Fault interaction and stress triggering
<table>
<thead>
<tr>
<th>Interaction type</th>
<th>Perturbation effects</th>
<th>Spatial scale</th>
<th>Temporal scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>- Rupture propagation; - Arrest</td>
<td>1 – 60 Km</td>
<td>1 – 20 s</td>
</tr>
<tr>
<td>Static</td>
<td>- Earthquake triggering; - Off – faults aftershocks; - Sesimicity rate change</td>
<td>1 – 60 Km</td>
<td>minutes – few years</td>
</tr>
<tr>
<td>Post – seismic</td>
<td>Long – term stress changes</td>
<td>10 – 1000 Km</td>
<td>few years – centuries</td>
</tr>
</tbody>
</table>
Following the Coulomb’ s failure assumption we define a Coulomb Failure Stress as (e. g. Jaeger and Cook, 1969):

\[CFS = \|T\| + \mu (\sigma_n + p_{fluid}) - C \]

where:

- $\|T\|$ is the shear traction modulus,
- μ is the coefficient of friction,
- σ_n is the normal stress (positive in tension),
- p_{fluid} is the pore fluid pressure,
- C is the cohesion.

Assuming μ and C constant over time, we have the Coulomb Failure Stress change:

\[\Delta CFS = \Delta \|T\| + \mu (\Delta \sigma_n + \Delta p_{fluid}) \]

where it has been assumed an isotropic failure plane.
\(\Delta \text{CFS} \) is used to evaluate if one earthquake brought another earthquake closer to, or farther from, failure:

\[\Delta \text{CFS} > 0 \Rightarrow \text{fault plane loaded} \Rightarrow \text{closer to failure} \]

\[\Delta \text{CFS} < 0 \Rightarrow \text{fault plane relaxed} \Rightarrow \text{farther from failure} \]

(Stress Shadow)

Neglecting the spatial dependence in tractions, are:

\[
\begin{align*}
T(t) &= T(0) + \Delta T(t) \\
\sigma_n(t) &= \sigma_n(0) + \Delta \sigma_n(t) \\
p_{\text{fluid}}(t) &= p_{\text{fluid}}(0) + \Delta p_{\text{fluid}}(t)
\end{align*}
\]

Therefore we can write:

\[
\Delta \text{CFS}(t) = \| T(0) + \Delta T(t) \| - \| T(0) \| + \mu (\Delta \sigma_n(t) + \Delta p_{\text{fluid}}(t))
\]

\(\Delta \|T\| \) is the change in shear stress due to the first earthquake and it is resolved in the slip direction of the second earthquake;

\(\Delta \sigma_n \) is the change in normal stress due to the first earthquake and it is resolved in the direction orthogonal to the fault plane of the second earthquake.
Stress changes approaches (after Harris, 1998)

