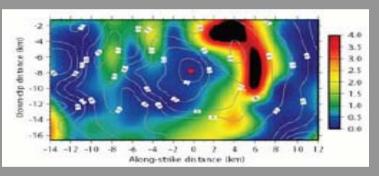
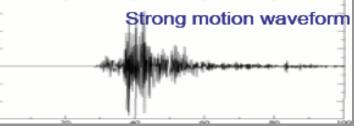
Fault governing laws (constitutive equations)

Seismologists need traction

- To apply fracture mechanics on mathematical planes representing the fault surfaces;
- To numerically simulate the spontaneous rupture nucleation, propagation, healing and arrest in dynamic earthquake models;

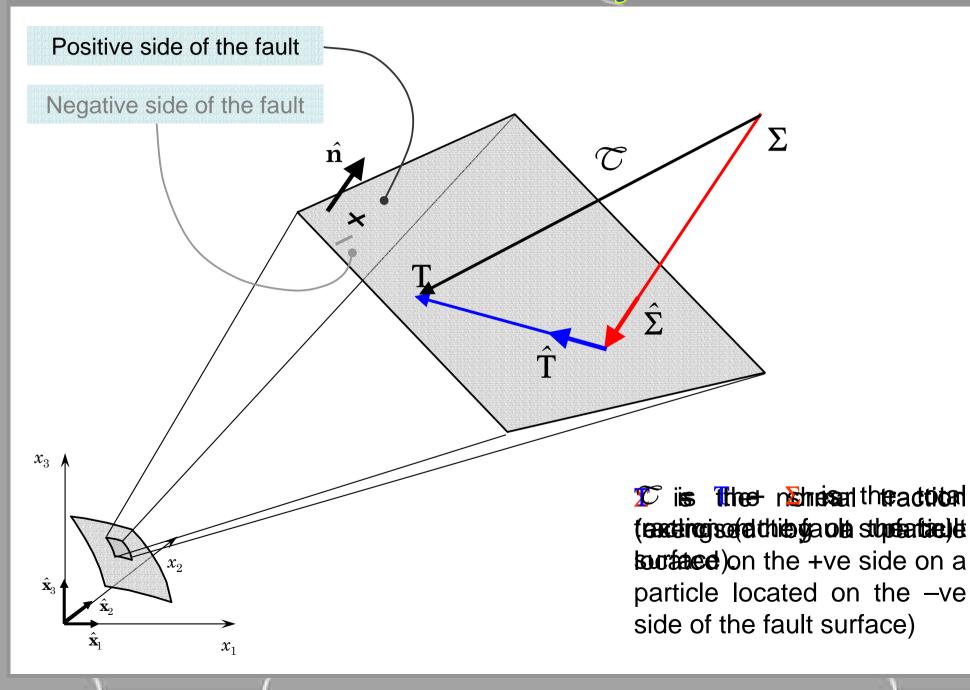


To model seismic wave propagation in the surrounding medium;



To predict ground shaking.

Notations and symbols



 $\mathcal{C}^{(\hat{n})} = \mathbf{T}^{(\hat{n})} + \boldsymbol{\Sigma}^{(\hat{n})}$ $\underbrace{\text{total}}_{j} \text{ traction (acting on the fault surface).}$ $\mathcal{C}^{(\hat{n})}_{j} = n_{j}\sigma_{jj}^{\text{eff}}$ $Cauchy' \text{ s formula, where } \mathcal{C}^{(\hat{n})} = (\mathcal{C}^{(\hat{n})}_{1}, \mathcal{C}^{(\hat{n})}_{2}, \mathcal{C}^{(\hat{n})}_{3}),$ $\mathbf{n} = (n_{1}, n_{2}, n_{3}) \text{ and}$

$$\sigma_{ij}^{eff} = \sigma_{ij} + p_{fluid} \,\delta_{ij} = \begin{bmatrix} -\sigma_{n_1}^{eff} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & -\sigma_{n_2}^{eff} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & -\sigma_{n_3}^{eff} \end{bmatrix}$$

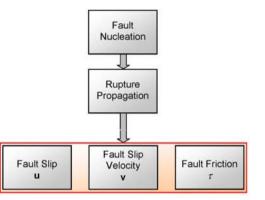
where: $\sigma_{n_i}^{\text{eff}} = \sigma_{n_i} - p_{\text{fluid}} = -\sigma_{ii} - p_{\text{fluid}}$ and stresses are assumed to be negative for compression

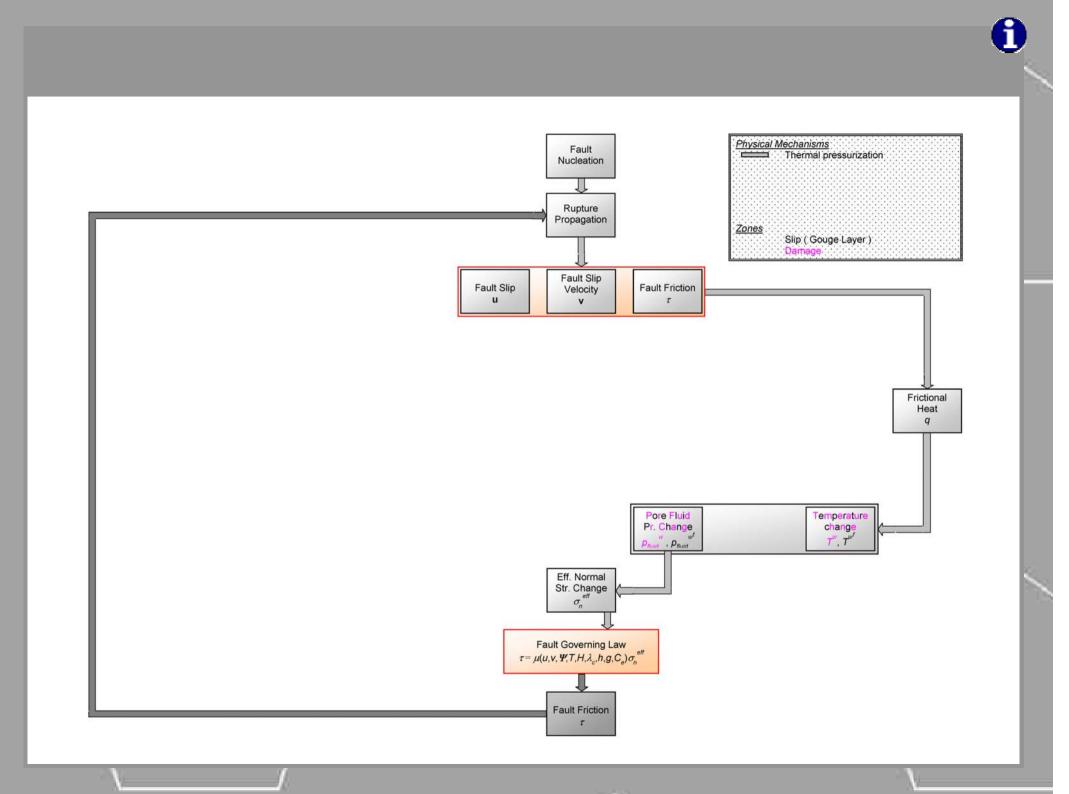
 $T_{j}^{(\hat{\mathbf{n}})} = n_{i}\sigma_{ij}^{\text{eff}} - n_{j}(n_{i}\sigma_{ik}^{\text{eff}}n_{k}) \qquad \text{shear traction}$

