

CONVERGENCE

CONSISTENCY REQUIREMENTS

- As the size of the elements (i. e. the discretization) tends to zero, the approximated equations will represent the exact differential equations to be solved and the boundary conditions

STABILITY CONDITIONS

- The solution of the dicrete equation system is <u>unique</u>
- Avoid spurious mechanisms which may pollute the solutions for all sizes of elements

CONVERGENCE

- How good the approximation is;
- How can it **systematically improved** to approach the *exact* solution of the problem.

Convergence conditions for BIE with SW constitutive law

Uniqueness of the solution in the integration of linear system (*Andrews*, 1985; B2001)

$$dx < -\frac{v_P \mu}{\beta \frac{dS}{du}} \quad \Leftrightarrow \quad \frac{L_c^{\text{(II)}}}{dx} > \frac{2}{\pi} \frac{a-1}{\sqrt{a}} (1+S)^2; a^2 = \alpha/\beta$$

Resolution of the cohesive zone

$$\Delta t \ll T_b$$
 or $\Delta x \ll X_b$

First neighbours decoupling

$$\Delta t \leq \Delta x / v_P$$

Convergence – Example #1: No resolution of the cohesive zone

BIE and FD 2 – D simulations with the classical slip – weakening law.

Convergence conditions for FD with RS constitutive law

Continuum approximation (Rice, 1993)

$$k_{diag} >> k_{cr}$$
 $\Delta t << \Delta t^*$ or $\Delta x << \Delta x^*$

$$\Delta t \ll \Delta t^*$$

$$\Delta x \ll \Delta x^*$$

$$\Delta t^* = \frac{v_S \, \rho \, L}{\left(b - a\right) \sigma_n^{eff}}$$

Resolution of the cohesive zone

$$\Delta t \ll T_b^{eq}$$

$$\Delta t << T_b^{eq}$$
 or $\Delta x << X_b^{eq}$

First neighbours decoupling

$$\Delta t \leq \Delta x / v_P$$

Convergence – Example #2: Continuum approximation violation

FD 2 – D simulations with Dieterich in reduced form friction law.

This slide is empty intentionally.

