# Fault interaction and stress triggering

# Types of interactions

| Interaction type | Perturbation<br>effects                                                                                                   | Spatial scale                        | Temporal scale           |
|------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|
| Dynamic          | - Rupture<br>propagation;<br>- Arrest                                                                                     | 1 – 60 Km                            | 1 – 20 s                 |
| Static           | <ul> <li>Earthquake<br/>triggering;</li> <li>Off – faults<br/>aftershocks;</li> <li>Sesimicity rate<br/>change</li> </ul> | 1 – 60 Km<br>1 – 60 Km<br>1 – 100 Km | minutes – few<br>years   |
| Post – seismic   | Long – term<br>stress changes                                                                                             | 10 – 1000 Km                         | few years –<br>centuries |

# **Coulomb Failure Function**

Following the Coulomb' s failure assumption we define a Coulomb Failure Stress as (e. g. *Jaeger and Cook*, 1969):

$$CFS = \|\mathbf{T}\| + \mu(\sigma_n + p_{fluid}) - C$$

where:  $\|\mathbf{T}\|$  is the shear tration modulus,

 $\mu$  is the coefficient of friction,

- $\sigma_n$  is the normal stress (positive in tension),
- $p_{fluid}$  is the pore fluid pressure,
- *C* is the cohesion.

Assuming  $\mu$  and C constant over time, we have the Coulomb Failure Stress change:

$$\Delta CFS = \Delta \|\mathbf{T}\| + \mu (\Delta \sigma_n + \Delta p_{fluid})$$

where it has been assumed an isotropic failure plane.

 $\triangle CFS$  is used to evaluate if one earthquake brought another earthquake closer to, or farther from, failure:

 $\triangle CFS > 0 \Rightarrow$  fault plane loaded  $\Rightarrow$  closer to failure  $\triangle CFS < 0 \Rightarrow$  fault plane relaxed  $\Rightarrow$  farther from failure (Stress Shadow)

Neglecting the spatial dependence in tractions, are:

 $T(t) = T(0) + \Delta T(t) \qquad \sigma_n(t) = \sigma_n(0) + \Delta \sigma_n(t) \qquad p_{fluid}(t) = p_{fluid}(0) + \Delta p_{fluid}(t)$ Therefore we can write:

$$\Delta CFS(t) = \| \mathbf{T}(0) + \Delta \mathbf{T}(t) \| - \| \mathbf{T}(0) \| + \mu (\Delta \sigma_n(t) + \Delta p_{fluid}(t))$$

 $\Delta \|\mathbf{T}\|$  is the change in shear stress due to the first earthquake and it is resolved in the slip direction of the second earthquake;

 $\Delta \sigma_n$  is the change in normal stress due to the first earthquake and it is resolved in the direction orthogonal to the fault plane of the second earthquake.

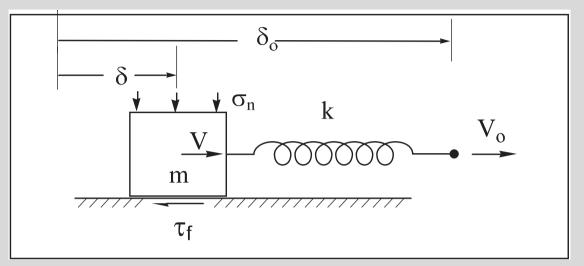
#### Stress changes approaches (after Harris, 1998)

| Method                                                 | Parameters<br>Required                                                                                                                                                                                        | Successes                                                                                                                                          | Problems                                                                                                                                                   | Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Static Coulomb failure<br>stress (elastic)<br>ΔCFS     | mainshock static slip<br>model, $\mu'$ , and<br>$\Delta\sigma$ , $\Delta\tau$ , $\hat{\tau}$ , on<br>known fault<br>planes and known<br>slip directions*                                                      | ΔCFS > 0 explains locations<br>of aftershocks that do<br>occur, ΔCFS < 0 predicts<br>shadows (timing and<br>locations); may give<br>rupture extent | many $\Delta CFS > 0$ faults<br>do not experience<br>subsequent large.<br>earthquakes, so it is<br>hard to use $\Delta CFS >$<br>0 as a predictive<br>tool | Smith and Van de Lindt [1969],<br>Rybicki [1973], Yamashina<br>[1978], Stein and Lisowski<br>[1983], Simpson et al. [1988],<br>Yoshioka and Hashimoto<br>[1989a, b], Reasenberg and<br>Simpson [1992], etc. (see text<br>for more authors); Crider<br>and Pollard [this issue],<br>Hardebeck et al. [this issue],<br>Haris and Simpson [this<br>issue], Kagan and Jackson<br>[this issue], Nostro et al. [this<br>issue], Nostro et al. [this<br>issue] |
| Dynamic Coulomb<br>failure stress<br>(elastic) ΔCFS(t) | mainshock dynamic<br>fault slip model,<br>$\mu'$ , and $\Delta\sigma(t)$ ,<br>$\Delta\tau(t)$ on known<br>fault planes and<br>known slip<br>directions <sup>*</sup>                                           | may predict rupture lengths,<br>given fault geometry                                                                                               | does not explain long<br>delays (more than<br>tens of seconds)<br>between subevents;<br>needs more testing                                                 | Harris et al. [1991], Harris and<br>Day [1993], Hill et al. [1993],<br>Gomberg and Bodin [1994],<br>Spudich et al. [1994, 1995],<br>Cotton and Coutant [1997],<br>etc.                                                                                                                                                                                                                                                                                  |
| Static rate and state                                  | mainshock static slip<br>model, $\Delta\sigma$ , $\Delta\tau$ , $\sigma$ ,<br>$\tau$ , $\dot{\tau}$ , $A$ , $B$ , $D_c$ , $H$ ,<br>time of last event,<br>recurrence interval<br>(to determine slip<br>speed) | seems to predict aftershock<br>duration                                                                                                            | needs more testing;<br>rate-and-state<br>parameters defined<br>in the laboratory, but<br>not known for the<br>Earth                                        | Dieterich [1994], Dieterich and<br>Kilgore [1996], Roy and<br>Marone [1996], Gross and<br>Bürgmann [1998], Gomberg et<br>al. [this issue], Harris and<br>Simpson [this issue], and Toda<br>et al. [this issue]                                                                                                                                                                                                                                          |
| Dynamic rate and state                                 | mainshock dynamic<br>fault slip model,<br>$\Delta\sigma(t), \Delta\tau(t), \sigma, \tau,$<br>$\dot{\tau}, A, H$ , time of<br>last event, slip<br>speed                                                        | may explain remote triggering                                                                                                                      | needs more testing; still<br>need to define rate-<br>and-state parameters<br>in the Earth; inertial<br>terms not yet<br>included in models                 | Dieterich [1987] and Gomberg et<br>al. [1997, this issue]                                                                                                                                                                                                                                                                                                                                                                                               |
| Static Coulomb failure<br>stress (viscoelastic)        | mainshock slip<br>model, Maxwell<br>relaxation time,<br>relaxing layer<br>thickness                                                                                                                           | may explain time delays<br>between mainshock and<br>subsequent events, also<br>irregular recurrence<br>intervals                                   | needs more testing,<br>also needs more<br>geodetic data to<br>confirm viscoelastic<br>parameters                                                           | Drnowska et al. [1988], Roth<br>[1988], Ghosh et al. [1992],<br>Ben-Zion et al. [1993], Taylor<br>et al. [1996], Pollitz and Sacks<br>[1997], Freed and Lin<br>[this issue]                                                                                                                                                                                                                                                                             |
| Fluid flow                                             | mainshock slip<br>model,<br>permeability tensor                                                                                                                                                               | may explain time delays<br>between mainshock and<br>subsequent events                                                                              | may not be successful<br>at predicting both<br>the spatial and<br>temporal aftershock<br>pattern                                                           | Li et al. [1987], Hudnut et al.<br>[1989], Noir et al. [1997], etc.;<br>Seeber et al. [this issue]                                                                                                                                                                                                                                                                                                                                                      |