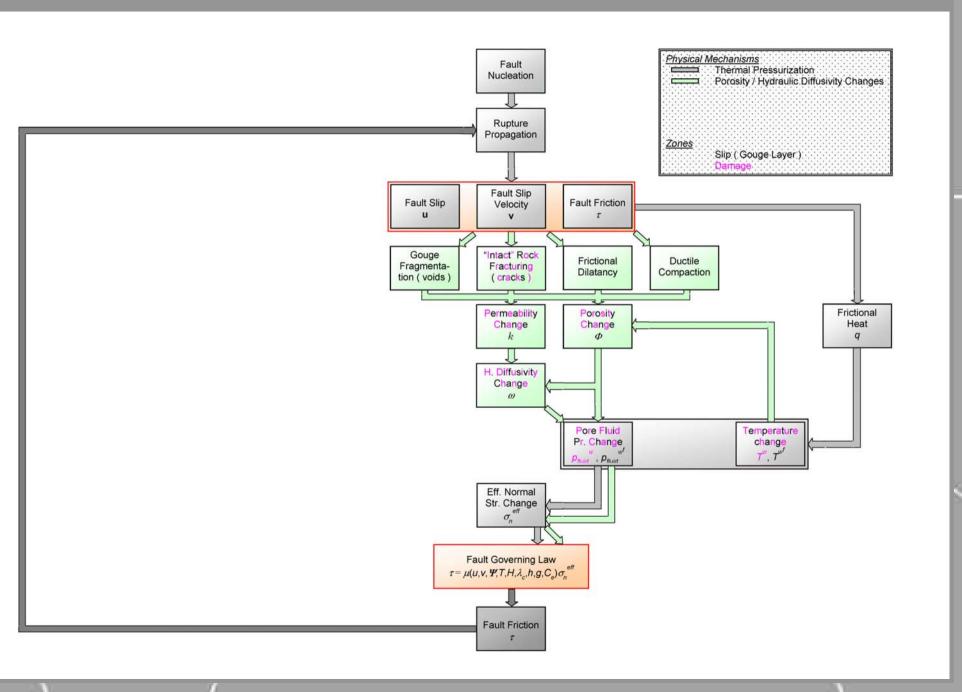
 $\Sigma_i^{(\hat{\mathbf{n}})} = n_i (n_i \sigma_{ik}^{eff} n_k)$

