

Notations and symbols

$$
\begin{aligned}
& \tau=\mathrm{T}+\Sigma \\
& \tau_{j}=n_{i} \sigma_{i j}^{e f f}
\end{aligned}
$$

total traction (acting on the fault surface).

Cauchy's formula, where $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right), \mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ and

$$
\sigma_{i j}^{e f f}=\sigma_{i j}-p_{\text {fluid }} \delta_{i j}=\left[\begin{array}{ccc}
\sigma_{11}-p_{\text {fluid }} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22}-p_{\text {fluid }} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}-p_{f l u i d}
\end{array}\right]
$$

$T_{j}=n_{i} \sigma_{i j}^{\text {eff }}-n_{j}\left(n_{i} \sigma_{i j}^{\text {eff }} n_{j}^{\top}\right)$
$\Sigma_{j}=n_{j}\left(n_{i} \sigma_{i j}{ }^{\text {eff }} n_{j}^{\top}\right)$
shear traction
normal traction

1. FRACTURE CRITERION

Comellion that spacty, ak a glyon faule point amel at al glyen lime, fif there is a rugure or not

- It can be expressed in terms of energy, in terms of maximun frictional resistence, and so on.
- It is based on (i) the Benioff (1951) hypothesis: The fracture occours when the stress in a volume reaches the rock strength or, analogoulsy,
(ii) the Reid (1910) statement: The fracture takes place when the stress attains a value greater than the rock can endure.

2. CONSTHTUTIVE LAWV

Anelyifel relelion existing bewesh the comeonents of the siress ierisor and priysiotl obstryble(s), [1ke the sllp, the shp yslocity, ins stale yarla iols elc.

- From a mathematical point of view it is a Fault Boundary Condfion (FBC) that controls earthquake dynamics and its complexity in space and in time.
- Its simplest form consider only two firictional levels, τ_{u} and τ_{f}; it accounts for stress drop (or stress realease), but the process is instantaneous: there is a singularity at crack tip.
- Cohesive zone models: Barenblatt (1959a, 1959b), Ida (1972), Andrews (1976a, 1976b). In these models the singularity is removed and the sress release occours over a breakdown zone distance X_{b} and in a breakdown zone time T_{b}.
- Friction laws (Rate and State dependent f. I.): Dieterich (1976), Ruina (1980, 1983). They accounts for fault spoptaneous nucleation, re - strengthening, healing, etc..

CONSTJTUTIVE LAW (continues)

- "The central issue is whether faults obey simple friction laws, and if so, what is the friction coefficient associated with fault slip " (Scholz and Hanks, 2004).

CONSTJTUTIVE LAW (continues)

- In full of generality we can express the constitutive (or governing) as:

$$
\tau=\mu\left(u, v, \Psi, T, H, \lambda_{c}, h, g, C_{e}\right) \sigma_{n}^{e f f}\left(\sigma_{n}, p_{f}\right)
$$

where:
1st - order dependencies
u is the Slip (i. e. displ. disc.) modulus,
v is the Slip Velocity modulus (its time der.), $\Psi=\left(\Psi_{1}, \ldots, \Psi_{N}\right)$ is the State Variable vector,
T is the Temperature (accounting for Ductility, Plastic Flow, Melting and Vaporization),
H is the Humidity,
λ_{c} is the Characteristic Length of surface (accounting for Roughness and Topography of asperity contacts),
h is the Hardness,
g is the Gouge (accounting for Surface Consumption and Gouge formation),
C_{e} is the Chemical Environment

Strength \& Constitutive Laws

1. THE STRENGTH PARAMETER

- Hystorically introduced by Das and Akil (1977/a, $1977(6)$ to have a quantitative extimate of the ability to fracture for a fault
- Its expression can be generalized as:

$$
S=\left(\mu_{u} \sigma_{n}^{\text {eff }}-\tau_{0}\right) /\left(\tau_{0}-\mu_{f} \sigma_{n}^{\text {eff }}\right)
$$

where μ are the friction coefficient.

- We can also define

2. THE FAULJ STRENGTH

- Is the parameter that quantify the stirenght in the more general case, in which a fault is described by a rhealistic firiction laws

$$
S^{\text {fault }}=\mu\left(u, v, \Psi, T, H, \lambda_{c}, h, g, C_{e}\right) \sigma_{n}^{\text {eff }}\left(\sigma_{n}, p_{\text {fluid }}\right)
$$

Time-weakening Friction Law

$$
\tau= \begin{cases}{\left[\mu_{u}-\left(\mu_{u}-\mu_{f}\right) \frac{\left(t-t_{r}\right)}{t_{0}}\right] \sigma_{n}^{e f f}} & , t-t_{r}<t_{0} \\ \mu_{f} \sigma_{n}^{e f f} & , t-t_{r} \geq t_{0}\end{cases}
$$

```
ilaw = 11
```

$t_{r}=t_{r}(\xi)$ is the rupture onset time in every fault point ξ (when $u>0$).