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameters Required</th>
<th>Successes</th>
<th>Problems</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Coulomb failure stress</td>
<td>AUCS(1), Δu, Δτ, Δτ</td>
<td>may predict rupture lengths, given fault geometry</td>
<td>does not explain long delays (more than tens of seconds) between subevents; needs more testing</td>
<td>Harris et al. [1994], Harris and Doe [1995], Hill et al. [1995], Gomberg and Bock [1994], Spudich et al. [1990], Cotton and Crotwell [1997].</td>
</tr>
<tr>
<td>(elastic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Coulomb failure stress</td>
<td>AUCS(1), Δu, Δτ, Δτ</td>
<td>may predict rupture lengths, given fault geometry</td>
<td>does not explain long delays (more than tens of seconds) between subevents; needs more testing</td>
<td>Harris et al. [1994], Harris and Doe [1995], Hill et al. [1995], Gomberg and Bock [1994], Spudich et al. [1990], Cotton and Crotwell [1997].</td>
</tr>
<tr>
<td>(elastic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static rate and state</td>
<td>Δu, Δτ, Δτ, A, B, H, t, τ</td>
<td>may predict aftershock duration</td>
<td>needs more testing; rate-awaited parameters defined in the laboratory but not known for the Earth</td>
<td>Durieuxch [1994], Durieuxch and Rivery [1994], Rivery and Monnet [1996], Genis and Ballesteros [1998], Gomberg et al. [this issue], Harris and Simpson [this issue], and Inda et al. [this issue]</td>
</tr>
<tr>
<td>Dynamic rate and state</td>
<td>Δu, Δτ, Δτ, A, B, H, t, τ</td>
<td>may explain remote triggering</td>
<td>needs more testing; still need to define rate-awaits parameters in the Earth, initial terms not yet included in models</td>
<td>Durieuxch [1997] and Gomberg et al. [1997], this issue</td>
</tr>
<tr>
<td>Static Coulomb failure stress</td>
<td>Δu, Δτ, Δτ, A, B, H, t, τ</td>
<td>may explain time delays between mainshocks and subsequent events, also</td>
<td>needs more testing, also needs more geodetic data to confirm viscoselastic parameters</td>
<td>Dingwea et al. [1988], Rishi [1988], Goff et al. [1993], Tavakoli et al. [1996], Public and Sacks [1997], Prof and Lin [this issue]</td>
</tr>
<tr>
<td>(viscoelastic)</td>
<td></td>
<td>irregular recurrence intervals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid flow</td>
<td>Δu, Δτ, Δτ, A, B, H, t, τ</td>
<td>may explain time delays between mainshocks and subsequent events</td>
<td>may not be successful at predicting both the spatial and temporal aftershock pattern</td>
<td>Li et al. [1987], Hauk et al. [1987], Noc et al. [1997], etc., Seiber et al. [1997], this issue</td>
</tr>
</tbody>
</table>

*If the aftershock fault planes are not known, then some authors assume optimally oriented faults; this requires knowledge of the background stress directions.
1 – D Spring – slider model
m \ddot{\delta} = k (\delta_0 - \delta) - \tau_f + \Delta \tau, \quad \Delta \tau(t) \text{ perturbazione}

\tau_f = \text{resistenza di attrito}

Reologia: attrito rate- and state-dependent

\theta (\Phi) = \text{variable di stato della superficie}, \quad V = \dot{\delta} \text{ velocità}

\begin{align*}
A - \text{Ruina-Dieterich} \\
\tau_f &= \tau_\theta + \theta + A \ln \left(\frac{V}{V_\theta} \right) \\
\frac{d \theta}{dt} &= -\frac{V}{L} \theta + B \ln \left(\frac{V}{V_*} \right)
\end{align*}

\begin{align*}
B - \text{Dieterich - Ruina} \\
\tau_f &= \tau_\theta - A \ln \left(\frac{V}{V_\theta} \right) + B \ln \left(\frac{\Phi V_*}{V_*} \right) \\
\frac{d \Phi}{dt} &= 1 - \frac{\Phi V}{L}
\end{align*}

Stato del sistema: \((V(t), d(t), t_f(t)) \)

o condizioni mecc. faglia

approx. g. statica

\(V < V_c = 0.1 \text{ mm/s} \)

Inertia is negligible and the system passes through a sequence of equilibrium states
Fault seismic cycle modeling

\[(\tau_f - \tau_o)/A\]

Steady State Line

Time Intervals (%T)

- 0-10
- 11-20
- 21-30
- 31-40
- 41-50
- 51-60
- 61-70
- 71-80
- 81-90
- 91-100

\[\ln(V/V_0)\]
Analytical stress perturbations

![Graph showing slip velocity vs time with various labels and markers indicating dynamic motion, quasi-static motion, seismic range, aseismic range, and clock advance.]
Analytical stress perturbations
The step and the pulse #1

Step

Pulse

\[\theta (\text{bars}) \]

\[V (\mu \text{m/s}) \]

\[\tau + \Delta \tau (\text{bars}) \]

Time (s)
Analytical stress perturbations
The step and the pulse #2
Realistic stress perturbations

Syntetic seismograms #1

stress time history from
Realistic stress perturbations
Syntetic seismograms #2

![Graph showing stress and slip velocity over time]
Fault interaction by dynamic stress transfer: the case of the 2000 South Iceland seismic sequence

Part I
To evidence the eventual effect of the transient part of the coseismic stress changes due to the 17 June 2000, M 6.6 South Iceland earthquake;

The debate on the triggering potential of transient stress changes is still open;

The observational evidences are difficult and few.
The choice of the events

- The largest events (M ~ 5) occurring in the first five minutes
 - 8s, 26s, 30s, 130s, 226s
- In intermediate - far field
 - 26s, 30s, 130s, 226s
- That reasonably are not secondary aftershocks
 - 26s, 30s, 226s.
The 26 s and 30 s events

• They were not detected teleseismically.