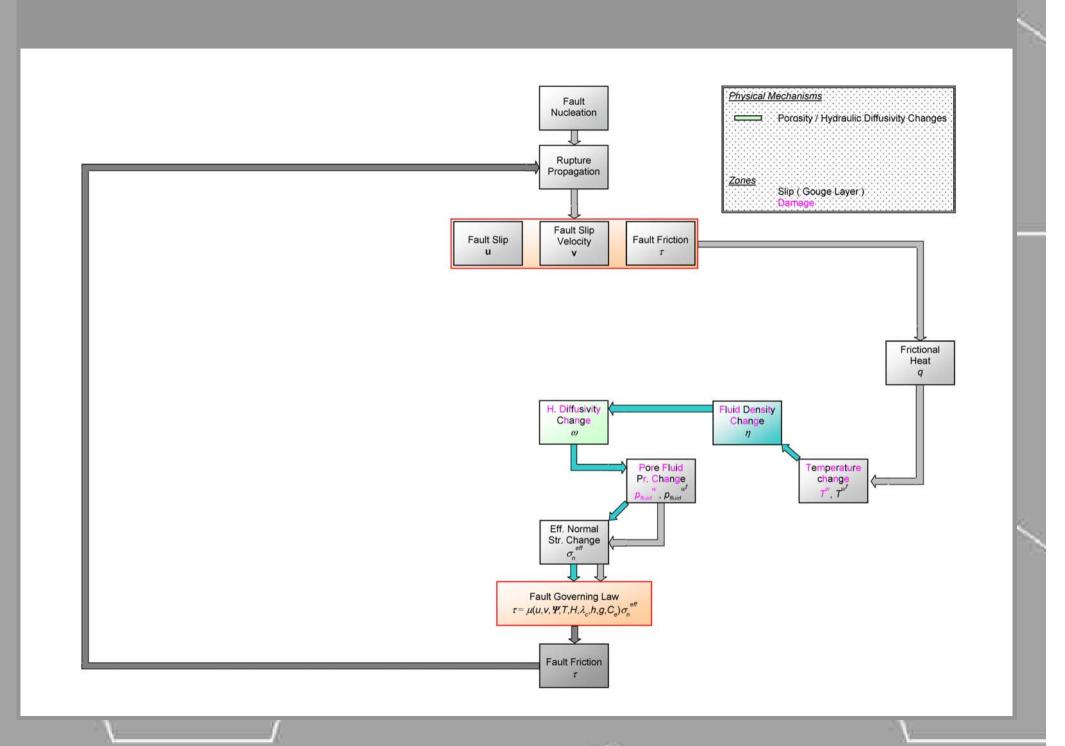
normal traction

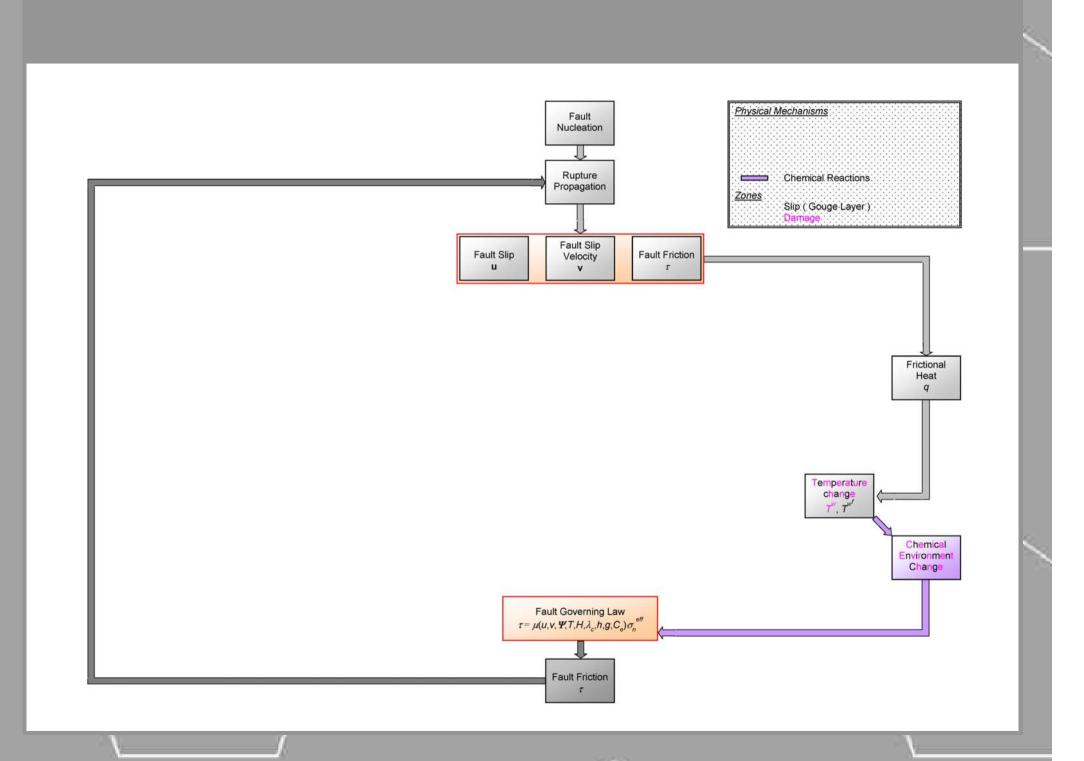
Physical Phenomena in Faulting

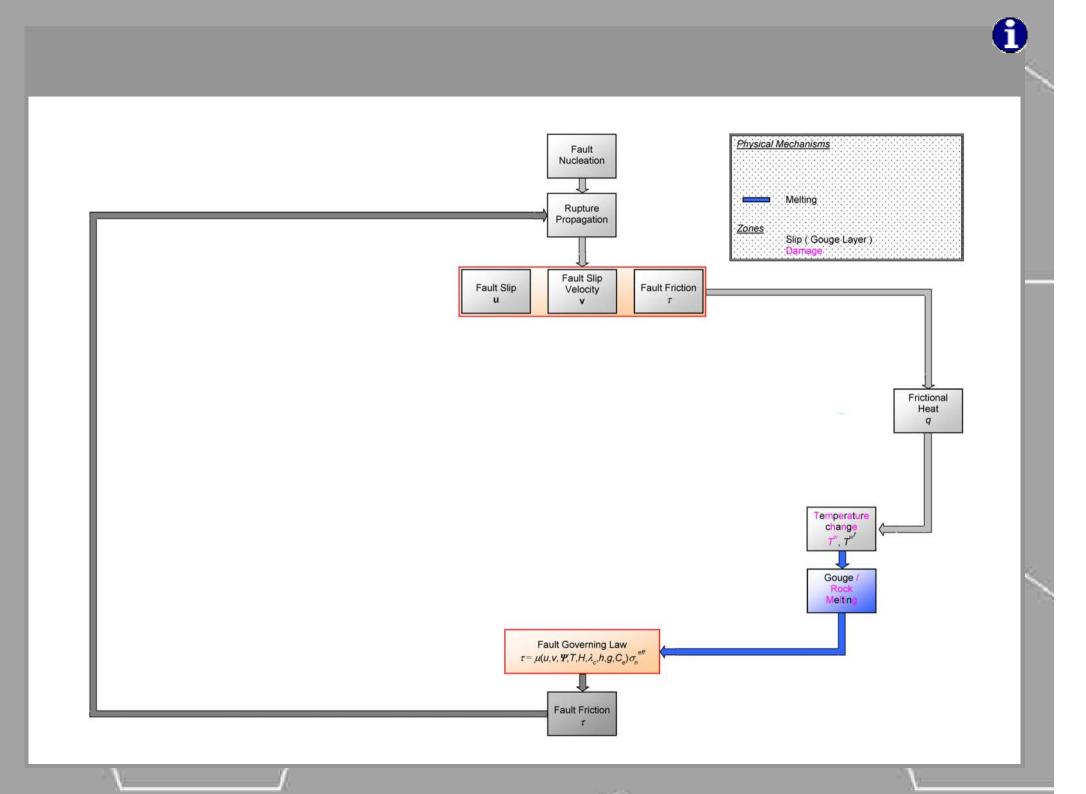


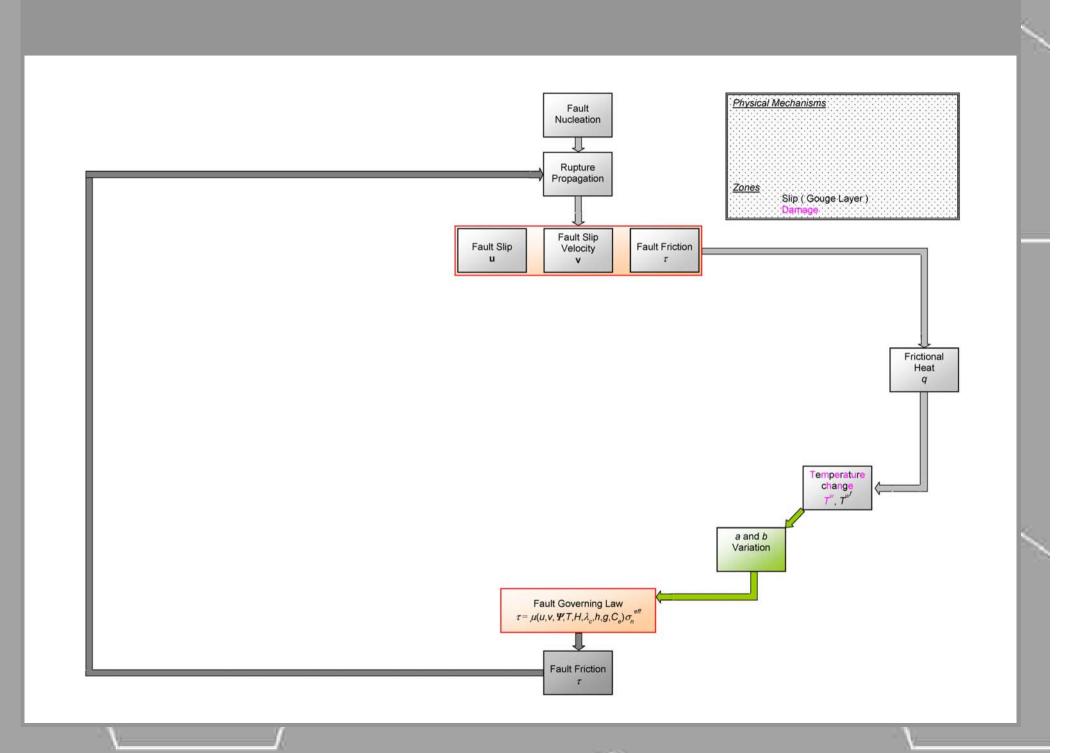




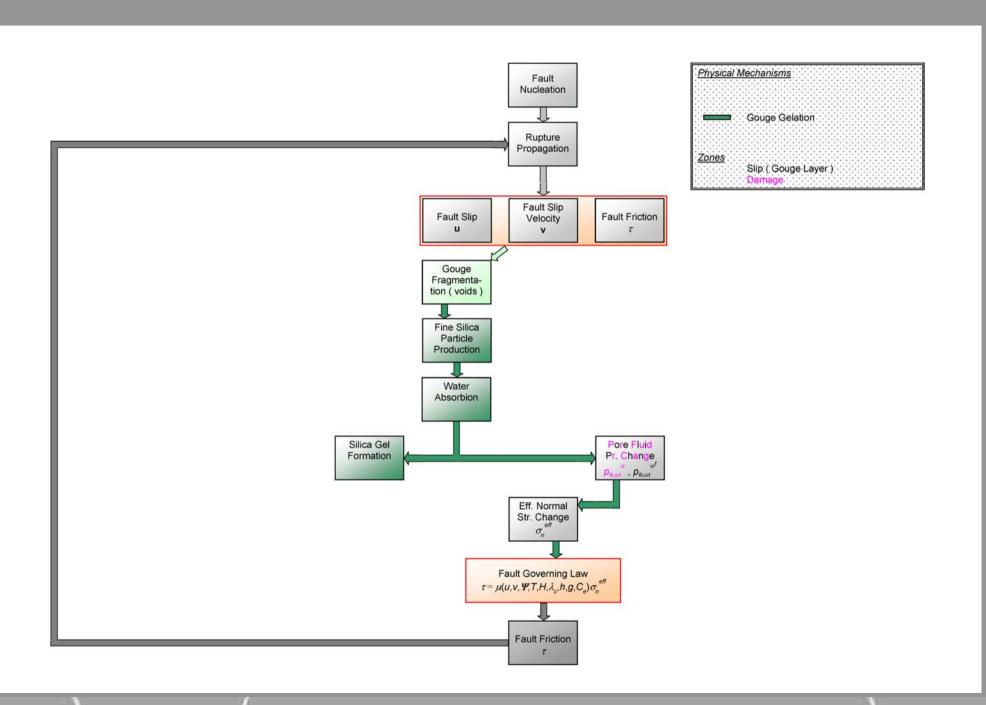


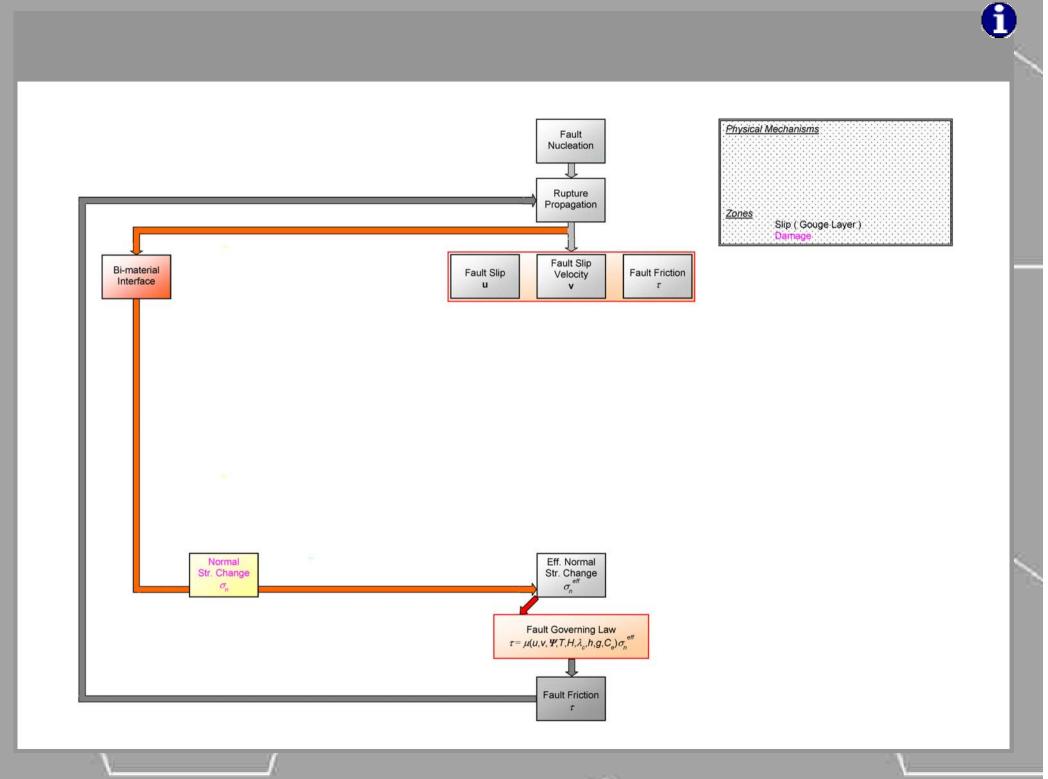


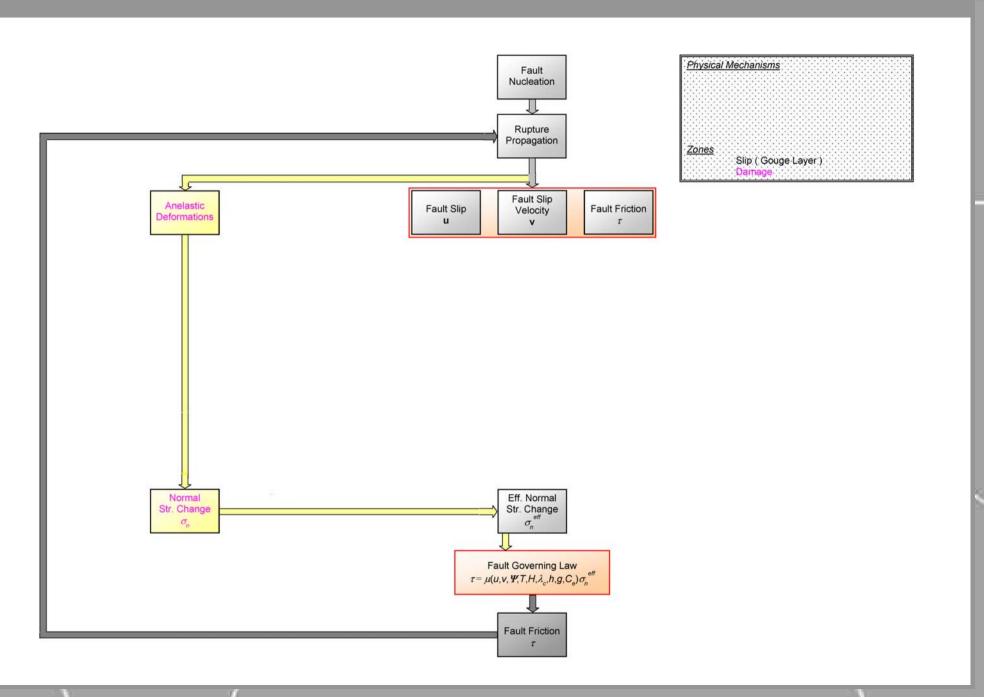




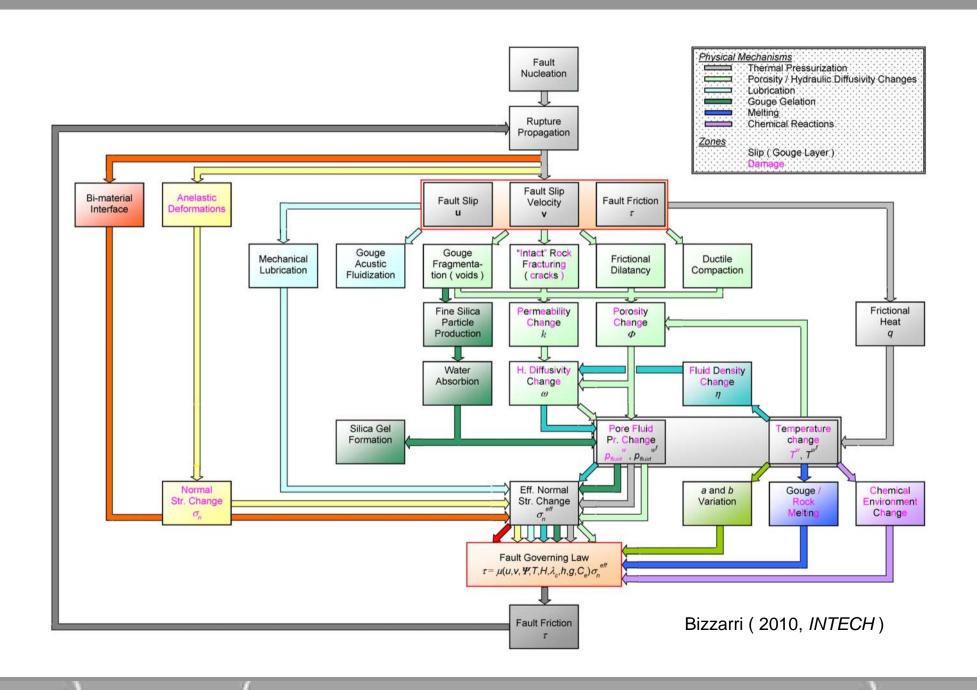








1 m



Fracture Criteria & Constitutive Laws

1. FRACTURE CRITERION

Condition that specify, at a given fault point and at a given time, if there is a rupture or not.

- It can be expressed in terms of energy, in terms of maximum frictional resistence, and so on.
- It is based on (*i*) the *Benioff (1951)* hypothesis: The fracture occours when the stress in a volume reaches the rock strength

or, analogoulsy,

(*ii*) the *Reid* (1910) statement: The fracture takes place when the stress attains a value greater than the rock can endure.

2. CONSTITUTIVE LAW

Analytical relation existing between the components of the stress tensor and physical observable(s), like the slip, the slip velocity, the state variable, etc..

- From a mathematical point of view it is a Fault Boundary Condition (FBC) that controls earthquake dynamics and its complexity in space and in time.
- Its simplest form consider only two frictional levels, τ_u and τ_f ; it accounts for stress drop (or stress realease), but the process is instantaneous: there is a singularity at crack tip.
