

UNIVERSITA' DEGLI STUDI DI PADOVA

INTERAZIONE ED ATTIVAZIONE DI FAGLIE SISMOGENETICHE

Dr. Andrea Bizzarri, Ph.D.

Istituto Nazionale di Geofisica e Vulcanologia Sezione di Bologna

February 7th 2006

Interaction type	Perturbation effects	Spatial scale	Temporal scale
Dynamic	Rupturepropagation;Arrest	1 – 60 Km	1 – 20 s
Static	 Earthquake triggering; Off – faults aftershocks; Sesimicity rate change 	1 – 60 Km 1 – 60 Km 1 – 100 Km	minutes – few years
Post – seismic	Long – term stress changes	10 – 1000 Km	few years – centuries

Coulomb Failure Function

Following the Coulomb's failure assumption we define a Coulomb Failure Stress as (e.g. *Jaeger and Cook*, 1969):

$$CFS = \|\mathbf{T}\| + \mu(\sigma_n + p_{fluid}) - C$$

where: $\|\mathbf{T}\|$ is the shear tration modulus,

- μ is the coefficient of friction,
- σ_n is the normal stress (positive in tension),
- p_{fluid} is the pore fluid pressure,
- *C* is the cohesion.

Assuming μ and *C* constant over time, we have the Coulomb Failure Stress change:

$$\Delta CFS = \Delta \|\mathbf{T}\| + \mu (\Delta \sigma_n + \Delta p_{fluid})$$

where it has been assumed an isotropic failure plane.

 $\triangle CFS$ is used to evaluate if one earthquake brought another earthquake closer to, or farther from, failure:

 $\triangle CFS > 0 \Rightarrow$ fault plane loaded \Rightarrow closer to failure $\triangle CFS < 0 \Rightarrow$ fault plane relaxed \Rightarrow farther from failure (Stress Shadow)

Neglecting the spatial dependence in tractions, are:

 $T(t) = T(0) + \Delta T(t) \qquad \sigma_n(t) = \sigma_n(0) + \Delta \sigma_n(t) \qquad p_{fluid}(t) = p_{fluid}(0) + \Delta p_{fluid}(t)$ Therefore we can write:

$$\Delta CFS(t) = \| \mathbf{T}(0) + \Delta \mathbf{T}(t) \| - \| \mathbf{T}(0) \| + \mu (\Delta \sigma_n(t) + \Delta p_{fluid}(t))$$

 $\Delta \| \mathbf{T} \|$ is the change in shear stress due to the first earthquake and it is resolved in the slip direction of the second earthquake;

 $\Delta \sigma_n$ is the change in normal stress due to the first earthquake and it is resolved in the direction orthogonal to the fault plane of the second earthquake.

Stress changes approaches (after Harris, 1998)

Method	Parameters Required	Successes	Problems	Authors
Static Coulomb failure stress (elastic) ΔCFS	mainshock static slip model, μ' , and $\Delta\sigma$, $\Delta\tau$, $\dot{\tau}$, on known fault planes and known slip directions*	$\Delta CFS > 0$ explains locations of aftershocks that do occur, $\Delta CFS < 0$ predicts shadows (timing and locations); may give rupture extent	many ΔCFS > 0 faults do not experience subsequent large. earthquakes, so it is hard to use ΔCFS >> 0 as a predictive tool	Smith and Van de Lindt [1969], Rybicki [1973], Yamashina [1978], Stein and Lisowski [1983], Simpson et al. [1988], Yoshioka and Hashimoto [1989a, b], Reasenberg and Simpson [1992], etc. (see text for more authors); Crider and Pollard [this issue], Hardebeck et al. [this issue], Hardebeck et al. [this issue], Hardeseck et al. [this issue], Kagan and Jackson [this issue], Nostro et al. [this issue], Taylor et al. [this issue], and Toda et al. [this issue]
Dynamic Coulomb failure stress (elastic) ΔCFS(t)	mainshock dynamic fault slip model, μ' , and $\Delta\sigma(t)$, $\Delta\sigma(t)$ on known fault planes and known slip directions*	may predict rupture lengths, given fault geometry	does not explain long delays (more than tens of seconds) between subevents; needs more testing	Harris et al. [1991], Harris and Day [1993], Hill et al. [1993], Gomberg and Bodin [1994], Spudich et al. [1994, 1995], Cotton and Coutant [1997], etc.
Static rate and state	mainshock static slip model, $\Delta\sigma$, $\Delta\tau$, σ , τ , $\dot{\tau}$, A , B , D_c , H , time of last event, recurrence interval (to determine slip speed)	seems to predict aftershock duration	needs more testing; rate-and-state parameters defined in the laboratory, but not known for the Earth	Dieterich [1994], Dieterich and Kilgore [1996], Roy and Marone [1996], Gross and Bürgmann [1998], Gomberg et al. [this issue], Harrs and Simpson [this issue], and Toda et al. [this issue]
Dynamic rate and state	mainshock dynamic fault slip model, $\Delta\sigma(t), \Delta\tau(t), \sigma, \tau,$ $\dot{\tau}, A, H$, time of last event, slip speed	may explain remote triggering	needs more testing; still need to define rate- and-state parameters in the Earth; inertial terms not yet included in models	Dieterich [1987] and Gomberg et al. [1997, this issue]
Static Coulomb failure stress (viscoelastic)	mainshock slip model, Maxwell relaxation time, relaxing layer thickness	may explain time delays between mainshock and subsequent events, also irregular recurrence intervals	needs more testing, also needs more geodetic data to confirm viscoelastic parameters	Dmowska et al. [1988], Roth [1988], Ghosh et al. [1992], Ben-Zion et al. [1993], Taylor et al. [1996], Pollitz and Sacks [1997], Freed and Lin [this issue]
Fluid flow	mainshock slip model, permeability tensor	may explain time delays between mainshock and subsequent events	may not be successful at predicting both the spatial and temporal aftershock pattern	Li et al. [1987], Hudnut et al. [1989], Noir et al. [1997], etc.; Sceber et al. [this issue]