• **26 s (64 km far)**
 – Not detected by DInSAR.
 – Known fault.

• **30 s (77 km far)**
 – Waveforms partially obscured by the first event (mechanism uncertain)
 – Detected by DInSAR and surface effects.
 – August 2003: M 5 event on N-S fault with the same epicenter.

From SIL seismograms the 26 s and 30 s events occurred at the arrival (later than the first) of shear waves traveling at 2.5 km/s at their location.

<table>
<thead>
<tr>
<th>Event</th>
<th>Origin time</th>
<th>Latitude (°)</th>
<th>Longitude (°)</th>
<th>Depth (km)</th>
<th>ML</th>
<th>MLw</th>
</tr>
</thead>
<tbody>
<tr>
<td>26s</td>
<td>154106.9</td>
<td>63.951±0.004</td>
<td>-21.689±0.008</td>
<td>8.9±1.3</td>
<td>4.91</td>
<td>6</td>
</tr>
<tr>
<td>30s</td>
<td>154111.254</td>
<td>63.937±0.003</td>
<td>-21.94±0.01</td>
<td>3.8±1.3</td>
<td>4.68</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Parameters used to compute the dynamic stress

- Slip distribution from geodetic data (Arnadottir et al. 2003). Right lateral strike slip fault, strike 7° E, dip 86°.
- Rupture history: bilateral Haskell model, rise time: 1-2 s, rupture velocity: 2.5 km/s.
- 2 crustal models with 4 layers:

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>(V_p) (km/s)</th>
<th>(V_s) (km/s)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3.1</td>
<td>3.3</td>
<td>1.85</td>
<td>2300</td>
</tr>
<tr>
<td>3.1-7.8</td>
<td>6.0</td>
<td>3.37</td>
<td>2900</td>
</tr>
<tr>
<td>7.8-17</td>
<td>6.85</td>
<td>3.88</td>
<td>3100</td>
</tr>
<tr>
<td>>17</td>
<td>7.5</td>
<td>4.21</td>
<td>3300</td>
</tr>
</tbody>
</table>

West of Hengill

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>(V_p) (km/s)</th>
<th>(V_s) (km/s)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3.1</td>
<td>3.3</td>
<td>1.85</td>
<td>2300</td>
</tr>
<tr>
<td>3.1-7.8</td>
<td>6.0</td>
<td>3.37</td>
<td>2900</td>
</tr>
<tr>
<td>7.8-17</td>
<td>6.85</td>
<td>3.88</td>
<td>3100</td>
</tr>
<tr>
<td>>17</td>
<td>7.5</td>
<td>4.21</td>
<td>3300</td>
</tr>
</tbody>
</table>

East of Hengill
Dynamic stresses at the two hypocenters

- Nord - Sud vertical right - lateral faults
- $\Delta \text{CFF} = \Delta \tau + \mu (1 - B) \Delta \sigma_n$, with $\mu = 0.75$, $B = 0.47$
- Rise time: 1.6 s

26 s aftershock

30 s aftershock
\[\Delta CFF(t) \text{ at the two hypocenters} \]

Time separation between the events and between stress peaks comparable.
Snapshots of dynamic stress

- Snapshots at different times (23, 27, 31, and 35 seconds)

- Color scale showing stress levels ranging from -0.5 to 0.5 MPa

- Depth indication: 8.9 km
• Stress at each hypocenter is affected by uncertain parameters such as the crustal model, rise time and the hypocentral depth.