Andrews (1985), Bizzarri et al. (2001) and other following Bizzarri' s papers
t_{0} is the characteristic time weakening duration.

Position - weakening Friction Law

$$
\tau= \begin{cases}{\left[\mu_{u}-\left(\mu_{u}-\mu_{f}\right) \frac{x}{R_{0}}\right] \sigma_{n}^{e f f}} & ,-R_{0}<x<0 \\ \mu_{f} \sigma_{n}^{e f f} & ,-L<x<-R_{0}\end{cases}
$$

x is the position on the fault Palmer and Rice (1973)
(extending up to $-L$).
R_{0} is the characteristic position weakening distance.

Slip - Dependent Friction Laws

1. $L I N E A R S L I P-W I A K E I N G L A W$

$$
\tau= \begin{cases}{\left[\mu_{u}-\left(\mu_{u}-\mu_{f}\right) \frac{u}{d_{0}}\right] \sigma_{n}^{e f f}} & , u<d_{0} \\ \mu_{f} \sigma_{n}^{e f f} & , u \geq d_{0}\end{cases}
$$

```
                                    ilaw = 21
```

2. $N O N$ - L NEAR S S S P - W

$$
\tau= \begin{cases}{\left[\mu_{u}-\frac{\mu_{u}-\mu_{f}}{d_{0}}\left(u-\frac{\left(1-p_{I W}\right) d_{0}}{2 \pi} \sin \left(\frac{2 \pi u}{d_{0}}\right)\right)\right] \sigma_{n}^{e f f}} & , u<d_{0} \\ \mu_{f} \sigma_{n}^{\text {eff }} & , u \geq d_{0}\end{cases}
$$

Ionescu and Campillo (1999)

 HARDENJNG

$$
\tau=\left\{\left[\left(\frac{\tau_{0}}{\sigma_{n}^{\text {eff }}}-\mu_{f}\right)\left(1+\alpha_{O W} \ln \left(1+\frac{u}{\beta_{O W}}\right)\right)\right] \mathrm{e}^{-\frac{u}{d_{0}}}+\mu_{f}\right\} \sigma_{n}^{\text {eff }}
$$

$$
u_{h}:\left.\frac{\mathrm{d} \tau}{\mathrm{~d} u}\right|_{u_{h}}=0 ; \quad\left\{\begin{aligned}
u_{h} & =r d_{0} \quad(\text { e.g. } r=0.1) \\
\tau\left(u_{h}\right) & =\tau_{u}
\end{aligned}\right.
$$

Ohnaka and Yamashita (1989) and the following papers by Ohnaka and coworkers
u_{h} is associated with the preparatory phase of the imminent macroscopic failure in the cohesive zone. It accounts for micro-cracking

Rate - and State - Dependent

Friction Laws

1. DJEJERTMH IN REDUCED FORJUUATJION

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v} \bigcirc\right)+b \ln \left(\frac{\Psi v_{*}}{L} \bigcirc\right)\right] \sigma_{n}^{e f f} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi & =1-\frac{\Psi v}{L}
\end{aligned}\right.
$$

```
ilaw = 31
```

However, while in velocity stepping experiments the traction response following the velocity variation is directly controlled by the parameter L, its effects are much less evident during the dynamic rupture propagation.

Bizzarri and Cocco (2005)

Response to an abrupt jump in load

2. RUUNAA - DJETERJ/CH

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v}\right)+b \ln \left(\frac{\Psi v_{*}}{L}\right)\right] \sigma_{n}^{\text {eff }} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \Psi & =-\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L}\right)
\end{aligned}\right.
$$

Ruina (1980, 1983), Beeler et al. (1984), Roy and Marone (1996)
3. DJETERNGH-RUJNA WIJH VARYING NORNAL STR

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v}\right)+b \ln \left(\frac{\Psi v_{*}}{L}\right)\right] \sigma_{n}^{e f f} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi & =1-\frac{\Psi v}{L}-\left(\frac{\alpha_{L D} \Psi}{b \sigma_{n}^{e f f}}\right) \frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{n}^{e f f}
\end{aligned}\right.
$$

```
ilaw = 31
decis10=T
    DR
```

Linker and Dieterich (1992), Dieterich and Linker (1992), Bizzarri and Cocco (2006b, 2006c)
4. RUJNA - DJETERICH WIJH VARYING NORNAL STR

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v}\right)+b \ln \left(\frac{\Psi v_{*}}{L}\right)\right] \sigma_{n}^{e f f} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi & =-\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L}\right)-\left(\frac{\alpha_{L D} \Psi}{b \sigma_{n}^{e f f}}\right) \frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{n}^{e f f}
\end{aligned}\right.
$$

$$
\text { ilaw = } 32
$$

decis10=T
RD

Linker and Dieterich (1992) , Bizzarri and Cocco (2006b, 2006c)