\*If the aftershock fault planes are not known, then some authors assume optimally oriented faults; this requires knowledge of the background stress directions,

# 1 – D Spring – slider model

# **Numerical Method: RK SS**



m  $\ddot{\delta} = k (\delta_0 - \delta) - \tau_f + \Delta \tau$ ,  $\Delta \tau(t)$  perturbazione  $\tau_f = resistenza di attrito$ 

#### **Reologia:** attrito rate- and state-dependent

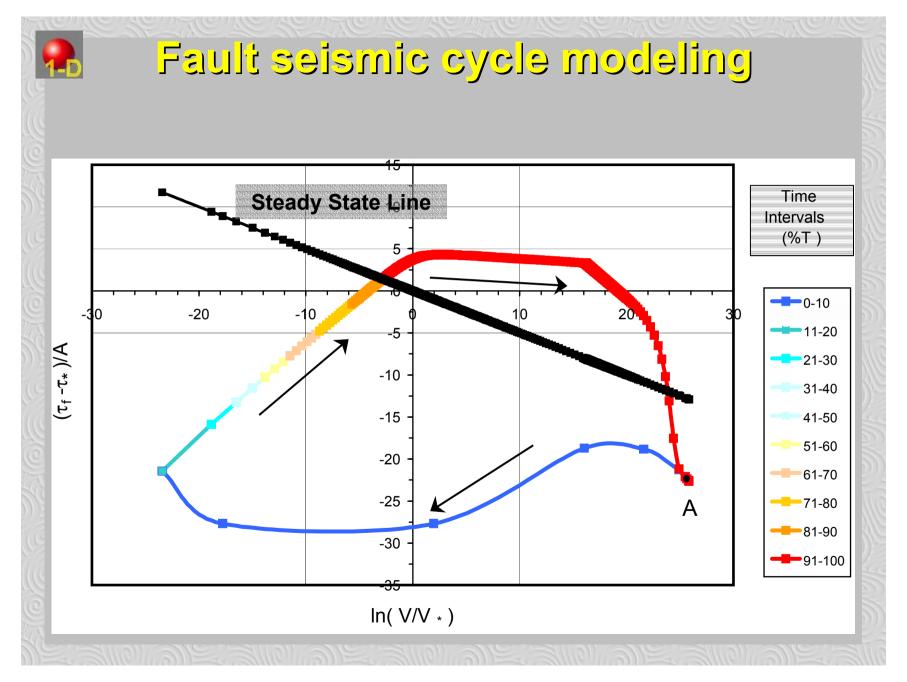
 $\theta$  ( $\Phi$ ) = variable di stato della superficie, V =  $\dot{\delta}$  velocità

A - Ruina-DieterichB - Dieterich - Ruina $\tau_r = \tau_* + \theta + A \ln \left(\frac{V}{V_*}\right)$  $\tau_r = \tau_* - A \ln \left(\frac{V_*}{V}\right) + B \ln \left(\frac{\Phi V_*}{L}\right)$  $\frac{d\theta}{dt} = -\frac{V}{L} \theta + B \ln \frac{V}{V_*}$  $\frac{d\Phi}{dt} = 1 - \frac{\Phi V}{L}$ 

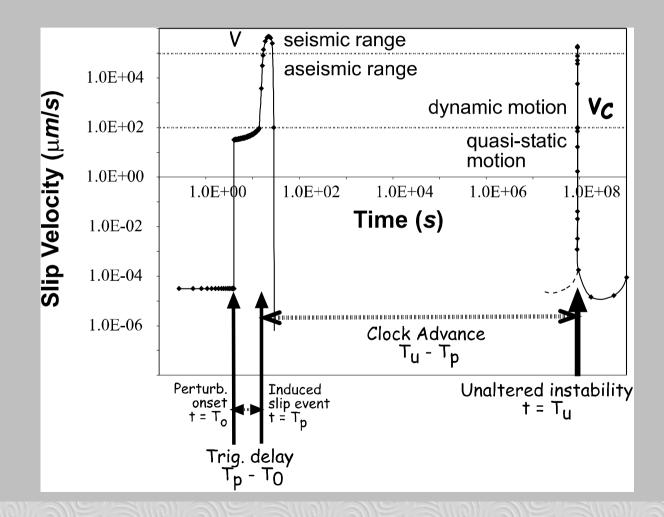
Stato del sistema: (v(t), d (t), t<sub>f</sub>(t)) o condizioni mecc. faglia

<mark>appross. q. statica</mark> V<V<sub>C</sub>=0.1 mm/s  $(V (t), t_{f}(t))$ 

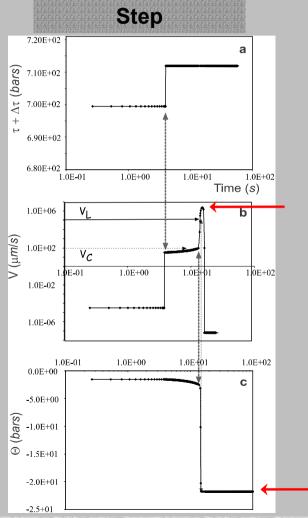
Inertia is negligible and the system passes through a sequence of equilibrium states

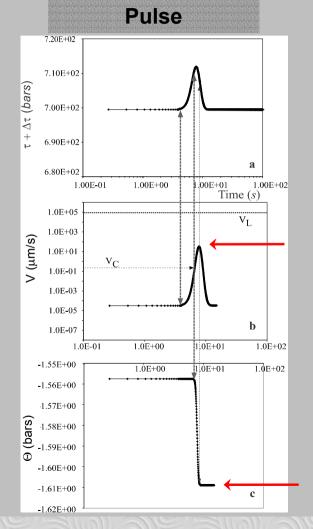


Analytical stress perturbations

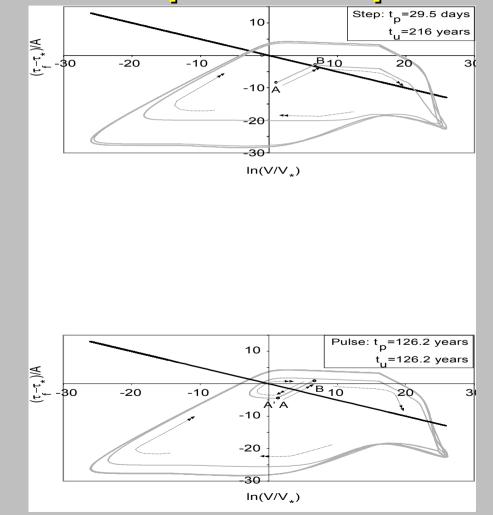


### Analytical stress perturbations The step and the pulse #1



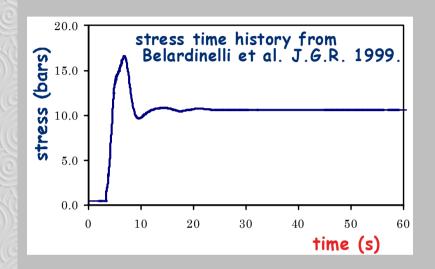


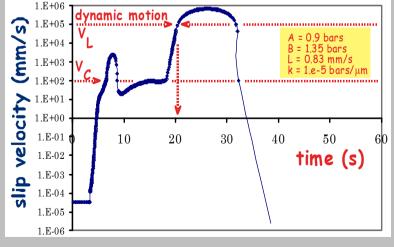
#### Analytical stress perturbations The step and the pulse #2