• **Crustal model**

<table>
<thead>
<tr>
<th>Parameters sensitivity #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 s aftershock</td>
</tr>
<tr>
<td>30 s aftershock</td>
</tr>
</tbody>
</table>

- The origin times (from mainshock) of the two events remain at, or follow closely the second CFF peak for ~ 1 - 2 s rise time.
Parameters sensitivity #2

Rise time

Hypocentral depth

Uncertainties in stress amplitudes.
The fault response

- We study the fault response to the stress changes as evaluated at the two hypocenters with varying the parameters within their uncertainties;

- We use a spring-slider model with rate- and state-dependent friction for variable effective normal stress σ_{neff};

- The system is perturbed either in shear stress and normal stress ($\Delta\tau(t)$, $\Delta\sigma_{neff}(t)$);

- We investigate the possibility of instantaneous triggering (during the transient stress perturbation).
The instantaneous trigger

- $h \sim 10$ km linear fault dimension,
- standard values of rheological parameters ($\mu^* = 0.7$, $L = 1$ mm, $b = 0.01$),
- $v_0 = 2$ cm/yr (spreading rate in the SISZ),
- fault in close to failure conditions (100% steady state μ unperturbed failure expected at less than 2 yr from June 17, 2000)

The fault tends to fail within 1 s after a peak in CFF, as evaluated at the two hypocenters

\textit{if}

1. the initial effective normal stress σ_0 is enough low, so that the shear stress perturbation $\Delta \tau$ at that peak is much larger than $a(\sigma_0 + \Delta \sigma)$

2. and the direct effect of friction a is enough low to keep fault unstable ($k/k_{\text{crit}} < 1$) for low values of σ_0.
For $a \leq 0.003$ and $\sigma_0 \approx 20$ bar, we obtained instantaneous trigger within 1 second after the second peak of CFF, as expected for the two aftershocks in the SISZ.

For $a = 0.003$ and $\sigma_0 > \gamma$ 20 bar, $1 < \gamma < 10$ (increasing with the amplitude of the second peak of $\Delta \tau$) the trigger is not instantaneous (failure time > 4 hours).

Mean failure time ≈ 26 s
The 26 and 30 s events occurred near one of the important geothermal areas of Iceland;

They were negligibly affected by static stress changes;

They followed closely a peak of positive CFF;

These results favour the hypothesis of dynamic triggering;

Dynamic models of fault responses can explain observations for low values of effective normal stress (near lithostatic pore pressure).
Fault interaction by dynamic stress transfer: the case of the 2000 South Iceland seismic sequence

Part II
The values of the tensor $\Delta \sigma_{ij}$ are calculated on the 26 s fault plane up to 2.78 Hz, in a total of 12 × 8 “receivers”, located in nodes uniformly spaced 1650 m in the strike direction and at depths of 0 m, 1650 m, 3300 m, 4950 m, 6550 m, 8100 m, 9900 m and 11550 m.

\[
\begin{align*}
\mathbf{T}^{(\mathbf{n})} &= n_j \sigma_{ij} \\
\mathbf{T}^{(\mathbf{n})} &= \mathbf{T}^{(\mathbf{n})} + \Sigma^{(\mathbf{n})} \\
T_j^{(\mathbf{n})} &= n_j \sigma_{ij} - n_j (n_i \sigma_{ik} n_k) \\
\Sigma_j^{(\mathbf{n})} &= n_j (n_i \sigma_{ik} n_k)
\end{align*}
\]

For our shear rupture:
\[
\mathbf{\hat{n}} \parallel \mathbf{x}_2 \equiv (0,1,0) \\
\mathbf{T}^{(\mathbf{n})} = (\sigma_{21}, 0, \sigma_{23})
\]
The spatial sampling of the receiver grid is not sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a C^2 cubic spline to interpolate $\Delta \sigma_{ij}$ in space and in time.

![Graphs showing original and interpolated values at $t = 26.37$ s.](image)
At time t, in each fault node, the dynamic load is:

$$L_i = f_{ri} + T_{0i} + \Delta \sigma_{2i}$$

($i = 1$ and 3).

T_{0i} are the components of the initial traction ($T_0(x_1,x_3) = \tau_0(x_1,x_3)(\cos(\varphi_0),0,\sin(\varphi_0))$).

f_{ri} are the components of the load (namely the contribution of the restoring forces, f_r) exerted by the neighboring points:

$$f_{ri} = (M^+ f^+_i - M^- f^-_i)/(M^+ + M^-),$$

where M^+ and M^- are the masses of the “+” and “−” half split–node of the fault plane Σ and f^+ is the force acting on partial node “+” caused by deformation of neighbouring elements located in the “−” side of S (and viceversa for $f^−$).