- Cohesive zone models: Barenblatt (1959a, 1959b), Ida (1972), Andrews (1976a, 1976b). In these models the singularity is removed and the sress release occours over a breakdown zone distance X_b and in a breakdown zone time T_b .
- Friction laws (Rate and State dependent f. l.): Dieterich (1976), Ruina (1980, 1983). They accounts for fault spontaneous nucleation, re – strengthening, healing, etc..

CONSTITUTIVE LAW (continues)

- "The central issue is *whether* faults obey simple friction laws, and if so, what is the friction coefficient associated with fault slip " (*Scholz and Hanks, 2004*).

CONSTITUTIVE LAW (continues)

- In full of generality we can express the constitutive (or governing) as:

$$\tau = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, p_f)$$

where:

- u is the Slip (i. e. displ. disc.) modulus,
- v is the Slip Velocity modulus (its time der.),

 $\Psi = (\Psi_1, ..., \Psi_N)$ is the State Variable vector,

- T is the Temperature (accounting for Ductility, Plastic Flow, Melting and Vaporization),
- *H* is the Humidity,
- λ_c is the Characteristic Length of surface (accounting for Roughness and Topography of asperity contacts),
- h is the Hardness,
- g is the Gouge (accounting for Surface Consumption and Gouge formation),
- C_{e} is the Chemical Environment

Strength & Constitutive Laws

1. THE STRENGTH PARAMETER

- Hystorically introduced by Das and Aki (1977a, 1977b) to have a quantitative extimate of the ability to fracture for a fault
