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Bizzarri (2010, INTECH)
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- In full of generality we can express the constitutive ( or
governing ) as:

where:

IS the slip (1. e. displ. disc. ) modulus,
IS the slip velocity modulus ( its time der. ),
= (¥, ..., ¥y Is the state variable vector,

IS the temperature ( related to ductility, plastic flow,
melting and vaporization ),
IS the humidity,

IS the characteristic length of surface ( accounting for
roughness and topography of asperity contacts ),

IS the hardness,

IS the gouge ( accounting for surface consumption and
gouge formation ),

IS the chemical environment
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U, ~ several m Classical laboratory Uy, UP t0 1.4 mm
v ~ several m/s stick — slip experiments v up to 25 um/s
0" =100 — 200 MPa ( Dieterich, 1981 ) o.e"=10 MPa

Fracture, Friction & Earthquake Data
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Fracture Earthquakes

Friction
Laboratory Data:
v M Fracture
2 Friction (A =100um)

W Friction (A,=200um)
Earthquake Data:

[] Papageorgiou & Aki (1983)
- Ellsworth & Beroza (1895)
4 Ide & Takeo {1997)
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Critical Slip Displacement D, (mm)
From Ohnaka (2003)
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U, = infinite

v=0.1um/s —10 m/s
o.e" <20 MPa

Shimamoto and Tsutumi (2004,
Str. Geol.)




v=1um/s—-9m/s
0. <70 MPa

Niemeijer et al. (2009, AGU Fall
Meeting)
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Barenblatt ( 1959a, 1959b ), Ida

(1972 ), Andrews ( 1976a, 1976b ),
and many authors thereinafter %

d, is the characteristic slip -
weakening distance
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Shear Stress

Ohnaka and Yamashita ( 1989 ) and

the following papers by Ohnaka and
coworkers

u,, is associated with the preparatory
phase of the imminent macroscopic
failure in the cohesive zone. It
accounts for micro—cracking
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u,, controls the duration in slip of the
slip — hardening phase, described by

the function F(u).

£53(0) = 0.55 £ 0.09 4 =0.6
Vo = 0.99 £0.23 m/s

des = 1.26 + 1.54

u, =23 + 160 mm

1
:‘ é EI 0.5 1.0 1.5 Zﬂ 25
Fault dizplacement {m) Slip rate (ms"")
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However, while in velocity
stepping experiments the
traction response following
the velocity variation is
directly controlled by the
parameter L, its effects are
much less evident during
the dynamic rupture
propagation.
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Beeler et al. (1994 ), Roy and Marone
(1996 )




Dynamic Parameters

Stress

1ad1ated energy

ruputre Speed V=08t009p

E,. = E + I +... : non-radiated energy
EF
R friction

: friction (he'lt) E,_. : fracture energy

Ao, =0, -0, : static stress drop

e e

Ao, =0,—0, :dynamic stress drop
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