$\{\Delta \sigma_{2i}\}$ are coupled to the components of the fault friction T_i via

$$\frac{d^2}{dt^2} u_1 = \alpha [L_1 - T_1]$$

$$\frac{d^2}{dt^2} u_3 = \alpha [L_3 - T_3]$$

where $\alpha \equiv \mathcal{A} ((1/M^+) + (1/M^-)), \mathcal{A} = \Delta x_1 \Delta x_3$. T_i express on the governing law.
Observational constraints

1) Perturbed rupture time $t_r = 25.9 \pm 0.1$ s

2) Hypocenter $(63.951 \pm 0.004$ °N, 21.689 ± 0.008 °W, 8.9 ± 1.3 Km) ↔ on fault coordinates of $(16500 \pm 450, 8900 \pm 1300)$ m (Antonioli et al., 2005)

3) From the aftershocks distribution shown in Hjaltadottir and Vogfjord (2005) we consider the seismic part of the fault (A) limited in latitude between 63.890 °N and 63.951 °N (in the case of Nord–South fault this corresponds to [9700, 16500] m in strike direction) and limited in depth between 5400 m and 7400 m

Upper bound estimates:
$M_0 = 1.23 \times 10^{15} A^{3/2} = 6.15 \times 10^{16}$ Nm;
Av. fault slip: $<u>_{A} = M_0/(\rho \nu_s^2 A) = 0.12$ m;
Av. stress drop: $<\Delta \tau>_{A} = 2M_0/(\pi W_A L_A) = 1.44$ MPa

4) $M_w \geq 5$ (Arnadottir et al., 2006; Vogfiord, 2003) ⇒ $M_0 \cong 3.2 \times 10^{16}$ Nm
3-D Results with DR law – homogeneous

Dieterich – Ruina governing law

$$\tau = \mu(v, \Psi)\sigma_n^{\text{eff}} = \left[\mu + b \ln \left(\frac{v}{v_s} \right) + a \ln \left(\frac{\Psi}{v_s} \right) \right] \sigma_n^{\text{eff}}$$

$$\frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L}$$

Can be neglected (see Antonioli et al., 2005)

$\sigma_n^{\text{eff}} = 2.5 \text{ MPa everywhere; acting only } \Delta\sigma_{21}$

Perturbed rupture times

$$v(x_1, x_3, t) \geq v_l \Rightarrow t_p(x_1, x_3) = t$$

$v_l = 0.1 \text{ m/s, in agreement with Belardinelli et al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)}$

$t_p^{\text{min}} = 23.47 \text{ s @ (20700,2900) m}$

$M_0 = 2.37 \times 10^{19} \text{ Nm}$

Whole fault

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
Results with DR law – homogeneous

Dieterich – Ruina governing law

\[
\tau = \mu(v, \Psi)\sigma_{n, \text{eff}}^{\text{eff}} = \left[\mu_* + a \ln \left(\frac{v}{v_*} \right) + b \ln \left(\frac{\Psi v_*}{L} \right) \right] \sigma_{n, \text{eff}}^{\text{eff}}
\]

\[
\frac{\text{d} \Psi}{\text{d} t} = 1 - \frac{v \Psi}{L}
\]

Can be neglected (see Antonioli et al., 2005)

Perturbed rupture times

\[v(x_1, x_3, t) \geq v_l \Rightarrow t_p(x_1, x_3) = t\]

\[v_l = 0.1 \text{ m/s}, \text{ in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)}\]

\[t_p^{\text{min}} = 23.47 \text{ s } @ (16500, 2900) \text{ m}\]

\[M_0 = 2.23 \times 10^{19} \text{ Nm}\]

Whole fault

\[\sigma_{n, \text{eff}} = 2.5 \text{ MPa everywhere; acting also } \Delta \sigma_2^2\]

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
Results with DR law – heterogeneous

Velocity strengthening behavior \((a > b)\) for
\(x_1 < 9700\) m,
\(x_1 > 16500\) m,
\(x_3 > 8800\) m

Effective normal stress profile

\[t_{p\min} = 24.94\ s \ @ \ (13200,7500)\ m \]

\[M_0 = 2.27 \times 10^{16}\ Nm \]