- Its expression can be generalized as:

$$S = (\mu_u \sigma_n^{\text{eff}} - \tau_0) / (\tau_0 - \mu_f \sigma_n^{\text{eff}})$$

where μ are the friction coefficient.

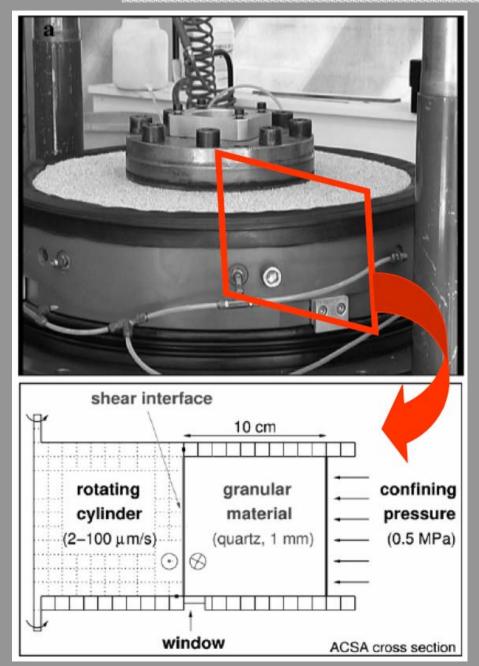
- We can also define

2. THE FAULT STRENGTH

 Is the parameter that quantify the Strenght in the more general case, in which a fault is described by a rhealistic friction laws

 $S^{fault} = \mu(u, v, \Psi, T, H, \lambda_c, h, g, C_e) \sigma_n^{eff}(\sigma_n, p_{fluid})$

Annular simple shear apparatus



 u_{tot} < 50 m $v = 1 \ \mu$ m/s - 0.1 mm/s σ_n^{eff} < 1 MPa

Chambon et al. (2006a, 2006b, *JGR*, **111**, B09308, B09309)

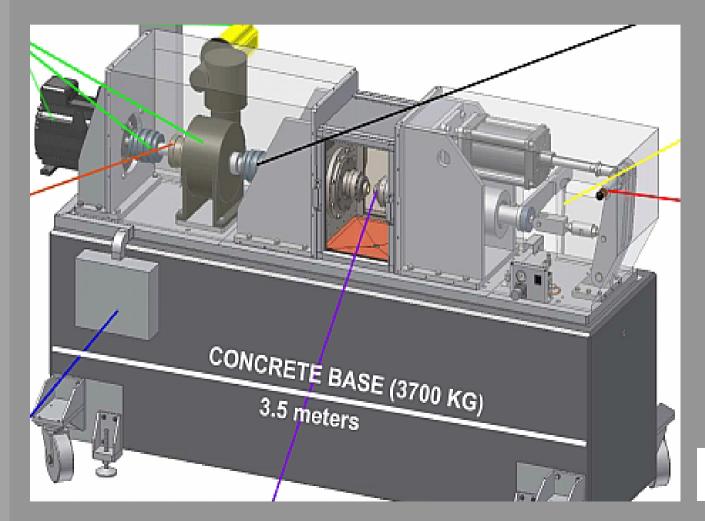
High velocity rotary friction apparatus

 u_{tot} = infinite $v = 0.1 \ \mu m/s - 10 \ m/s$ $\sigma_n^{eff} < 20 \ MPa$

Shimamoto and Tsutumi (2004, Str. Geol., **39**)

High velocity rotary friction apparatus @ INGV

 u_{tot} = infinite $v = 1 \ \mu m/s - 9 \ m/s$ $\sigma_n^{eff} < 70 \ MPa$



Niemeijer et al. (2009, *AGU Fall Meeting*)

Time - weakening Friction Law

$$\tau = \begin{cases} \left[\mu_u - (\mu_u - \mu_f) \frac{(t - t_r)}{t_0} \right] \sigma_n^{eff} & , t - t_r < t_0 \\ \mu_f \sigma_n^{eff} & , t - t_r \ge t_0 \end{cases} \xrightarrow{\text{ilaw}} \text{II}$$

 $t_r = t_r(\xi)$ is the rupture onset time in every fault point ξ (when u > 0). <u>Andrews (1985</u>), Bizzarri et al. (2001) and other following Bizzarri's papers

 t_0 is the characteristic time – weakening duration.