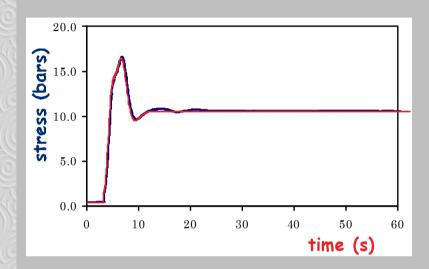
000

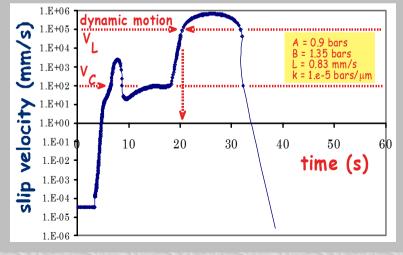
### Realistic stress perturbations Syntetic seismograms #1





### Realistic stress perturbations Syntetic seismograms #2





Fault interaction by dynamic stress transfer: the case of the 2000 South lceland seismic sequence

Part I

# Motivations and Goals

To evidence the eventual effect of the transient part of the coseismic stress changes due to the 17 June 2000, M 6.6 South Iceland earthquake;

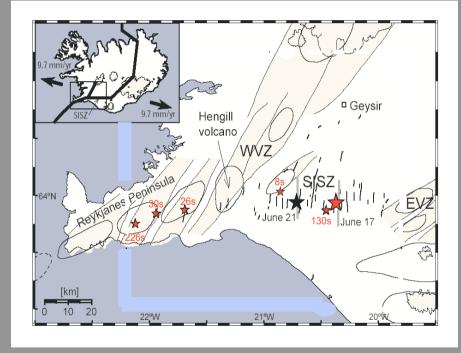
The debate on the triggering potential of transient stress changes is still open;

> The observational evidences are difficult and few.

#### The choice of the events

- O The largest events ( M ~ 5 ) occurring in the first five minutes
- ➢ 8s, 26s, 30s, 130s, 226s
- O in intermediate far field
- ≻ 🎽, 26s, 30s, 1∭s, 226s
- O that reasonably are not secondary aftershocks
- ➢ 26s, 30s,





### The 26 s and 30 s events

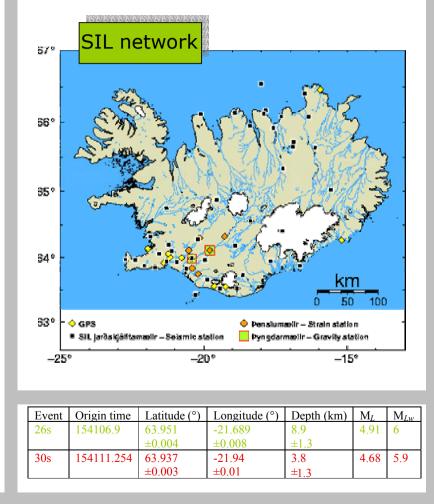
- They were not detected teleseismically.
- 26 s (64 km far)

-Not detected by DInSAR.

-Known fault.

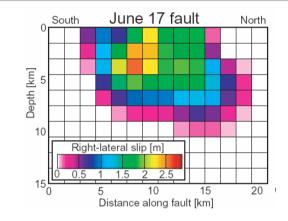
- 30 s ( 77 km far )
  - Waveforms partially obscured by the first event ( mechanism uncertain )
  - Detected by DInSAR and surface effects.
  - August 2003: M 5 event on N-S fault with the same epicenter.

From SIL seismograms the 26 s and 30 s events occurred at the arrival (later than the first) of shear waves traveling at 2.5 km/s at their location.



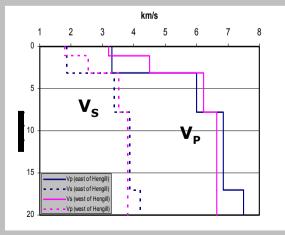
### Parameters used to compute the dynamic stress

- Slip distribution from geodetic data • (Arnadottir et al. 2003). Right lateral strike slip fault, strike 7° E, dip 86°.
- Rupture history: bilateral Haskell ٠ model, rise time: 1-2 s, rupture velocity: 2.5 km /s.
- 2 crustal models with 4 layers: ٠



| Depth   | VP     | Vs     | Density              |
|---------|--------|--------|----------------------|
| (km)    | (km/s) | (km/s) | (kg/m <sup>3</sup> ) |
| 0-3.1   | 3.3    | 1.85   | 2300                 |
| 3.1-7.8 | 6.0    | 3.37   | 2900                 |
| 7.8-17  | 6.85   | 3.88   | 3100                 |
| >17     | 7.5    | 4.21   | 3300                 |

| Depth   | VP     | Vs     | Density              |
|---------|--------|--------|----------------------|
| (km)    | (km/s) | (km/s) | (kg/m <sup>3</sup> ) |
| 0-1.1   | 3.2    | 1.81   | 2300                 |
| 1.1-3.1 | 4.5    | 2.54   | 2900                 |
| 3.1-7.8 | 6.22   | 3.52   | 3100                 |
| >7.8    | 6.75   | 3.8    | 3300                 |



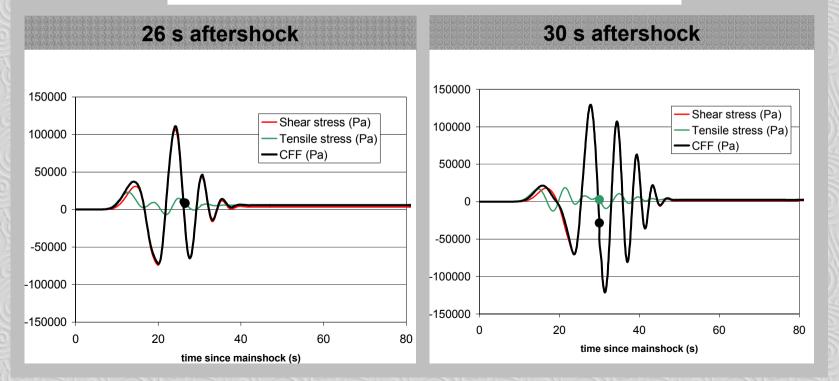
#### West of Hengill

East of Hengill

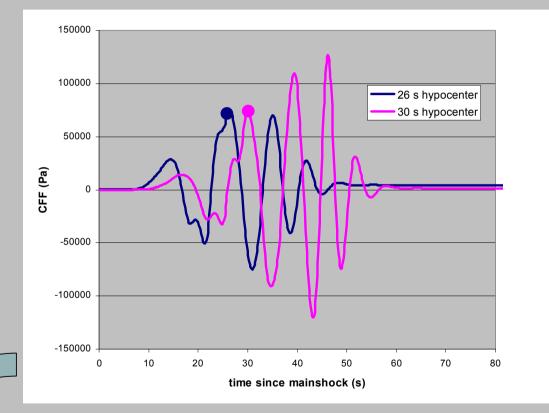
### Dynamic stresses at the two hypocenters