[9700,16500] m in strike direction

[6400,7500] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
Instability at $t = t_p^{\min} = 24.94$ s

NO instability

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
Results with RD law – heterogeneous

Ruina – Dieterich governing law

\[\tau = \left[\mu_n + a \ln \left(\frac{v}{v_n} \right) + b \ln \left(\frac{\Psi v}{L} \right) \right] \sigma_n^{\text{eff}} \]

\[\frac{d}{dt} \Psi = -\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) \]

Can be neglected

\(t_p^{\text{min}} = 23.44 \text{ s} @ (15700,7900) \text{ m} \)

\(M_0 = 2.02 \times 10^{16} \text{ Nm} \)

[9000,17300] m in strike direction

[6300,8000] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
In the “virtual” hypocenter

Dieterich – Ruina governing law

\[v_H^d = 0.01 \text{ m/s } (t = 24.56 \text{ s}) \]

\[v_H^d = 0.05 \text{ m/s } (t = 24.84 \text{ s}) \]

\[v_H^d = v_t = 0.1 \text{ m/s } (t = t_p = 24.94 \text{ s}) \]

Failure occurs before traction reaches the residual level.

Ruina – Dieterich governing law

RD with \(L = 5 \text{ mm} \):

\[t_{p \min} = 23.99 \text{ s } @ (14600,7600) \text{ m} \]

\[M_0 = 1.27 \times 10^{16} \text{ Nm} \]

[9500,16800] m in strike direction

[6500,7700] m in dip direction

RD with \(L = 10 \text{ mm} \):

\[t_{p \min} = 24.72 \text{ s } @ (13300,7300) \text{ m} \]

\[M_0 = 2.27 \times 10^{16} \text{ Nm} \]

[9500,16700] m in strike direction

[6000,7400] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
Alternative source time functions

Bouchon source time function:

\[f(t) = \frac{1}{2} \left[1 + \tanh \left(\frac{t - t_0}{2} \right) \right] \]

Bouchon, 1981; \(t_0 = 1.6 \) s

Modified Bouchon source time function:

\[f(t) = \frac{1}{2} \left[1 + \tanh \left(\frac{t - t_0}{2} \right) \right] \]

corrected from Cotton and Campillo, 1995; \(t_0 = 1.6 \) s

\[f(t) = \frac{1}{2} \left[1 + \tanh \left(\frac{t - t_0}{2} \right) \right] \]

corrected from Cotton and Campillo, 1995; \(t_0 = 3.2 \) s
Alternative source time functions

Bouchon modificata, \(t_0 = 3.2 \) s

\[t_p^{min} = 26.49 \text{ s} @ (13000,7500) \text{ m} \]

\[M_0 = 2.30 \times 10^{16} \text{ Nm} \]

[9700,16500] m in strike direction

[6400,7600] m in dip direction

Bouchon modificata, \(t_0 = 1.6 \) s;

\[\sigma_{n}^{eff} = 4.2 \text{ MPa} \]

\[t_p^{min} = 25.36 \text{ s} @ (13500,7600) \text{ m} \]

\[M_0 = 2.59 \times 10^{16} \text{ Nm} \]

[9500,16700] m in strike direction

[6200,8700] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)
We simulate the remote triggering in a truly 3–D fault model with different governing laws;

We generalize the results of Antonioli et al. (2006), providing additional details of the 26 s event: the location of the hypocenter, its failure time, the rupture area and the seismic moment;

The spring–slider and the 3–D model are intrinsically different, but we observe an excellent agreement during the slow nucleation phase…

… during the acceleration, in the 3–D model the dynamic load of the slipping points further decrease the perturbed failure time;