Position - weakening Friction Law

$$\tau = \begin{cases} \left[\mu_u - (\mu_u - \mu_f) \frac{x}{R_0} \right] \sigma_n^{eff} & , -R_0 < x < 0 \\ \mu_f \sigma_n^{eff} & , -L < x < -R_0 \end{cases}$$

 \mathbf{PW}

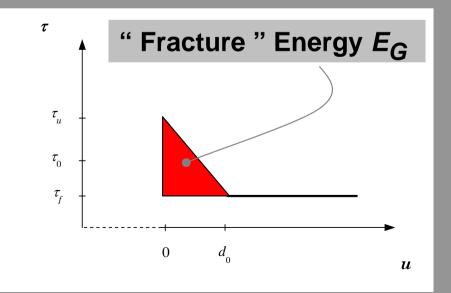
x is the position on the fault (extending up to -L).

Palmer and Rice (1973)

 R_0 is the characteristic position – weakening distance.

1. LINEAR SLIP - WEAKEING LAW

$$\tau = \begin{cases} \left[\mu_u - (\mu_u - \mu_f) \frac{u}{d_0} \right] \sigma_n^{eff} & , u < d_0 \\ \mu_f \sigma_n^{eff} & , u \ge d_0 \end{cases} \quad \begin{array}{l} \text{ilaw} = 21 \\ \text{sw} \\ \text{sw} \end{cases}$$



Barenblatt (1959a, 1959b), <u>Ida</u> (<u>1972</u>), Andrews (1976a, 1976b), and many authors thereinafter

 d_0 is the characteristic slip – weakening distance

ilaw = 22

IW

2. NON – LINEAR SLIP – WEAKEING LAW

$$\tau = \begin{cases} \left[\mu_u - \frac{\mu_u - \mu_f}{d_0} \left(u - \frac{(1 - p_{IW})d_0}{2\pi} \sin\left(\frac{2\pi u}{d_0}\right) \right) \right] \sigma_n^{eff} &, u < d_0 \\ \mu_f \sigma_n^{eff} &, u \ge d_0 \end{cases} \end{cases}$$

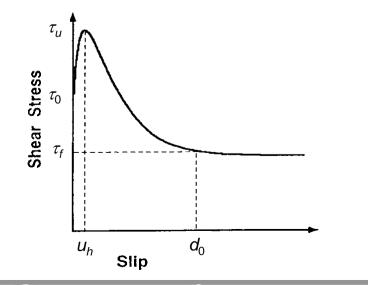
Ionescu and Campillo (1999)

3. NON LINEAR SLIP – WEAKEING LAW WITH SLIP – HARDENING

$$\tau = \left\{ \begin{bmatrix} \left(\frac{\tau_0}{\sigma_n^{eff}} - \mu_f \right) \left(1 + \alpha_{OY} \ln \left(1 + \frac{u}{\beta_{OY}} \right) \right) \end{bmatrix} e^{-\frac{u}{d_0}} + \mu_f \right\} \sigma_n^{eff}$$

$$\mathbf{u}_h : \frac{\mathrm{d}\tau}{\mathrm{d}u}\Big|_{u_h} = 0; \qquad \begin{cases} u_h = rd_0 \quad (\mathrm{e.\,g.} \ r = 0.1) \\ \tau(u_h) = \tau_u \end{cases}$$

$$\mathbf{W}_h : \frac{\mathrm{d}\tau}{\mathrm{d}u}\Big|_{u_h} = 0;$$



<u>Ohnaka and Yamashita (1989)</u> and the following papers by Ohnaka and coworkers

 u_h is associated with the preparatory phase of the imminent macroscopic failure in the cohesive zone. It accounts for micro–cracking

4. NON LINEAR SLIP - WEAKEING LAW WITH EXPONENTIAL DECAY

$$\tau = \left[\left(\mu_u - \mu_f \right) e^{-\frac{u}{d_0}} + \mu_f \right] \sigma_n^{eff}$$

ilaw = 24

EW

5. POWER LAW SLIP - WEAKEING

$$\tau = \left\{ \mu_u - \left(\mu_u - \mu_f\right) \left[\left(\frac{p_{PW}}{p_{PW} + 1}\right) \frac{u}{d_0} \right]^{p_{PW}} \right\} \sigma_n^{eff}$$

ilaw = 25

PW

Rate - Dependent Friction Law

$$\tau = \frac{\upsilon_*}{\upsilon + \upsilon_*} \,\mu_u \sigma_n^{\text{eff}}$$

Burridge and Knopoff (1967), <u>Carlson and Langer (1989)</u>, Madariaga and Cochard (1994), Cochard and Madariaga (1994)

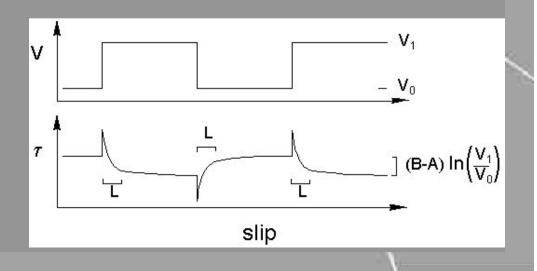
Rate - and State - Dependent Friction Laws

1. DIETERICH IN REDUCED FORMULATION

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_* - \alpha \ln \left(\frac{v_*}{v} \bullet \right) + b \ln \left(\frac{\Psi v_*}{L} \bullet \right) \right] \sigma_n^{eff} \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} \end{cases} \text{ In } \\ \end{bmatrix} \sigma_n^{eff} \\ DR$$

However, while in velocity stepping experiments the traction response following the velocity variation is directly controlled by the parameter *L*, its effects are much less evident during the dynamic rupture propagation. Bizzarri and Cocco (2005)

Response to an abrupt jump in load



2. RUINA – DIETERICH

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = - \frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) \end{cases} \text{ RD} \end{cases}$$

<u>Ruina (1980, 1983)</u>, Beeler et al. (1984), Roy and Marone (1996)

3. DIETERICH – RUINA WITH VARYING NORMAL STR.

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} & \text{ilaw} = 31 \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} - \left(\frac{\alpha_{LD} \Psi}{b \sigma_{n}^{eff}} \right) \frac{d}{dt} \sigma_{n}^{eff} & \text{DR} \end{cases} \\ \end{cases}$$

<u>Linker and Dieterich (1992)</u>, Dieterich and Linker (1992), Bizzarri and Cocco (2006b, 2006c)