- O Nord Sud vertical right lateral faults
- $\bigcirc \Delta CFF = \Delta \tau + \mu (1 B) \Delta \sigma_n$ , with  $\mu = 0.75$ , B = 0.47

O Rise time: 1.6 s

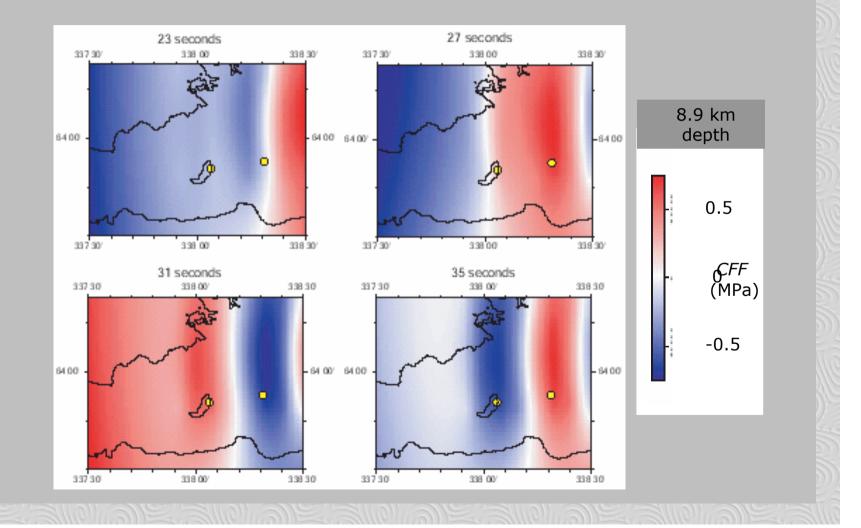


### <u>ACFF(t) at the two hypocenters</u>



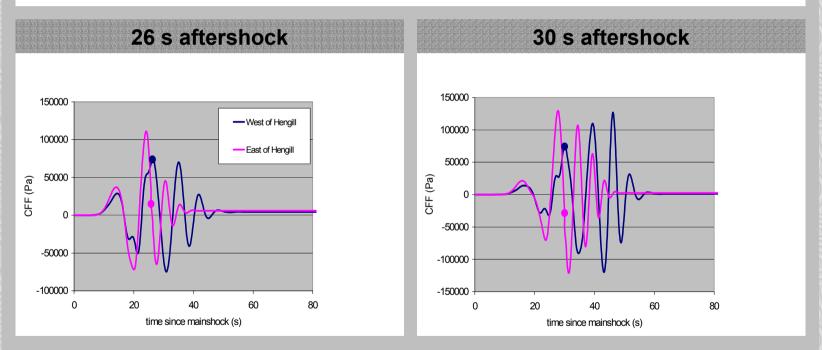
Time separation between the events and between stress peaks comparable.

### Snapshots of dynamic stress

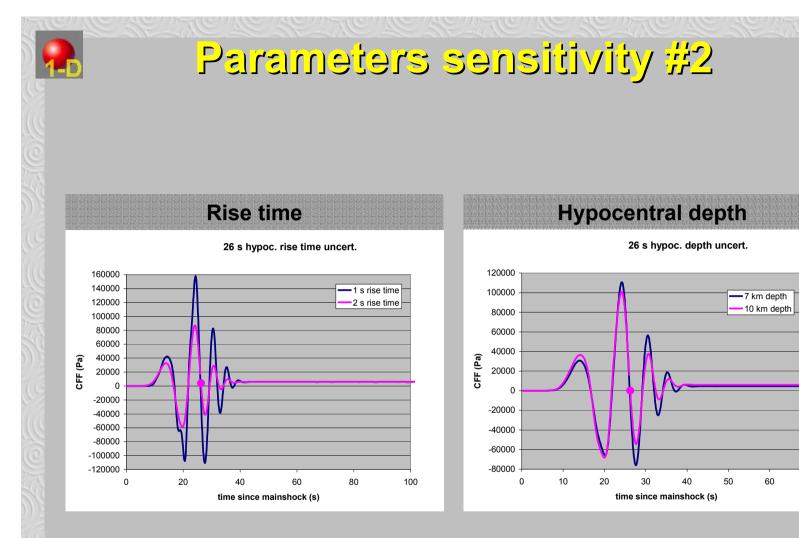


# Parameters sensitivity #1

- Stress at each hypocenter is affected by uncertain parameters such as the crustal model, rise time and the hypocentral depth.
- Crustal model



The origin times (from mainshock) of the two events remain at, or follow closely the second CFF peak for ~ 1 - 2 s rise time.



70

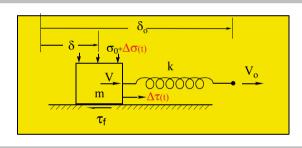
Uncertainties in stress amplitudes.

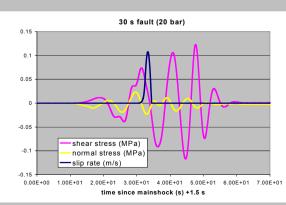
### The fault response

- We study the fault response to the stress changes as evaluated at the two hypocenters with varying the parameters within their uncertaintes;
- We use a spring-slider model with rate- and state-dependent friction for variable effective normal stress  $\sigma_n^{eff}$ ;
- The system is perturbed either in shear stress and normal stress ( $\Delta \tau(t)$ ,  $\Delta \sigma_n^{eff}(t)$ );
- We investigate the possibility of instantaneous triggering (during the transient stress perturbation).

