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Following the Coulomb’ s failure assumption we define a Coulomb Failure
Stress as ( e. g. Jaeger and Cook,1969 ):

where: is the shear tration modulus,

µ is the coefficient of friction,

σn is the normal stress ( positive in tension ),

pfluid is the pore fluid pressure,

C is the cohesion.

( ) CpCFS fluidn         −++= σµΤ

Τ

Assuming µ and C constant over time, we have the Coulomb Failure Stress 
change:

where it has been assumed an isotropic failure plane.

( )fluidn pCFS ∆σ∆µ∆∆       ++= Τ



∆CFS is used to evaluate if one earthquake brought another earthquake closer
to, or farther from, failure:

∆CFS > 0   ⇒ fault plane loaded ⇒ closer to failure

 ∆CFS < 0   ⇒ fault plane relaxed ⇒ farther from failure

 ( Stress Shadow )

∆σn is the change in normal stress due to the first earthquake and it is resolved
in the direction orthogonal to the fault plane of the second earthquake.

∆   is the change in shear stress due to the first earthquake and it is resolved in 
the slip direction of the second earthquake;

Τ

Neglecting the spatial dependence in tractions, are:

Τ(t) = Τ(0) + ∆Τ(t)        σn(t) = σn(0) + ∆σn(t)        pfluid(t) = pfluid(0) + ∆pfluid(t)

Therefore we can write:

( ) ( ) ( ) ( ) ( ) ( )( )tptttCFS fluidn ∆σ∆µ∆     0       0   ++−+= Τ∆ΤΤ



Stress changes approaches ( after Harris, 1998 )



1 1 –– D  Spring D  Spring –– slider      slider      
modelmodel



m  δ=  k (δο − δ) −τ +∆τ,   ∆τ(t)  perturbazione
                                       τf = resistenza di attritof

Reologia: attrito rate- and state-dependent

(  ) (     )(  )

θ (Φ) = variable di stato della superficie, V = δ
 
velocità

A - Ruina-Dieterich

τ = τ* + V
V*

dθ
dt = − V

L θ+ B

B - Dieterich - Ruina

τ = τ* − Aln V*V +Bln ΦV*L
dΦ
dt =1− ΦV

L
V
V*

θ+ Aln

ln

f f

.

Stato del sistema:  (V(t), d (t), tf(t))
o condizioni mecc. faglia
appross. q. statica                           (V (t), tf(t))
V<Vc=0.1 mm/s
Inertia is negligible and the system passes
through a sequence of equilibrium states
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AnalyticalAnalytical stress stress perturbationsperturbations
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AnalyticalAnalytical stress stress perturbationsperturbations
The The stepstep and the and the pulsepulse #1#1
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To evidence the eventual effect of the transient part of 
the coseismic stress changes due to the 17 June 2000, M 
6.6 South Iceland earthquake;

The debate on the triggering potential of transient stress 
changes is still open; 

The observational evidences are difficult and few.



The largest events ( M ~ 5 ) 
occurring in the first five 
minutes 

8s, 26s, 30s, 130s, 226s

in intermediate - far field

8s, 26s, 30s, 130s, 226s

that reasonably are not 
secondary aftershocks

26s,  30s,          226s.

��

������

����

����

The The choicechoice of the of the eventsevents



• They were not detected teleseismically.

• 26 s ( 64 km far )

–Not detected by DInSAR. 

–Known fault.

• 30 s ( 77 km far )

– Waveforms partially obscured by the 
first event ( mechanism uncertain )

– Detected by DInSAR and surface 
effects.

– August 2003: M 5 event on N-S fault 
with the same epicenter.

From SIL seismograms the 26 s and 30 s 
events occurred at the arrival ( later than 
the first ) of shear waves traveling at 2.5 
km/s at their location.

SIL network

The 26 s and 30 s The 26 s and 30 s eventsevents

Event Origin time Latitude (°) Longitude (°) Depth (km) ML MLw
26s 154106.9 63.951

±0.004
-21.689
±0.008

8.9
±1.3

4.91 6

30s 154111.254 63.937
±0.003

-21.94
±0.01

3.8
±1.3

4.68 5.9



• Slip distribution from geodetic data    
( Arnadottir et al. 2003 ). Right lateral
strike slip fault, strike 7° E, dip 86°.

• Rupture history: bilateral Haskell
model, rise time: 1-2 s, rupture 
velocity: 2.5 km /s.