4. RUINA – DIETERICH WITH VARYING NORMAL STR.

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \sigma_{n}^{eff} & \text{ilaw} = 32 \\ \frac{d}{dt} \Psi = -\frac{\Psi v}{L} \ln \left(\frac{\Psi v}{L} \right) - \left(\frac{\alpha_{LD} \Psi}{b \sigma_{n}^{eff}} \right) \frac{d}{dt} \sigma_{n}^{eff} & \text{RD} \end{cases}$$

<u>Linker and Dieterich (1992)</u>, Bizzarri and Cocco (2006b, 2006c)

5. DIETERICH IN REDUCED FORM REGULARIZED

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - a \ln \left(\frac{v + v_{*}}{v + v_{*}} \right) + b \ln \left(\frac{\Psi(v - v)}{L} + 1 \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = 1 - \frac{\Psi(v + v)}{L} \end{cases} \\ \end{bmatrix} \text{DE}$$

 v_r is a regularization fault slip velocity

<u>Perrin et al. (1995)</u>, Cocco et al. (2004)

6. RUINA REGULARIZED

$$\tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\frac{v_{*} - v_{r}}{v_{+} + v_{r}} \right) + \frac{\Psi}{\sigma_{n}^{eff}} \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = -\frac{v_{+} v_{r}}{L} \left(\Psi + b \ln \left(\frac{v_{*} - v_{r}}{v_{*} - v_{r}} \right) \right) \end{array} \right]$$
 ilaw = 34
RE

 v_r is a regularization fault slip velocity

Bizzarri (2002, unpublished work)

7. DIETERICH IN REDUCED FORM WITH HEALING

$$\begin{cases} \tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\frac{v_{*}}{v} + 1 \right) + b \ln \left(\frac{\Psi v_{*}}{L} + 1 \right) \right] \sigma_{n}^{eff} \\ \frac{d}{dt} \Psi = \frac{\gamma_{fh} - \Psi}{L} - \frac{\Psi v}{L} \end{cases} \text{ DH} \end{cases}$$

 $\gamma_{fh} = 1 \text{ s}$

 t_{fh} is the time for healing (slip duration)

Evolution law proposed by <u>Nielsen et</u> <u>al. (2000)</u> and by Nielsen and Carlson (2000). Used in this form by Cocco et al. (2004)

9. PRAKASH – CLIFTON

$$\tau = \left[\begin{array}{c} \mu_{*} - \alpha \ln \left(\frac{v_{*}}{v} \right) + b \ln \left(\frac{\Psi v_{*}}{L} \right) \right] \left(\frac{\mathrm{d}}{\mathrm{d}t} \Psi_{1} + \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{2} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi = 1 - \frac{\Psi v}{L} \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{1} = -\frac{v}{L_{1}} \left(\Psi_{1} - \alpha_{PC_{1}} \sigma_{n}^{eff} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \Psi_{2} = -\frac{v}{L_{2}} \left(\Psi_{2} - \alpha_{PC_{2}} \sigma_{n}^{eff} \right) \end{array} \right]$$

$$I = 1 - \frac{\Psi v}{L_{1}} \left(\Psi_{1} - \alpha_{PC_{1}} \sigma_{n}^{eff} \right)$$

$$I = 1 - \frac{\Psi v}{L_{1}} \left(\Psi_{1} - \alpha_{PC_{2}} \sigma_{n}^{eff} \right)$$

 Ψ_1 and Ψ_2 are additional state variables accountinf for the coupling with effective normal stress. The formulation of friction law is not based on the Amonton – Coulamb law.

Coupling with effective normal stress proposed by <u>Prakash and Clifton</u> (1993) and Prakash (1998). Used in this form by Bizzarri (2005, unpublished work)

$$\begin{split} & \Delta \mu \text{ is an initial artificial stress drop} \\ & \Psi_1 \equiv \Psi_0 \; (u - u_1) / (d_1 - u_1) \\ & U_1 \equiv - \; d_1 \; (\mu_{sp} - \mu_u + \Delta \mu) / (\mu_u - \Delta \mu) \\ & d_0 \text{ and } d_1 \text{ are characteristic lengths} \\ & \mu_{sp} \; = \; 0 \; \Rightarrow \; \text{linear SW with } d_1 \text{ as characteristic length} \end{split}$$

Cochard and Madariaga (1994)

-Free Volume Friction law

$$\begin{cases} \tau = \sigma_d \operatorname{Arcsinh} \left(\frac{\upsilon}{\upsilon_*} \frac{\mathrm{e}^{f_* + \frac{\chi_s + \chi_h}{\chi}}}{1 - m_0} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \chi = -R_c \, \mathrm{e}^{-\frac{\chi_c}{\chi}} + \alpha_{FV} \tau \upsilon \\ m_0 = \begin{cases} 1 & , \tau \leq \tau_0 \mathrm{e}^{\frac{\chi_h}{\chi}} \\ \frac{\tau_0}{\tau} \, \mathrm{e}^{\frac{\chi_h}{\chi}} & , \tau > \tau_0 \mathrm{e}^{\frac{\chi_h}{\chi}} \end{cases} \end{cases}$$

 $\begin{array}{ll} \chi \equiv \varPhi - \varPhi_0 & \mbox{free volume variable} \\ \chi_s & \mbox{reference value of } \chi \mbox{ for shearing} \\ \chi_h & \mbox{FV value required to create a Shear Transformation Zone (STZ)} \\ \chi_c & \mbox{FV value for compaction} \\ R_c & \mbox{rate of compaction} \\ \alpha_{FV} & \mbox{scaled dilatancy coefficient} \end{array}$

Falk and Langer (1998, 2000); Lemaitre (2002); <u>Daub and Carlson</u> (2008)

How to relate relevant quantities to contitutive parameters

Dynamic Parameters E_R : radiated energy ruputre speed, $V \approx 0.8$ to 0.9 β $E_{NR} = E_F + E_G + \dots$: non-radiated energy E_F : friction (heat), E_G : fracture energy of : friction Stress 50 $\Delta \sigma_s = \sigma_0 - \sigma_1$: static stress drop $\Delta \sigma_d = \sigma_0 - \overline{\sigma}_f$: dynamic stress drop 5 end begin Slip (xS)

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

Thermal pressurization:

Sibson (1973); Lachenbruch (1980); Mase and Smith (1985, 1987); Andrews (2002); Bizzarri and Cocco (2006b, 2006c).