Dieterich and Linker (1992)

$$\tau = \left[ \mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi_{v_*}}{L}\right) \right] \sigma_n^{eff}(t)$$
$$\frac{d}{dt} \Psi = 1 - \frac{\Psi_v}{L} - \alpha_{LD} \frac{\Psi \dot{\sigma}_n^{eff}}{b}$$
$$\alpha_{LD} = 0 \implies \sigma_n^{eff} = \sigma_n^{eff}(0)$$





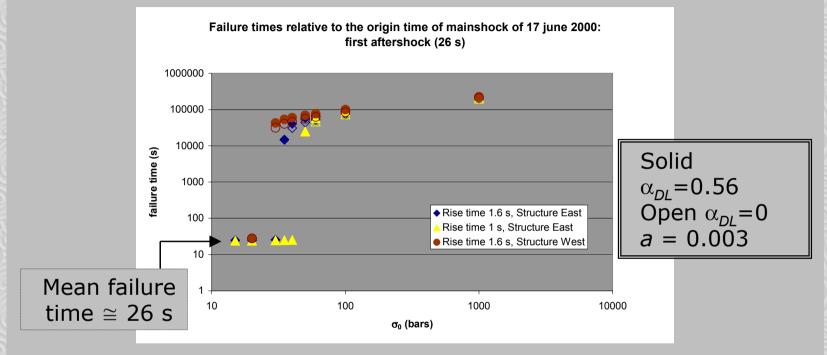
### The instantaneous trigger

- $h \sim 10$  km linear fault dimension,
- standard values of rheological parameters (  $\mu_* = 0.7$ , L = 1 mm, b = 0.01),
- $v_0 = 2 \text{ cm/yr}$  (spreading rate in the SISZ),
- fault in close to failure conditions (100% steady state i unperturbed failure expected at less than 2 yr from June 17, 2000)
- The fault tends to fail within 1 s after a peak in CFF, as evaluated at the two hypocenters

#### if

- 1. the initial effective normal stress  $\sigma_0$  is enough low, so that the shear stress perturbation  $\Delta \tau$  at that peak is much larger than  $a(\sigma_0 + \Delta \sigma)$
- 2. and the direct effect of friction *a* is enough low to keep fault unstable (  $k/k_{crit} < 1$  ) for low values of  $\sigma_0$ .

### stlust bedrutreq ent to semit erulis?



For *a* ≤ 0.003 and  $\sigma_0 \cong$  20 bar, we obtained instantaneous trigger within 1 second after the second peak of CFF, as expected for the two aftershocks in the SISZ.

>For a = 0.003 and  $\sigma_0 > \gamma 20$  bar,  $1 < \gamma < 10$  (increasing with the amplitude of the second peak of  $\Delta \tau$ ) the trigger is not instantaneous (failure time > 4 hours).

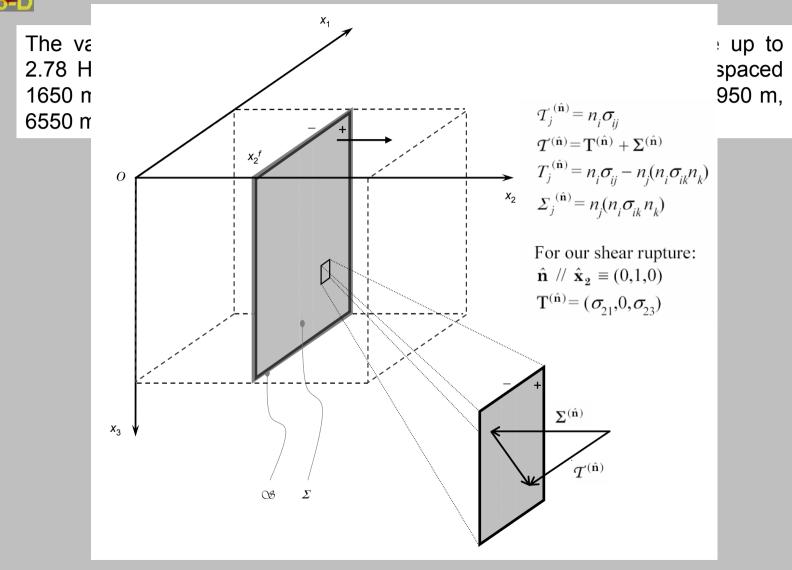


- The 26 and 30 s events occurred near one of the important geothermal areas of Iceland;
- They were neglibly affected by static stress changes;
- They followed closely a peak of positive CFF;
- These results favour the hypothesis of dynamic triggering;
- Dynamic models of fault responses can explain observations for low values of effective normal stress (near lithostatic pore pressure).

Fault interaction by dynamic stress transfer: the case of the 2000 South lceland seismic sequence

Part II

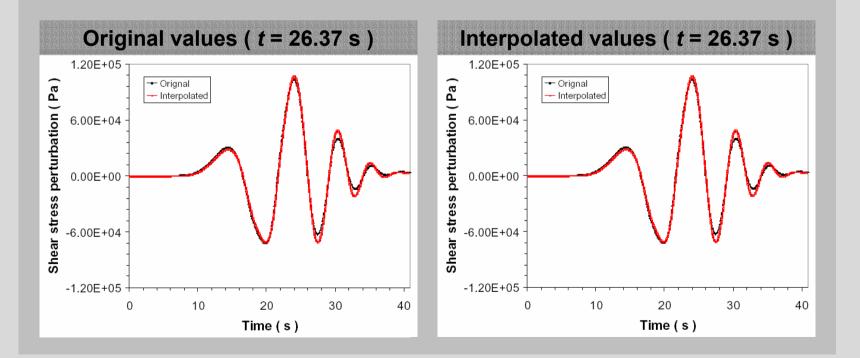






The spatial sampling of the receiver grid is <u>not</u> sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a  $C^2$  cubic spline to interpolate  $\Delta \sigma_{ij}$  in space and in time.





At time *t*, in each fault node, the dynamic load is:  $\mathcal{L}_i = f_{ri} + T_{0i} + \Delta \sigma_{2i}$  (*i* = 1 and 3).

 $T_{0i}$  are the components of the initial traction  $(T_0(x_1, x_3) = \tau_0(x_1, x_3)(\cos(\varphi_0), 0, \sin(\varphi_0)))$ 

 $f_{ri}$  are the components of the load (namely the contribution of the restoring forces,  $f_r$ ) exerted by the neighboring points:

 $f_{ri} = (M^- f_i^+ - M^+ f_i^-)/(M^+ + M^-),$ 

where  $M^+$  and  $M^-$  are the masses of the "+" and "-" half split-node of the fault plane  $\Sigma$  and **f**<sup>+</sup> is the force acting on partial node "+" caused by deformation of neighbouring elements located in the "-" side of S (and viceversa for **f**<sup>-</sup>).

 $\{\Delta \sigma_{2i}\}$  are coupled to the components of the fault friction  $T_i$  via

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_1 = \alpha [\mathcal{L}_1 - T_1]$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_3 = \alpha [\mathcal{L}_3 - T_3]$$

where  $\alpha \equiv \mathcal{A} ((1/M^+) + (1/M^-))$ ,  $\mathcal{A} = \Delta x_1 \Delta x_3$ .  $T_i$  express on the governing law.