*If the aftershock fault planes are not known, then some authors assume optimally oriented faults; this requires knowledge of the background stress directions.

1 – D Spring – slider model

Numerical Method: RK SS

m
$$\ddot{\delta} = k (\delta_0 - \delta) - \tau_f + \Delta \tau$$
, $\Delta \tau(t)$ perturbazione
 $\tau_f = resistenza di attrito$

Reologia: attrito rate- and state-dependent

 θ (Φ) = variable di stato della superficie, V = δ velocità

A - Ruina-Dieterich **B** - Dieterich - Ruina $\tau_{\rm f} = \tau_{\ast} - A \ln \left(\frac{V_{\ast}}{V} \right) + B \ln \left(\frac{\Phi V_{\ast}}{L} \right)$ $\tau_{\rm f} = \tau_* + \theta + A \ln \left(\frac{V}{V_*} \right)$ $\frac{d\theta}{dt} = -\frac{V}{L}\theta + B \ln \frac{V}{V_{t}}$ $\frac{d\Phi}{dt} = 1 - \frac{\Phi V}{L}$

Stato del sistema: (v(t), d (t), t_f(t)) o condizioni mecc. faglia $(V(t), t_{f}(t))$

appross. q. statica V<V_C=0.1 mm/s

Fault seismic cycle modeling

Analytical stress perturbations

STRUCT STRUCT STRUCT STRUCT STRUCT STRUCT STRUCT STRUCT

Realistic stress perturbations Syntetic seise perturbations

Fault interaction by dynamic stress transfer: the case of the 2000 South lceland seismic sequence

Motivations and Goals

To evidence the eventual effect of the transient part of the coseismic stress changes due to the 17 June 2000, M 6.6 South Iceland earthquake;

- The debate on the triggering potential of transient stress changes is still open;
- > The observational evidences are difficult and few.

zineve ent to epiono enT

- O The largest events (M ~ 5) occurring in the first five minutes
- ➢ 8s, 26s, 30s, 130s, 226s
- O in intermediate far field
- ≻ 🄀, 26s, 30s, 1∭s, 226s
- O that reasonably are not secondary aftershocks

➢ 26s, 30s,

The 26 s and 30 s events

- They were not detected teleseismically.
- 26 s (64 km far)
 - -Not detected by DInSAR.
 - -Known fault.
- 30 s (77 km far)
 - Waveforms partially obscured by the first event (mechanism uncertain)
 - Detected by DInSAR and surface effects.
 - August 2003: M 5 event on N-S fault with the same epicenter.

From SIL seismograms the 26 s and 30 s events occurred at the arrival (later than the first) of shear waves traveling at 2.5 km/s at their location.

Event	Origin time	Latitude (°)	Longitude (°)	Depth (km)	M_L	M _{Lw}
26s	154106.9	63.951	-21.689	8.9	4.91	6
		±0.004	±0.008	±1.3		
30s	154111.254	63.937	-21.94	3.8	4.68	5.9
		±0.003	±0.01	±1.3		

enti eiluqmoo oi beau areiemena dynamic aireas

- Slip distribution from geodetic data (Arnadottir et al. 2003). Right lateral strike slip fault, strike 7° E, dip 86°.
- Rupture history: bilateral Haskell model, rise time: 1-2 s, rupture velocity: 2.5 km /s.