• 2 crustal models with 4 layers:
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Vp (west of Hengill)
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ParametersParameters usedused toto computecompute the the 
dynamicdynamic stress stress 

East of Hengill

Depth  
(km) 

VP  
(km/s)

VS  
(km/s)

Density 
(kg/m3) 

0-1.1 3.2 1.81 2300 
1.1-3.1 4.5 2.54 2900 
3.1-7.8 6.22 3.52 3100 
>7.8 6.75 3.8 3300 

West of Hengill

Depth  
(km) 

VP  
(km/s) 

VS  
(km/s)

Density 
(kg/m3) 

0-3.1 3.3 1.85 2300 
3.1-7.8 6.0 3.37 2900 
7.8-17 6.85 3.88 3100 
>17 7.5 4.21 3300 



Nord - Sud vertical right - lateral faults
∆CFF=∆τ + µ(1 - B)∆σn, with µ = 0.75, B = 0.47
Rise time: 1.6 s

DynamicDynamic stressesstresses at the at the twotwo
hypocentershypocenters
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Time separation between the events and between stress 
peaks comparable.
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• Stress at each hypocenter is affected by uncertain parameters such as the 
crustal model, rise time and the hypocentral depth.

• Crustal model

The origin times ( from mainshock ) of the two events remain at, or follow
closely the second CFF peak for ~ 1 - 2 s  rise time.

ParametersParameters sensitivitysensitivity #1 #1 
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Uncertainties in stress amplitudes.

ParametersParameters sensitivitysensitivity #2#2
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• We study the fault response to the 
stress changes as evaluated at the 
two hypocenters with varying the 
parameters within their uncertaintes;

• We use a spring-slider model with 
rate- and state-dependent friction for 
variable effective normal stress σn

eff;

• The system is perturbed either in 
shear stress and normal stress (∆τ(t), 
∆σn

eff(t));

• We investigate the possibility of  
instantaneous triggering (during the 
transient stress perturbation).
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• h ~ 10 km linear fault dimension,
• standard values of rheological parameters ( µ* = 0.7, L = 1 mm,       

b = 0.01),
• v0 = 2 cm/yr ( spreading rate in the SISZ ),
• fault in close to failure conditions ( 100% steady state 

unperturbed failure expected at less than 2 yr from June 17, 2000 )

The fault tends to fail within 1 s after a peak in CFF, as evaluated at 
the two hypocenters

ifif
1. the initial effective normal stress σ0 is enough low, so that the shear 

stress perturbation ∆τ at that peak is much larger than a(σ0 + ∆σ)

2. and the direct effect of friction a is enough low to keep fault 
unstable ( k/kcrit < 1 ) for low values of σ0.

The The instantaneousinstantaneous triggertrigger



For a ≤ 0.003 and σ0 ≅ 20 bar, we obtained instantaneous trigger 
within 1 second after the second peak of CFF, as expected for the two 
aftershocks in the SISZ. 
For a = 0.003 and σ0 > γ 20 bar, 1 < γ < 10 ( increasing with the 

amplitude of the second peak of ∆τ ) the trigger is not instantaneous      
( failure time > 4 hours ). 

Failure times relative to the origin time of mainshock of 17 june 2000:
first aftershock (26 s)
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The 26 and 30 s events occurred near one of the 
important geothermal areas of Iceland;

They were neglibly affected by static stress changes;

They followed closely a peak of positive CFF;

These results favour the hypothesis of dynamic 
triggering;

Dynamic models of fault responses can explain 
observations for low values of effective normal stress     
( near lithostatic pore pressure ).
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The spatial sampling of the receiver grid is not sufficient to correctly resolve the 
dynamic processes occurring during the rupture nucleation and propagation 
(Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a C 2 cubic spline to interpolate ∆σij in 
space and in time. 

Original values ( t = 26.37 s ) Interpolated values ( t = 26.37 s )
Original values ( t = 26.37 s ) Interpolated values ( t = 26.37 s )



At time t, in each fault node, the dynamic load is: Li = fri + Τ0i + ∆σ2i
(i = 1 and 3).

Τ0i are the components of the initial traction (                    ) ( ) ( ) ( ) ( )( )0031031 sin 0, ,cos ,  , ϕϕτ xxxx =0Τ

fri are the components of the load (namely the contribution of the restoring 
forces, fr) exerted by the neighboring points:

fri = (M−fi+ − M+fi−)/(M+ + M−), 

where M+ and M− are the masses of the “+” and “−” half split–node of the fault 
plane Σ and f+ is the force acting on partial node “+” caused by deformation of 
neighbouring elements located in the “−” side of S (and viceversa for f−).

{∆σ2i} are coupled to the components of the fault friction Τi via

where α ≡ A ((1/M+) + (1/M−)), A = ∆x1∆x3. Τi express on the governing law. 
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ObservationalObservational constraintsconstraints

3) From the aftershocks distribution shown in 
Hjaltadottir and Vogfjord (2005) we consider the 
seismic part of the fault (A) limited in latitude
between 63.890 °N and 63.951 °N (in the case of 
Nord–South fault this corresponds to [9700, 
16500] m in strike direction) and limited in depth 
between 5400 m and 7400 m

Upper bound estimates:
M0 = 1.23 × 1015 A 3/2 = 6.15 × 1016 Nm;
Av. fault slip: <u>A = M0/(ρ vS