### etniertenco lencitevreedO

#### 1) Perturbed rupture time $t_r = 25.9 \pm 0.1 \text{ s}$

2) Hypocenter (63.951  $\pm$  0.004 °N, 21.689  $\pm$  0.008 °W, 8.9  $\pm$  1.3 Km)  $\leftrightarrow$  on fault coordinates of (16500  $\pm$  450, 8900  $\pm$  1300) m (Antonioli et al., 2005)

Green: All Relocated Events within the Fault Orange: Relative Error in Lat, Lon and Depth < 100m

63.90

A

Latitude

Depth [km]

3) From the aftershocks distribution shown in Hjaltadottir and Vogfjord (2005) we consider the seismic part of the fault (*A*) limited in latitude between 63.890 °N and 63.951 °N (in the case of Nord–South fault this corresponds to [9700, 16500] m in strike direction) and limited in depth between 5400 m and 7400 m

#### Upper bound estimates:

 $M_0 = 1.23 \times 10^{15} \ A^{3/2} = 6.15 \times 10^{16} \text{ Nm};$ Av. fault slip:  $\langle u \rangle_A = M_0 / (\rho v_S^2 A) = 0.12 \text{ m};$ Av. stress drop:  $\langle \Delta \tau \rangle_A = 2M_0 / (\pi W_A L_A) = 1.44 \text{ MPa}$ 

4)  $M_w \ge 5$  (Arnadottir et al., 2006; Vogfiord, 2003)  $\Rightarrow M_0 \cong 3.2 \times 10^{16}$  Nm

### Results with DR law – homogeneous

#### Dieterich - Ruina governing law

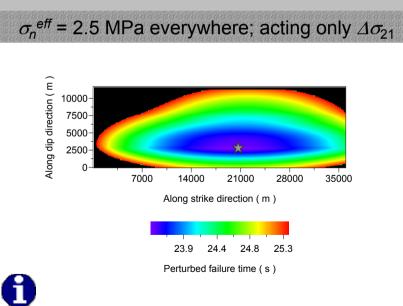
$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[ \mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

 $\frac{\mathrm{d}}{\mathrm{d}t}\Psi = 1 - \frac{\Psi v}{L}$  Can be neglected (see Antonioli et al., 2005)

#### **Perturbed rupture times**

$$v(x_1, x_3, t) \ge v_1 \implies t_p(x_1, x_3) = t$$

 $v_l = 0.1$  m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)



 $t_p^{min}$  = 23.47 s @ (20700,2900) m  $M_0$  = 2.37 x 10<sup>19</sup> Nm Whole fault

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )

### Results with DR law – homogeneous

#### Dieterich - Ruina governing law

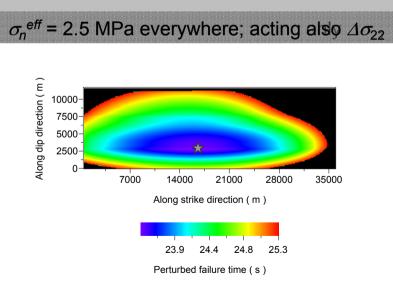
$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[ \mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

 $\frac{d}{dt}\Psi = 1 - \frac{\Psi v}{L}$  Can be neglected (see Antonioli et al., 2005)

#### **Perturbed rupture times**

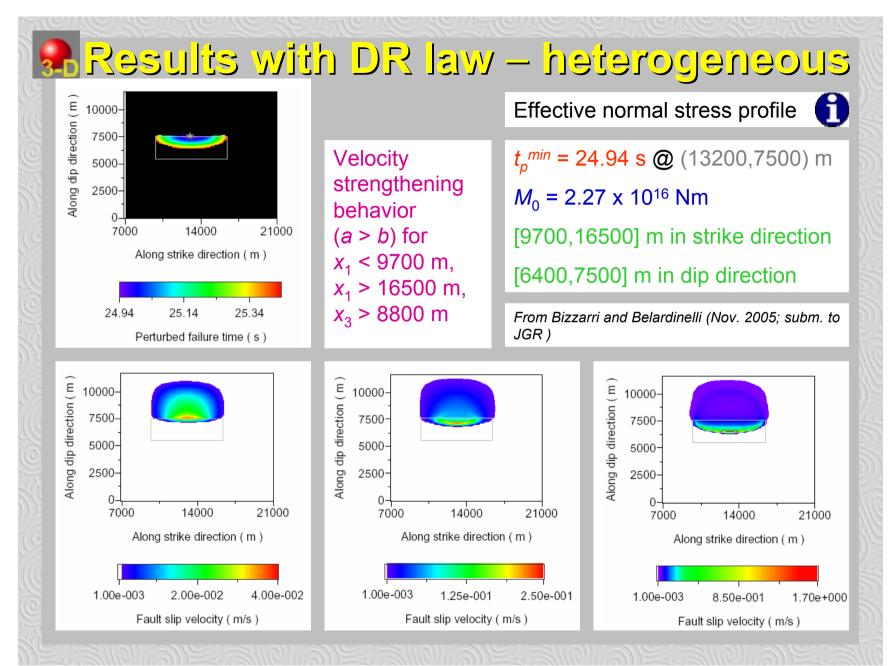
$$v(x_1, x_3, t) \ge v_1 \implies t_p(x_1, x_3) = t$$

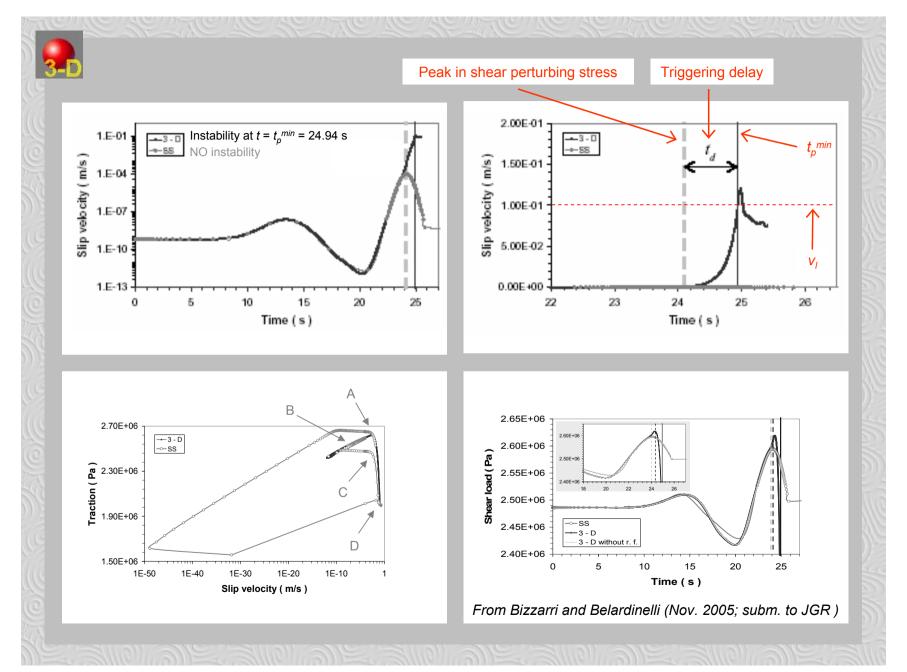
 $v_l = 0.1$  m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)



 $t_p^{min}$  = 23.47 s @ (16500,2900) m  $M_0$  = 2.23 x 10<sup>19</sup> Nm Whole fault

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )





# 🔝 Results with RD law – heterogeneous

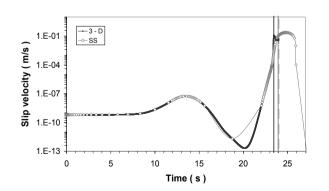
#### Ruina – Dieterich governing law

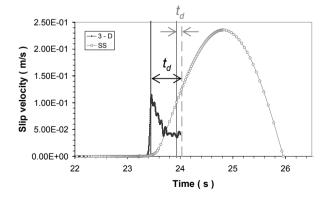
$$\tau = \left[\mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right)\right] \sigma_n^{eff}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Psi = -\frac{\Psi v}{L}\ln\left(\frac{\Psi v}{L}\right)$$
 Can be neglected