5. DJEJERTCH IN REDUCED FORJM REGULARIZED

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v+v_{*}}{v \sqrt{+v_{*}}}\right)+b \ln \left(\frac{\Psi\left(v \sqrt{-v_{n}}\right)}{L}+1\right)\right] \sigma_{n}^{e f f} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi & =1-\frac{\Psi\left(v \sqrt{\left(U_{i}\right)}\right)}{L}
\end{aligned}\right.
$$

Perrin et al. (1995), Cocco et al. (2004)

6. RUJNA RJEGULARIZED

$$
\begin{aligned}
& 4 \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \Psi=-\frac{v+\varepsilon_{i}}{L}\left(\Psi+b \ln \left(\frac{v-v_{i}}{v_{*}-v_{i}}\right)\right)
\end{aligned}
$$

7. DJETERNGH NN REDUCED FORNM MJJH HEALING

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v}+1\right)+b \ln \left(\frac{\Psi v_{*}}{L}+1\right)\right] \sigma_{n}^{e f f} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi & =\frac{\gamma_{f h}-\Psi}{v_{\text {en }}}-\frac{\Psi v}{L}
\end{aligned}\right.
$$

$$
\text { ilaw }=35
$$

$$
\mathrm{DH}
$$

$\gamma_{f h}=1 \mathrm{~s}$

$t_{f h}$ is the time for healing (slip duration)

Evolution law proposed by Nielsen et al. (2000) and by Nielsen and Carlson (2000). Used in this form by Cocco et al. (2004)
9. PRAKKASH-CLJFION

$$
\left\{\begin{aligned}
\tau & =\left[\mu_{*}-a \ln \left(\frac{v_{*}}{v}\right)+b \ln \left(\frac{\Psi v_{*}}{L}\right)\right]\left(\frac{\mathrm{d}}{\mathrm{~d} t} \Psi_{1}+\frac{\mathrm{d}}{\mathrm{~d} t} \Psi_{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \Psi & =1-\frac{\Psi v}{L} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi_{1} & =-\frac{v}{L_{1}}\left(\Psi_{1}-\alpha_{P C_{1}} \sigma_{n}^{e f f}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \Psi_{2} & =-\frac{v}{L_{2}}\left(\Psi_{2}-\alpha_{P C_{2}} \sigma_{n}^{e f f}\right)
\end{aligned}\right.
$$

Ψ_{1} and Ψ_{2} are additional state variables accountinf for the coupling with effective normal stress. The formulation of friction law is not based on the Amonton - Coulamb law.

Coupling with effective normal stress proposed by Prakash and Clifton (1993) and Prakash (1998). Used in this form by Bizzarri (2005, unpublished work)

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

Silinglest ficiction nnodels

At a particular fault point ξ (following Savage and Wood, 1971; Scholz, 1990)

Maximum (or upper, or yield) stress
 Kinetic (or frictional) stress

Strength excess:

$$
\tau_{u}-\tau_{0}=0
$$

Dynamic stress drop: $\Delta \tau_{d}=\tau_{0}-\tau_{f}$

Rupture arrest

Sinnolest ficiction noodels

At a particular fault point ξ (following Savage and Wood, 1971; Scholz, 1990)

Maximum (or upper, or yield) stress
Initial stress
Kinetic (or frictional) stress
Residual stress

Strength excess:

$$
\tau_{u}-\tau_{0}
$$

Dynamic stress drop: $\Delta \tau_{d}=\tau_{0}-\tau_{f}$
Static stress drop: $\quad \Delta \tau_{s}=\tau_{0}-\tau_{2}$
Breakdown str. drop: $\Delta \tau_{b}=\tau_{u}-\tau_{f}$

- Savage and Wood (1971) also define:

Mean stress: $\quad<\tau>=1 / 2\left(\tau_{u}+\tau_{2}\right)$
Seismic efficiency: $\quad \eta=E_{s} / E$, where:
E_{s} is the seismic energy E is the total available energy

Apparent stress: $\quad \tau_{a}=\eta\langle\tau\rangle$

- Direct observation of the absolute stress near an earthquake is not feasible, but it is possible (Wyss and Brune, 1968) calculate τ_{a} and stress drop from physical observables.

The conlesive zone

In the target location we can extimate:

$$
X_{b}=105 \mathrm{~m} \quad T_{b}=0.04 \mathrm{~s}
$$

From these quantities:
$v_{\text {rupt }}=X_{b} / T_{b}=2625 \mathrm{~m} / \mathrm{s}$

Slj ρ - fascolerifug efitct

 1997).

