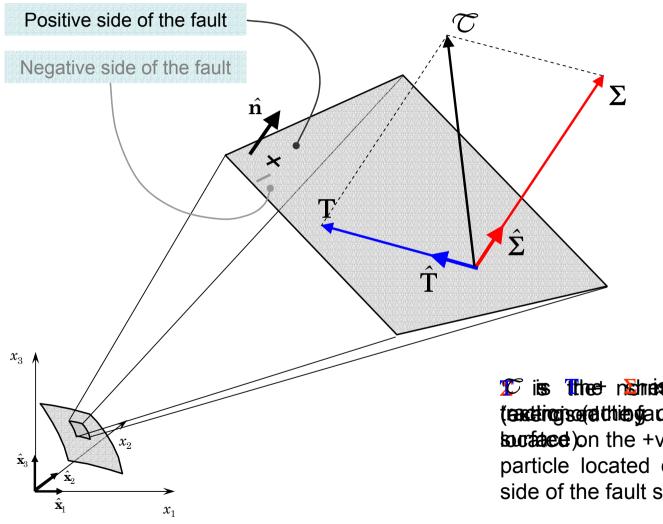
Fault governing laws (constitutive equations)

Notations and symbols



🌮 iss 🕅 theet nichtractional (excerceise (et this ga old styre a fire) et sourfated)on the +ve side on a particle located on the -ve side of the fault surface)

 $\mathcal{C} = \mathbf{T} + \mathbf{\Sigma}$ $\mathcal{C}_{i} = n_{i} \sigma_{ij}^{\text{eff}}$

<u>total</u> traction (acting on the fault surface). *Cauchy*'s formula, where $\mathcal{C} = (\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3)$, $\mathbf{n} = (n_1, n_2, n_3)$ and

$$\sigma_{ij}^{eff} = \sigma_{ij} - p_{fluid} \,\delta_{ij} = \begin{bmatrix} \sigma_{11} - p_{fluid} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} - p_{fluid} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} - p_{fluid} \end{bmatrix}$$

 $T_{j} = n_{i}\sigma_{ij}^{\text{eff}} - n_{j}(n_{i}\sigma_{ij}^{\text{eff}}n_{j}^{\mathsf{T}}) \qquad \text{shear traction}$ $\Sigma_{j} = n_{j}(n_{i}\sigma_{ij}^{\text{eff}}n_{j}^{\mathsf{T}}) \qquad \text{normal traction}$

Fracture Criteria & Constitutive Laws

1. FRACTURE CRITERION

Condition that specify, at a given fault point and at a given time, if there is a rupture or not.

- It can be expressed in terms of energy, in terms of maximum frictional resistence, and so on.
- It is based on (*i*) the *Benioff (1951)* hypothesis: The fracture occours when the stress in a volume reaches the rock strength

or, analogoulsy,

(*ii*) the *Reid* (1910) statement: The fracture takes place when the stress attains a value greater than the rock can endure.

2. CONSTITUTIVE LAW

Analytical relation existing between the components of the stress tensor and physical observable(s), like the slip, the slip velocity, the state variable, etc.

- It is a Fault Boundary Condition (FBC) that controls earthquake dynamics and its complexity in space and in time
- Its simplest form consider only two frictional levels, τ_u and τ_f ; it accounts for stress drop (or stress realease), but the process is instantaneous: there is a singularity at crack tip.
 - Cohesive zone models: Barenblatt (1959a, 1959b), Ida (1972), Andrews (1976a, 1976b). In these models the singularity is removed and the sress release occours over a breakdown zone distance X_b and in a breakdown zone time T_b .
- Friction laws (Rate and State dependent f. l.): Dieterich (1976), Ruina (1980, 1983). They accounts for fault spontaneous nucleation, re – strengthening, healing, etc.

CONSTITUTIVE LAW (continues)

- In full of generality we can express the constitutive (or governing) as:

 $\tau = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, p_f)$

where:

- u is the Slip (i. e. displ. disc.) modulus,
- v is the Slip Velocity modulus (its time der.),
- $\Psi = (\Psi_1, ..., \Psi_N)$ is the State Variable vector,
- *T* is the Temperature (accounting for Ductility, Plastic Flow, Melting and Vaporization),
- *H* is the Humidity,
- λ_c is the Characteristic Length of surface (accounting for Roughness and Topography of asperity contacts),
- *h* is the Hardness,
- *g* is the Gouge (accounting for Surface Consumption and Gouge formation),
- C_e is the Chemical Environment

Strength & Constitutive Laws

1. THE STRENGTH PARAMETER

- Hystorically introduced by Das and Aki (1977a, 1977b) to have a quantitative extimate of the ability to fracture for a fault
- Its expression can be generalized as:

$$S = (\mu_u \sigma_n^{\text{eff}} - \tau_0) / (\tau_0 - \mu_f \sigma_n^{\text{eff}})$$

where μ are the friction coefficient.