Dieterich–Ruina and Ruina–Dieterich laws are valid candidate to model the activation of the Hvalhnúkur fault at 26 s;
✓ On the contrary, with slip–dependent friction laws it is not possible to simulate the activation of the 26 s aftershock;
✓ The agreement with observations increases considering a modified (and more causal) source time function;
✓ If a detailed information of the initial state of the fault, potentially highly heterogeneous, was available the agreement with observations will be even better.
<table>
<thead>
<tr>
<th>Case</th>
<th>$\sigma_{\gamma 0}$ profile</th>
<th>Constitutive law</th>
<th>Heterogeneous rheology</th>
<th>Rupture extension along strike (m)</th>
<th>Rupture extension along dip (m)</th>
<th>Hypocenter location (m)</th>
<th>Origin time (s)</th>
<th>Total seismic moment M_0 (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>DR</td>
<td>No</td>
<td>Whole fault</td>
<td>Whole fault</td>
<td>(20700,2900)</td>
<td>23.47</td>
<td>2.37×10^{19}</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>DR</td>
<td>No</td>
<td>Whole fault</td>
<td>Whole fault</td>
<td>(16500,2900)</td>
<td>23.47</td>
<td>2.23×10^{19}</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>DR</td>
<td>No</td>
<td>[0, 27400]</td>
<td>[6000, 11600]</td>
<td>(15400,6600)</td>
<td>24.08</td>
<td>1.94×10^{19}</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>DR</td>
<td>No</td>
<td>Not defined</td>
<td></td>
<td></td>
<td></td>
<td>1.21×10^{14}</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>DR</td>
<td>No</td>
<td>[6600, 20000]</td>
<td>[6400, 7500]</td>
<td>(13200,7500)</td>
<td>24.94</td>
<td>6.43×10^{16}</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>DR</td>
<td>Yes</td>
<td>[9700, 16500]</td>
<td>[6400, 7500]</td>
<td>(13200,7500)</td>
<td>24.94</td>
<td>2.27×10^{16}</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>DR</td>
<td>No</td>
<td>[15700, 35100]</td>
<td>[6000, 7800]</td>
<td>(27300,7500)</td>
<td>23.44</td>
<td>1.22×10^{17}</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>RD</td>
<td>Yes</td>
<td>[9000, 17300]</td>
<td>[6300, 8000]</td>
<td>(15700,7900)</td>
<td>23.44</td>
<td>2.02×10^{16}</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>RD</td>
<td>Yes</td>
<td>$L = 5$ mm</td>
<td>[9500, 6800]</td>
<td>(14600,7600)</td>
<td>23.99</td>
<td>1.27×10^{16}</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>RD</td>
<td>Yes</td>
<td>$L = 10$ mm</td>
<td>[9500, 6700]</td>
<td>(13300,7300)</td>
<td>24.72</td>
<td>2.17×10^{16}</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>OY</td>
<td>Yes</td>
<td>Not defined</td>
<td></td>
<td></td>
<td></td>
<td>1.46×10^{14}</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>OY</td>
<td>No</td>
<td>Whole fault</td>
<td>Whole fault</td>
<td>(24000,7700)</td>
<td>23.75</td>
<td>2.49×10^{19}</td>
</tr>
<tr>
<td>O</td>
<td>3</td>
<td>DR</td>
<td>Yes</td>
<td>[9700, 16500]</td>
<td>[6400, 7600]</td>
<td>(13000,7500)</td>
<td>26.49</td>
<td>2.30×10^{16}</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
<td>DR</td>
<td>Yes</td>
<td>[9500, 16700]</td>
<td>[6200, 8700]</td>
<td>(13500,7600)</td>
<td>25.36</td>
<td>2.59×10^{16}</td>
</tr>
</tbody>
</table>

Observational constraints

[$9700, 16500$] [$5400, 7400$] $(16500 \pm 450, 8900 \pm 1300)$ 25.9 ± 0.1 $\approx 3.2 \times 10^{14}$
This slide is empty intentionally.
Support Slides:
Parameters, Notes, etc.