Depth	VP	Vs	Density
(km)	(km/s)	(km/s)	(kg/m ³)
0-3.1	3.3	1.85	2300
3.1-7.8	6.0	3.37	2900
7.8-17	6.85	3.88	3100
>17	7.5	4.21	3300

Depth	VP	Vs	Density
(km)	(km/s)	(km/s)	(kg/m ³)
0-1.1	3.2	1.81	2300
1.1-3.1	4.5	2.54	2900
3.1-7.8	6.22	3.52	3100
>7.8	6.75	3.8	3300

West of Hengill

East of Hengill

owi eni in sesseris olmanyd sreineogyn

O Nord - Sud vertical right - lateral faults

O $\Delta CFF = \Delta \tau + \mu (1 - B) \Delta \sigma_n$, with $\mu = 0.75$, B = 0.47

O Rise time: 1.6 s

∠CFF(t) at the two hypocenters

Time separation between the events and between stress peaks comparable.

Snapshots of dynamic stress

Parameters sensitivity #1

- Stress at each hypocenter is affected by uncertain parameters such as the crustal model, rise time and the hypocentral depth.
- Crustal model

The origin times (from mainshock) of the two events remain at, or follow closely the second CFF peak for ~1 - 2 s rise time.

Parameters sensitivity #2

Rise time

26 s hypoc. rise time uncert.

Hypocentral depth

26 s hypoc. depth uncert.

Uncertainties in stress amplitudes.

<mark>eenoqeer flust enT</mark>

- We study the fault response to the stress changes as evaluated at the two hypocenters with varying the parameters within their uncertaintes;
- We use a spring-slider model with rate- and state-dependent friction for variable effective normal stress σ_n^{eff} ;
- The system is perturbed either in shear stress and normal stress ($\Delta \tau(t)$, $\Delta \sigma_n^{eff}(t)$);
- We investigate the possibility of instantaneous triggering (during the transient stress perturbation).

Dieterich and Linker (1992

$$\tau = \left[\mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}(t)$$

$$\frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} - \alpha_{LD} \frac{\Psi \dot{\sigma}_n^{eff}}{b}$$

$$\alpha_{LD} = 0 \implies \sigma_n^{eff} = \sigma_n^{eff}(0)$$

Teggini aucensinsiani edT

- $h \sim 10$ km linear fault dimension,
- standard values of rheological parameters ($\mu_* = 0.7$, L = 1 mm, b = 0.01),
- $v_0 = 2 \text{ cm/yr}$ (spreading rate in the SISZ),
- fault in close to failure conditions (100% steady state \implies unperturbed failure expected at less than 2 yr from June 17, 2000)
- The fault tends to fail within 1 s after a peak in CFF, as evaluated at the two hypocenters

if

- 1. the initial effective normal stress σ_0 is enough low, so that the shear stress perturbation $\Delta \tau$ at that peak is much larger than $a(\sigma_0 + \Delta \sigma)$
- 2. and the direct effect of friction *a* is enough low to keep fault unstable ($k/k_{crit} < 1$) for low values of σ_0 .

etlust bedrutreq ent to semit erulis?

>For $a \le 0.003$ and $\sigma_0 \cong 20$ bar, we obtained instantaneous trigger within 1 second after the second peak of CFF, as expected for the two aftershocks in the SISZ.

>For a = 0.003 and $\sigma_0 > \gamma 20$ bar, $1 < \gamma < 10$ (increasing with the amplitude of the second peak of $\Delta \tau$) the trigger is not instantaneous (failure time > 4 hours).

Conclusions

- ✓ The 26 and 30 s events occurred near one of the important geothermal areas of Iceland;
- They were neglibly affected by static stress changes;
- They followed closely a peak of positive CFF;
- These results favour the hypothesis of dynamic triggering;
- Dynamic models of fault responses can explain observations for low values of effective normal stress (near lithostatic pore pressure).

Thank you!

This presentation is available from my Web Server (<u>http://abierre.df.unibo.it</u>)

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

Geothermal areas in Iceland

Figure 1. Geothermal areas in Iceland. The five main exploited high-temperature areas, Svartsengi, Reykjanes, Nesjavellir, Krafla and Námafjall are shown as well as the four unexploited high-temperature geothermal areas selected for study of natural changes, Krýsuvík, Theistareykir, Torfajökull and Kverkfjöll areas.