- We can also define

2. THE FAULT STRENGTH

 as the parameter that quantify the Strenght in the more general case, in which a fault is described by a rhealistic friction laws

 $S^{fault} = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, p_{fluid})$

$$\tau = \begin{cases} \begin{bmatrix} \mu_u - (\mu_u - \mu_f) \frac{(t - t_r)}{t_0} \end{bmatrix} \sigma_n^{eff} & , t - t_r < t_0 \\ \mu_f \sigma_n^{eff} & , t - t_r \ge t_0 \end{cases} \quad \text{ilaw = 11}$$

Time - weakening Friction Law

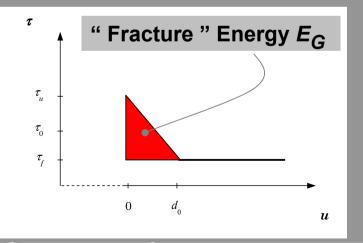
 $t_r = t_r(\xi)$ is the rupture onset time in every fault point ξ .

<u>Andrews (1985)</u>, Bizzarri et al. (2001) and other following Bizzarri's papers

 t_0 is the characteristic time – weakening duration.

1. LINEAR SLIP – WEAKEING LAW

$$\tau = \begin{cases} \left[\mu_u - (\mu_u - \mu_f) \frac{u}{d_0} \right] \sigma_n^{eff} & , u < d_0 \\ \mu_f \sigma_n^{eff} & , u \ge d_0 \end{cases} \quad \begin{array}{c} \text{ilaw} = 21 \\ \text{sw} \\ \text{sw} \end{array}$$



Barenblatt (1959a, 1959b), <u>Ida</u> (<u>1972</u>), Andrews (1976a, 1976b), and many authors thereinafter

 d_0 is the characteristic slip – weakening distance

ilaw = 22

IW

2. NON – LINEAR SLIP – WEAKEING LAW

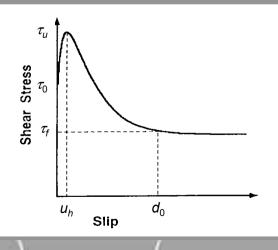
$$\tau = \begin{cases} \left[\mu_u - \frac{\mu_u - \mu_f}{d_0} \left(u - \frac{(1 - p_{IW})d_0}{2\pi} \sin\left(\frac{2\pi u}{d_0}\right) \right) \right] \sigma_n^{eff} &, u < d_0 \\ \mu_f \sigma_n^{eff} &, u \ge d_0 \end{cases}$$

Ionescu and Campillo (1999)

3. NON LINEAR SLIP – WEAKEING LAW WITH SLIP – HARDENING

$$\tau = \left\{ \left[\left(\tau_0 - \mu_f \right) \left(1 + \alpha_{OW} \ln \left(1 + \frac{u}{\beta_{OW}} \right) \right) \right] e^{-\frac{u}{d_0}} + \mu_f \right\} \sigma_n^{eff}$$
 ilaw = 23
OW

$$u_h : \frac{\mathrm{d}\tau}{\mathrm{d}u}\Big|_{u_h} = 0; \qquad \begin{cases} u_h = rd_0 & \text{(e.g. } r = 0.1) \\ \tau(u_h) = \tau_u \end{cases}$$



<u>Ohnaka and Yamashita (1989)</u> and the following papers by Ohnaka and coworkers

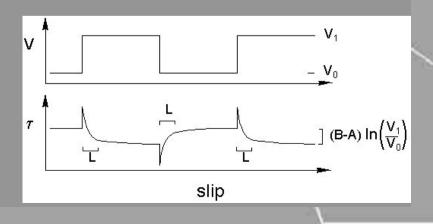
 u_h is associated with the preparatory phase of the imminent macroscopic failure in the cohesive zone. It accounts for micro–cracking

Rate - and State - Dependent Friction Laws

1. DIETERICH IN REDUCED FORMULATION

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \bullet \right) + b \ln \left(\frac{\Psi v_{*}}{L} \bullet \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} \\ \end{cases} \quad \text{DR}$$