 $t_p^{min}$  = 23.44 s @ (15700,7900) m  $M_0$  = 2.02 x 10<sup>16</sup> Nm [9000,17300] m in strike direction [6300,8000] m in dip direction

Ê 10000-

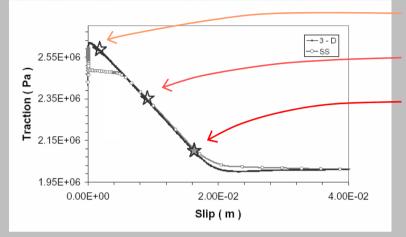




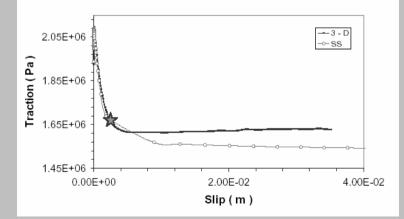
From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )

### In the "virtual" hypocenter

#### Dieterich – Ruina governing law



#### Ruina – Dieterich governing law



| $v^{H} = 0.01$                      | m/s ( <i>t</i> | = | 24.56 | s)  |
|-------------------------------------|----------------|---|-------|-----|
|                                     |                |   |       |     |
| <i>v</i> <sup><i>H</i></sup> = 0.05 | m/s ( <i>t</i> | = | 24.84 | s ) |

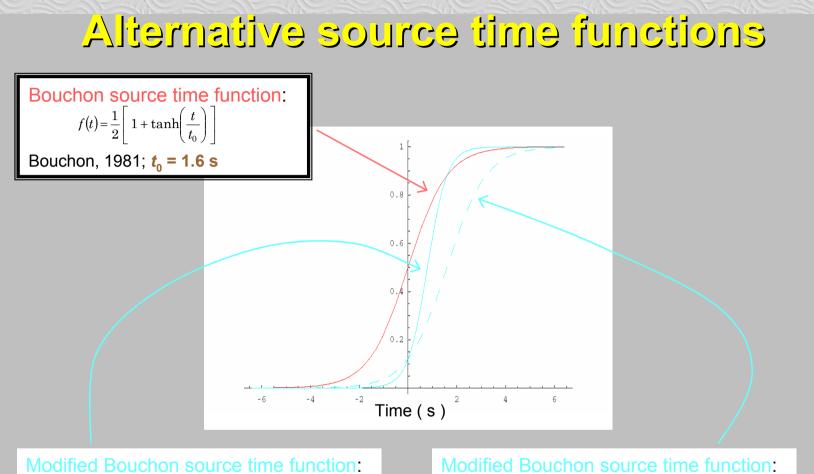
$$v^{H} = v_{l} = 0.1 \text{ m/s} (t = t_{p} = 24.94 \text{ s})$$

Failure occurs before traction reaches the residual level.

RD with L = 5 mm:  $t_p^{min} = 23.99$  s @ (14600,7600) m  $M_0 = 1.27 \times 10^{16}$  Nm [9500,16800] m in strike direction [6500,7700] m in dip direction

RD with L = 10 mm  $t_p^{min} = 24.72 \text{ s} @ (13300,7300) \text{ m}$   $M_0 = 2.27 \times 10^{16} \text{ Nm}$ [9500,16700] m in strike direction [6000,7400] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)



$$f(t) = \frac{1}{2} \left[ 1 + \tanh\left(\frac{t - \frac{t_0}{2}}{\frac{t_0}{2}}\right) \right]$$

corrected from Cotton and Campillo, 1995;  $t_0 = 1.6 \text{ s}$ 

$$f(t) = \frac{1}{2} \left[ 1 + \tanh\left(\frac{t - \frac{t_0}{2}}{\frac{t_0}{2}}\right) \right]$$

corrected from Cotton and Campillo, 1995;  $t_0 = 3.2 \text{ s}$ 

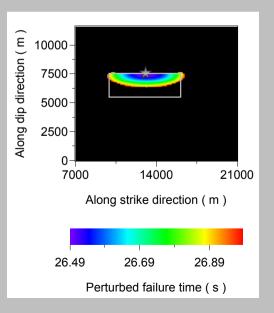


## anoitonut emit eoruoa evitarretlA

#### Bouchon modificata, $t_0 = 3.2$ s

 $t_p^{min}$  = 26.49 s @ (13000,7500) m  $M_0$  = 2.30 x 10<sup>16</sup> Nm [9700,16500] m in strike direction

[6400,7600] m in dip direction



From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )

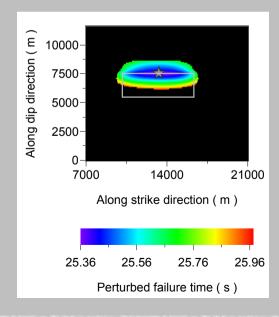
Bouchon modificata,  $t_0 = 1.6$  s;  $\sigma_n^{eff^*} = 4.2$  MPa

*t<sub>p</sub><sup>min</sup>* = 25.36 s @ (13500,7600) m

 $M_0 = 2.59 \text{ x } 10^{16} \text{ Nm}$ 

[9500,16700] m in strike direction

[6200,8700] m in dip direction





 We simulate the remote triggering in a truly 3–D fault model with different governing laws;

- We generalize the results of Antonioli et al. (2006), providing additional details of the 26 s event: the location of the hypocenter, its failure time, the rupture area and the seismic moment;
- The spring-slider and the 3-D model are intrinsically different, but we observe an excellent agreement during the slow nucleation phase...
- ... during the acceleration, in the 3–D model the dynamic load of the slipping points further decrease the perturbed failure time;
- Dieterich–Ruina and Ruina–Dieterich laws are valid candidate to model the activation of the Hvalhnúkur fault at 26 s;

- On the contrary, with slip-dependent friction laws it is not possible to simulate the activation of the 26 s aftershock;
- The agreement with observations increases considering a modified (and more causal) source time function;
- ✓ If a detailed information of the initial state of the fault, potentially highly heterogeneous, was available the agreement with observations will be even better.



