenon has been also found in seismological inversion studies (e.g. Quin, 1990; Miyatake, 1992; Mikumo and Miyatake, 1993; Beroza and Mikumo, 1996; Ide, 1997; Bouchon, 1997).