However, while in velocity stepping experiments the traction response following the velocity variation is directly controlled by the parameter *L*, its effects are much less evident during the dynamic rupture propagation. Bizzarri and Cocco (2005a)



2. RUINA – DIETERICH

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = - \frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) \end{cases} \\ RD \end{cases}$$

<u>Ruina (1980, 1983)</u>, Beeler et al. (1984), Roy and Marone (1996)

3. DIETERICH – RUINA WITH VARYING NORMAL STR.

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} & \text{ilaw} = 31 \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} - \left(\frac{\alpha_{LD} \Psi}{b \sigma_{n}^{eff}} \right) \frac{d}{dt} \sigma_{n}^{eff} & \text{DR} \end{cases}$$

<u>Linker and Dieterich (1992)</u>, Dieterich and Linker (1992), Bizzarri and Cocco (2005b, 2005c)

4. RUINA – DIETERICH WITH VARYING NORMAL STR.

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} & \text{ilaw} = 32 \\ \frac{d}{dt} \Psi = -\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) - \left(\frac{\alpha_{LD} \Psi}{b \sigma_{n}^{eff}} \right) \frac{d}{dt} \sigma_{n}^{eff} & \text{RD} \end{cases}$$

<u>Linker and Dieterich (1992)</u>, Bizzarri and Cocco (2005b, 2005c)

5. DIETERICH IN REDUCED FORM REGULARIZED

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v + v_{*}}{v + v_{*}} \right) + b \ln \left(\frac{\Psi \left(v - v_{*} \right)}{L} + 1 \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi \left(v + v_{*} \right)}{L} \\ \end{bmatrix} \text{ DE} \end{cases}$$

 v_p is a regularization fault slip velocity

<u>Perrin et al. (1995)</u>, Cocco et al. (2004)

6. RUINA REGULARIZED

$$\tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\begin{array}{c} \frac{v_{*}}{v} & 0 \\ \hline v & 0 \end{array} \right) + \frac{\Psi}{\sigma_{n}^{eff}} \end{array} \right] \sigma_{n}^{eff} \qquad \text{ilaw} = 34$$
$$\frac{d}{dt} \Psi = - \frac{v \underbrace{v}}{L} \left(\Psi + b \ln \left(\begin{array}{c} \frac{v}{v_{*}} & 0 \\ \hline v_{*} & 0 \end{array} \right) \right) \qquad \text{RE}$$

 v_p is a regularization fault slip velocity

Bizzarri (2002, unpublished work)

7. DIETERICH IN REDUCED FORM WITH HEALING

 $\gamma = 1 s$

 t_{fh} is the time for healing (slip duration)

Evolution law proposed by <u>Nielsen et</u> <u>al. (2000)</u> and by Nielsen and Carlson (2000). Used in this form by Cocco et al. (2004)

8. DIETERICH IN REDUCED FORM WITH 2 STATE VAR.

ilaw = 36

DW

<u>Tullis and Weeks (1993)</u>. Used in this form by *Bizzarri (xxxx, unpublished work)*

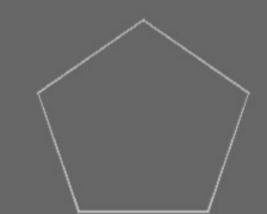
9. PRAKASH - CLIFTON

$$\begin{aligned} \tau &= \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \left(\frac{\mathrm{d}}{\mathrm{d}t} \Psi_{1} + \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{2} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi &= 1 - \frac{\Psi v}{L} \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{1} &= -\frac{v}{L_{1}} \left(\Psi_{1} - \alpha_{PC_{1}} \sigma_{n}^{eff} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{2} &= -\frac{v}{L_{2}} \left(\Psi_{2} - \alpha_{PC_{2}} \sigma_{n}^{eff} \right) \end{aligned}$$

 Ψ_1 and Ψ_2 are additional state variables accountinf for the coupling with effective normal stress. The formulation of friction law is not based on the Amonton – Coulamb law.

Coupling with effective normal stress proposed by <u>Prakash and Clifton</u> (1993) and Prakash (1998). Used in this form by Bizzarri (2005, unpublished work)

This slide is empty intentionally.



Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

isseite gninebrad - qil

* The slip – hardening (SH) phenomenon has been also found in seismological inversion studies (e.g. Quin, 1990; Miyatake, 1992; Mikumo and Miyatake, 1993; Beroza and Mikumo, 1996; Ide, 1997; Bouchon, 1997).