To not be displayed directly. Referenced above.
Figure 1. Geothermal areas in Iceland. The five main exploited high-temperature areas, Svartsengi, Reykjanes, Nesjavellir, Krýsuvík and Óskjuhlíð are shown as well as the four unexploited high-temperature geothermal areas selected for study of natural changes, Krýsuvík, Þraustareyki, Torfajökull and Kverðjöll areas.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi)</td>
<td>parallelepiped that extends (x_{1_{end}} = 36.5) Km along (x_1), (x_{2_{end}} = 10) Km along (x_2) and (x_{3_{end}} = 11.6) Km along (x_3)</td>
</tr>
<tr>
<td>(\Sigma = \Omega \setminus \delta)</td>
<td>{ (x \mid x_2 = x_2^J = 5000) m }</td>
</tr>
<tr>
<td>(\Delta x_1 = \Delta x_2 = \Delta x_3 \equiv \Delta x)</td>
<td>100 m</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>4,289,571</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>(1.27 \times 10^{-3}) s</td>
</tr>
<tr>
<td>Number of time levels</td>
<td>33,650</td>
</tr>
<tr>
<td>(v_r)</td>
<td>0.1 m/s</td>
</tr>
<tr>
<td>(\sigma_n^{eff})</td>
<td>2.5 MPa</td>
</tr>
<tr>
<td>(\varphi(x_1, x_3, 0))</td>
<td>(\varphi_0 = 180^\circ)</td>
</tr>
<tr>
<td>(v(x_1, x_3, 0))</td>
<td>(v_{init} = 6.34 \times 10^{-10}) m/s (= 20 mm/yr)</td>
</tr>
<tr>
<td>(\Psi(x_1, x_3, 0))</td>
<td>(\Psi^{eff}(v_{init}) = 1.577 \times 10^6) s ((\approx 18.25) d)</td>
</tr>
<tr>
<td>(\sigma_n^{eff}(x_1, x_3, 0))</td>
<td>See Table 3</td>
</tr>
<tr>
<td>(\tau_n(x_1, x_3))</td>
<td>(\mu^* (v_{init}) \sigma_n^{eff}(x_1, x_3, 0))</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.003</td>
</tr>
<tr>
<td>(b)</td>
<td>0.010</td>
</tr>
<tr>
<td>(L)</td>
<td>(1 \times 10^{-2}) m</td>
</tr>
<tr>
<td>(\mu_s)</td>
<td>0.7</td>
</tr>
<tr>
<td>(v_s)</td>
<td>(v_{init})</td>
</tr>
<tr>
<td>(\sigma_{LD})</td>
<td>0</td>
</tr>
</tbody>
</table>
Crustal profile (from Vogfjord et al., 2002; Antonioli et al., 2005)

<table>
<thead>
<tr>
<th>Layer #</th>
<th>v_{P_k} (m/s)</th>
<th>v_{S_k} (m/s)</th>
<th>ρ_{rock_k} (Kg/m3)</th>
<th>Up do depth of x_{3_k} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3200</td>
<td>1810</td>
<td>2300</td>
<td>1100</td>
</tr>
<tr>
<td>2</td>
<td>4500</td>
<td>2540</td>
<td>2540</td>
<td>3100</td>
</tr>
<tr>
<td>3</td>
<td>6220</td>
<td>3520</td>
<td>3050</td>
<td>7800</td>
</tr>
<tr>
<td>4</td>
<td>6750</td>
<td>3800</td>
<td>3100</td>
<td>11600</td>
</tr>
</tbody>
</table>
Initial effective normal stress

\[
\sigma_{n_0}^{\text{eff}}(x_3) \equiv \sigma_n^{\text{eff}}(x_1, x_3, t) = \]

\[
\left\{ \begin{array}{l}
\hat{P}^{(\text{litho})}(x_3^*) - \Delta \sigma^{(\text{dev})} - P_{\text{fluid}}^{(\text{hyd})}(x_3) \\
\hat{P}^{(\text{litho})}(x_3^*) - \Delta \sigma^{(\text{dev})} - \left[\hat{P}^{(\text{litho})}(x_3) - \Delta \sigma^{(\text{dev})} - \sigma_n^{\text{eff}} \right] \\
- \Delta P_2 e^{\frac{x_3 - x_3^*}{h}} + \sigma_n^{\text{eff}} e^{\frac{x_3 - x_3^*}{h}} \end{array} \right\}
\]

\[
\sigma_n^{\text{eff}} = 2.5 \text{ MPa}
\]

\[
\Delta P_2 = \hat{P}^{(\text{litho})}(x_3^*) - \Delta \sigma^{(\text{dev})} - P_{\text{fluid}}^{(\text{hyd})}(x_3^*)
\]

\[
, x_3 \leq x_3^* = 5800 \text{ m}
\]

\[
, x_3^* < x_3 < x_3^* + D^*
\]

\[
, x_3 \geq x_3^* + D^* = 8800 \text{ m}
\]