2A ) = 0.12 m;
Av. stress drop: <∆τ>A = 2M0/(πWA LA) = 1.44 MPa

4) Mw ≥ 5 (Arnadottir et al., 2006; Vogfiord, 2003) ⇒ M0 ≅ 3.2 × 1016 Nm

2) Hypocenter (63.951 ± 0.004 °N, 21.689 ± 0.008 °W, 8.9 ± 1.3 Km) ↔ on fault 
coordinates of (16500 ± 450, 8900 ± 1300) m (Antonioli et al., 2005)

1) Perturbed rupture time tr = 25.9 ± 0.1 s

A
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Dieterich – Ruina governing law Perturbed rupture times
v(x1,x3,t) ≥ vl ⇒ tp(x1,x3) = t

vl = 0.1 m/s, in agreement with
Belardinelli at al. (2003); Antonioli
et al. (2005); Rubin and Ampuero
(2005); Ziv and Cochard (2006)

From Bizzarri and Belardinelli
(Nov. 2005; subm. to JGR )

tpmin = 23.47 s @ (20700,2900) m

M0 = 2.37 x 1019 Nm

Whole fault

Can be neglected (see
Antonioli et al., 2005)
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Dieterich – Ruina governing law Perturbed rupture times
v(x1,x3,t) ≥ vl ⇒ tp(x1,x3) = t

vl = 0.1 m/s, in agreement with
Belardinelli at al. (2003); Antonioli
et al. (2005); Rubin and Ampuero
(2005); Ziv and Cochard (2006)

From Bizzarri and Belardinelli
(Nov. 2005; subm. to JGR )
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Whole fault
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ResultsResults withwith DR DR lawlaw −− heterogeneousheterogeneous

tpmin = 24.94 s @ (13200,7500) m

M0 = 2.27 x 1016 Nm

[9700,16500] m in strike direction

[6400,7500] m in dip direction

From Bizzarri and Belardinelli (Nov. 2005; subm. to
JGR )

Velocity
strengthening
behavior
(a > b) for
x1 < 9700 m,  
x1 > 16500 m, 
x3 > 8800 m

Effective normal stress profile
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ResultsResults withwith RD RD lawlaw −− heterogeneousheterogeneous
Ruina – Dieterich governing law 
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Can be neglected
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From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )

Ruina – Dieterich governing law 

In the “In the “virtualvirtual” ” hypocenterhypocenter
Dieterich – Ruina governing law 

vH = 0.01 m/s ( t = 24.56 s )

vH = 0.05 m/s ( t = 24.84 s )

vH = vl = 0.1 m/s ( t = tp = 24.94 s )

RD with L = 5 mm:
tpmin = 23.99 s @ (14600,7600) m
M0 = 1.27 x 1016 Nm
[9500,16800] m in strike direction
[6500,7700] m in dip direction

RD with L = 10 mm
tpmin = 24.72 s @ (13300,7300) m
M0 = 2.27 x 1016 Nm
[9500,16700] m in strike direction
[6000,7400] m in dip direction

Failure occurs
before traction
reaches the 
residual level.



Alternative Alternative sourcesource time time functionsfunctions

Time ( s )

Modified Bouchon source time function: 

corrected from Cotton and Campillo, 1995;     
t0 = 3.2 s
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Bouchon source time function: 

Bouchon, 1981; t0 = 1.6 s
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Modified Bouchon source time function: 

corrected from Cotton and Campillo, 1995;     
t0 = 1.6 s
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Alternative Alternative sourcesource time time functionsfunctions

tpmin = 26.49 s @ (13000,7500) m

M0 = 2.30 x 1016 Nm

[9700,16500] m in strike direction

[6400,7600] m in dip direction

tpmin = 25.36 s @ (13500,7600) m

M0 = 2.59 x 1016 Nm

[9500,16700] m in strike direction

[6200,8700] m in dip direction
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Bouchon modificata, t0 = 3.2 s 
Bouchon modificata, t0 = 1.6 s; 
σn

eff* = 4.2 MPa
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We simulate the remote triggering in a truly 3–D fault 
model with different governing laws;
We generalize the results of Antonioli et al. (2006), 
providing additional details of the 26 s event: the location 
of the hypocenter, its failure time, the rupture area and 
the seismic moment; 
The spring–slider and the 3–D model are intrinsically 
different, but we observe an excellent agreement during 
the slow nucleation phase…
… during the acceleration, in the 3–D model the dynamic 
load of the slipping points further decrease the perturbed 
failure time;  
Dieterich–Ruina and Ruina–Dieterich laws are valid 
candidate to model the activation of the Hvalhnúkur fault 
at 26 s;   



On the contrary, with slip–dependent friction laws it is not 
possible to simulate the activation of the 26 s aftershock;
The agreement with observations increases considering a 
modified (and more causal) source time function;
If a detailed information of the initial state of the fault, 
potentially highly heterogeneous, was available the 
agreement with observations will be even better.
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Crustal profile (from Vogfjord et al., 2002; Antonioli et
al., 2005)
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