Morrow et al. (1984) show that gouge contains water

Gouge behaviour:

Marone et al. (1990); Marone and Kilgore (1993); Mair and Marone (1999); Mair et al. (2002)

Frictional melting:

Jeffreys (1942); McKenzie and Brune (1972); Richards (1977); Sibson (1977); Cardwell et al. (1978); Allen (1979)

Pseudo tachylyte: Fault vein (*Sibson*, 1975)

Mechanical Iubrication:

Spray (1993); Brodsky and Kanamori (2001); Kanamori and Brodsky (2001)

Acustic fluidization:

Melosh (1979, 1996)

Gouge gelation:

Goldbsy and Tullis (2002); Di Toro et al. (2004)

Bi – material interface:

Andrews and Ben – Zion (1997); Harris and Day (1997); Andrews and Harris (2005)

MTL: Fractured mylonite, cataclasite and gouge

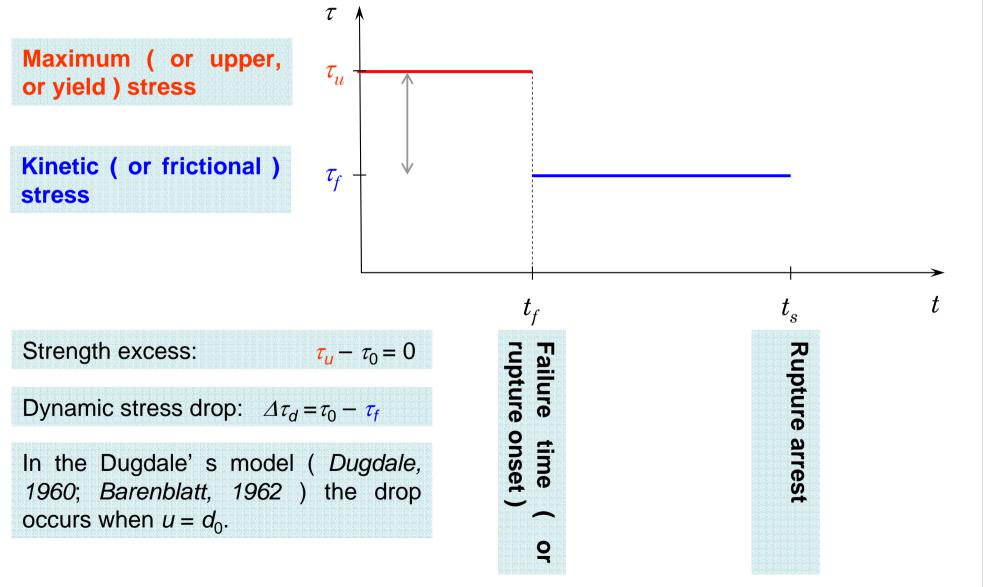
Humidity effects:

Dieterich and Conrad (1984)

Characteristic length of surface effects:

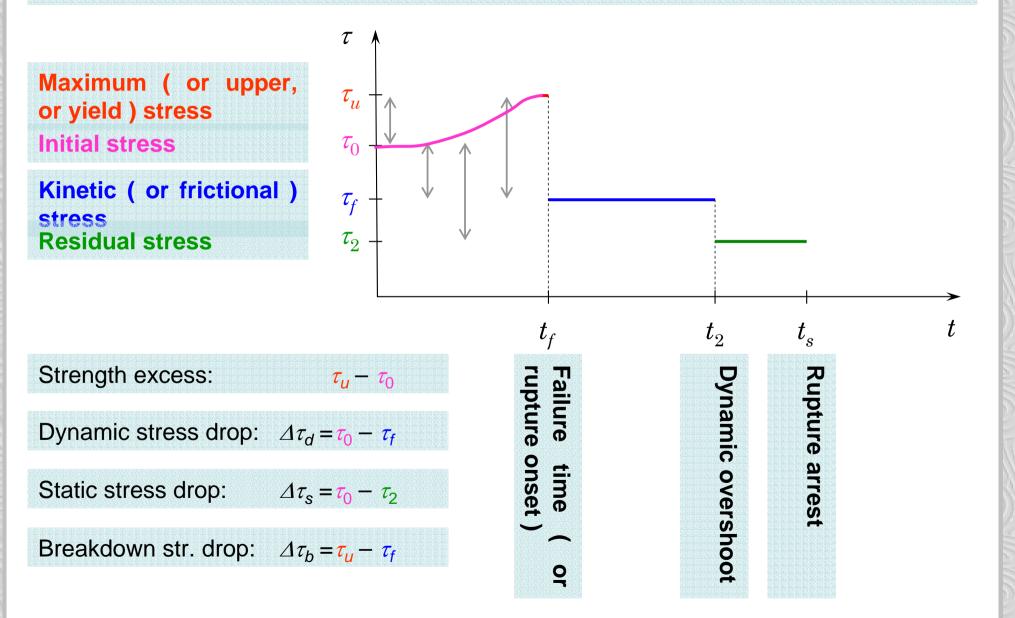
Ohnaka and Shen (1999); Ohnaka (2003)

<mark>elebom noitoiri teelqmi2</mark>



<mark>elebom noitoiri teelqmi2</mark>

At a particular fault point ξ (following Savage and Wood, 1971; Scholz, 1990)



Savage and Wood (1971) also define:

Mean stress: $<\tau>=\frac{1}{2}(\tau_{\mu}+\tau_{2})$

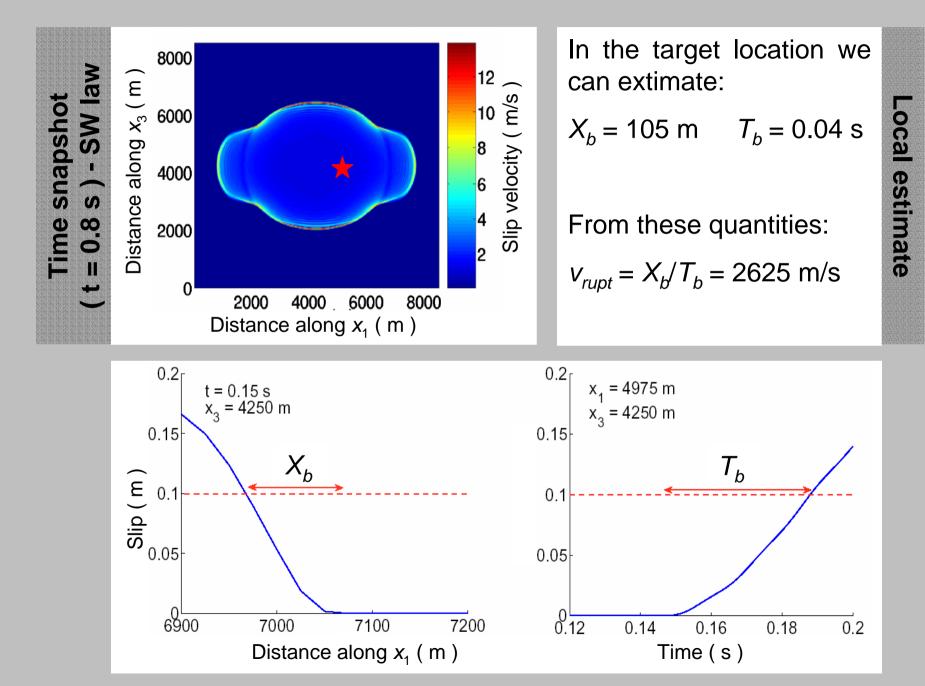
Seismic efficiency: $\eta = E_s/E$, where: E_s is the seismic energy

E is the total available energy

Apparent stress: $\tau_a = \eta < \tau >$

Direct observation of the absolute stress near an earthquake is not feasible, but it is possible (*Wyss and Brune, 1968*) calculate τ_a and stress drop from physical observables.

<u>Lys copesive zobe</u>



Slip - hardening effect

* The slip – hardening (SH) phenomenon has been also found in seismological inversion studies (e.g. Quin, 1990; Miyatake, 1992; Mikumo and Miyatake, 1993; Beroza and Mikumo, 1996; Ide, 1997; Bouchon, 1997).

Interpretation of the state variable 0