| l | Case                      | σ <sub>n0</sub><br>profile | Constitutive<br>law                  | Heterogeneous<br>rheology | Rupture<br>extension<br>along<br>strike<br>(m) | Rupture<br>extension<br>along<br>dip<br>(m) | Hypocenter<br>location<br>(m) | Origin<br>time<br>(s)          | Total<br>seismic<br>moment<br>M <sub>0</sub><br>(Nm) |
|---|---------------------------|----------------------------|--------------------------------------|---------------------------|------------------------------------------------|---------------------------------------------|-------------------------------|--------------------------------|------------------------------------------------------|
| I | А                         | (b)                        | DR                                   | No                        | Whole<br>fault                                 | Whole<br>fault                              | (20700,2900)                  | 23.47                          | $2.37\times10^{19}$                                  |
| I | В                         | (b)                        | DR                                   | No                        | Whole<br>fault                                 | Whole<br>fault                              | (16500,2900)                  | 23.47                          | $2.23\times10^{19}$                                  |
| I | С                         | 1                          | DR                                   | No                        | [0,<br>27400]                                  | [6000,<br>11600]                            | (15400,6600)                  | 24.08                          | $1.94\times 10^{17}$                                 |
|   | D                         | 2                          | DR                                   | No                        |                                                | Not defined                                 |                               |                                | 1.21 × 10 <sup>14</sup>                              |
| I | Е                         | 3                          | DR                                   | No                        | [6600,<br>20000]                               | [6400,<br>7500]                             | (13200,7500)                  | 24.94                          | $6.43 \times 10^{16}$                                |
|   | F                         | 3                          | DR                                   | Yes                       | [9700,<br>16500]                               | [6400,<br>7500]                             | (13200,7500)                  | 24.94                          | $2.27 \times 10^{16}$                                |
| I | G                         | 3                          | DR                                   | No                        | [15700,<br>35100]                              | [6000,<br>7800]                             | (27300,7500)                  | 23.44                          | $1.22 \times 10^{17}$                                |
| I | Н                         | 3                          | RD                                   | Yes                       | [9000,<br>17300]                               | [6300,<br>8000]                             | (15700,7900)                  | 23.44                          | $2.02\times10^{16}$                                  |
| I | Ι                         | 3                          | $\frac{\text{RD}}{(L=5 \text{ mm})}$ | Yes                       | [9500,<br>16800]                               | [6500,<br>7700]                             | (14600,7600)                  | 23.99                          | $1.27 \times 10^{16}$                                |
|   | L                         | 3                          | RD<br>( $L = 10 \text{ mm}$ )        | Yes                       | [9500,<br>16700]                               | [6000,<br>7400]                             | (13300,7300)                  | 24.72                          | $2.17 \times 10^{16}$                                |
|   | Μ                         | 3                          | OY                                   | Yes                       | Not defined                                    |                                             |                               | $1.46 \times 10^{14}$          |                                                      |
| I | Ν                         | 3                          | ΟΥ                                   | No                        | Whole<br>fault                                 | Whole<br>fault                              | (24000,7700)                  | 23.75                          | $2.49 \times 10^{19}$                                |
|   | 0                         | 3                          | DR                                   | Yes                       | [9700,<br>16500]                               | [6400,<br>7600]                             | (13000,7500)                  | 26.49                          | $2.30\times10^{16}$                                  |
|   | Р                         | 3                          | DR                                   | Yes                       | [9500,<br>16700]                               | [6200,<br>8700]                             | (13500,7600)                  | 25.36                          | $2.59 \times 10^{16}$                                |
|   | Observational constraints |                            |                                      | [9700,<br>16500]          | [5400,<br>7400]                                | (16500 ± 450,<br>8900 ± 1300)               | 25.9 ±<br>0.1                 | $\equiv$ 3.2 ×10 <sup>16</sup> |                                                      |

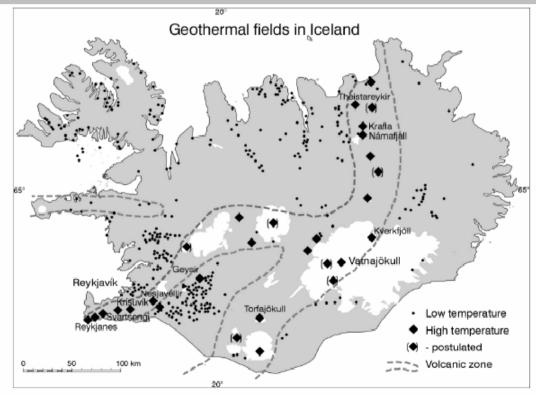
## This slide is empty intentionally.



### Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

### bnsleol ni zsers IsmrenioeO



Proceedings World Geothermel Congress 2000 Knusha - Toholas, Japan, May 29 - Jane 10, 200

> NATURAL CHANGES IN UNEXPLOITED HIGH-TEMPERATURE GEOTHERMAL AREAS IN ICELAND

Halldör Armanrsson<sup>10</sup>, Berfria Kristmannsdöttie<sup>10</sup>, Heigs Toefason<sup>10</sup> and Magnin Olafsson<sup>10</sup> Okanefnar, <sup>10</sup>Research Division Gorchermity: Departnere, "Dieng: Management Division Gerensiveger 7, 198 Ref. Jayn M.

Figure 1. Geothermal areas in Iceland. The five main exploited high-temperature areas, Svartsengi, Reykjanes, Nesjavellir, Krafla and Námafjall are shown as well as the four unexploited high-temperature geothermal areas selected for study of natural changes, Krýsuvík, Theistareykir, Torfajökull and Kverkfjöll areas.

| Parameter                                                                             | Value                                                                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                       | parallelepiped that extends $x_{l_{end}} = 36.5 \text{ Km}$                   |
| Ś                                                                                     | along $x_1, x_{2,n-1} = 10$ Km along $x_2$ and                                |
|                                                                                       | $x_{3_{end}} = 11.6 \text{ Km along } x_3$                                    |
| $\Sigma = OS$                                                                         | $\{ \mathbf{x} \mid x_2 = x_2^{f} = 5000 \text{ m} \}$                        |
| $\Delta x_1 = \Delta x_2 = \Delta x_3 \equiv \Delta x$                                | 100 m (a)                                                                     |
| Number of nodes                                                                       | 4,289,571                                                                     |
| $\Delta t$                                                                            | $1.27 \times 10^{-3}$ s (a)                                                   |
| Number of time levels                                                                 | 33,650                                                                        |
| $v_I$                                                                                 | 0.1 m/s                                                                       |
| $\sigma_n^{e\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 2.5 MPa                                                                       |
| $\varphi(x_1, x_3, 0)$                                                                | $\varphi_0 = 180^\circ$                                                       |
| $v(x_1, x_3, 0)$                                                                      | $v_{init} = 6.34 \times 10^{-10} \text{ m/s} (= 20 \text{ mm/yr})$            |
| $\Psi(x_1, x_3, 0)$                                                                   | $\Psi^{ss}(v_{init}) = 1.577 \times 10^6 \text{ s} \ (\cong 18.25 \text{ d})$ |
| $\sigma_n^{etf}(x_1, x_3, 0)$                                                         | See Table 3                                                                   |
| $\tau_0(x_1,x_3)$                                                                     | $\mu^{ss}(v_{init})\sigma_n^{eff}(x_1, x_3, 0)$                               |
| а                                                                                     | 0.003 (b)                                                                     |
| b                                                                                     | 0.010                                                                         |
| L                                                                                     | $1 \times 10^{-3}$ m                                                          |
| $\mu_*$                                                                               | 0.7                                                                           |
| V.*                                                                                   | V <sub>init</sub>                                                             |
| $\alpha_{LD}$                                                                         | 0                                                                             |

the stand of the s

3-D

# Crustal profile (from Vogfjord et al., 2002; Antonioli et al., 2005)

| Layer<br>#<br>k | v <sub>Pk</sub><br>(m/s) | $\frac{v_{S_k}}{(m/s)}$ | $\rho_{\textit{rock}_k} \\ (\text{Kg/m}^3)$ | Up do depth of $x_{3_k}$ (m) |
|-----------------|--------------------------|-------------------------|---------------------------------------------|------------------------------|
| 1               | 3200                     | 1810                    | 2300                                        | 1100                         |
| 2               | 4500                     | 2540                    | 2540                                        | 3100                         |
| 3               | 6220                     | 3520                    | 3050                                        | 7800                         |
| 4               | 6750                     | 3800                    | 3100                                        | 11600                        |

### zzerła lamron evitacite laitinl

6

