

## Types of interactions

| Interaction type | Perturbation effects                                                          | Spatial scale                        | Temporal scale           |
|------------------|-------------------------------------------------------------------------------|--------------------------------------|--------------------------|
| Dynamic          | - Rupture propagation; - Arrest                                               | 1 – 60 Km                            | 1-20 s                   |
| Static           | - Earthquake triggering; - Off – faults aftershocks; - Seismicity rate change | 1 – 60 Km<br>1 – 60 Km<br>1 – 100 Km | minutes – few<br>years   |
| Post – seismic   | Long – term<br>stress changes                                                 | 10 – 1000 Km                         | few years –<br>centuries |

## Coulomb Failure Function

Following the Coulomb's failure assumption we define a Coulomb Failure Stress as (e. g. Jaeger and Cook, 1969):

$$CFS = ||T|| + \mu(\sigma_n + p_{fluid}) - C$$

where:  $\|T\|$  is the shear tration modulus,

 $\mu$  is the coefficient of friction,

 $\sigma_n$  is the normal stress (positive in tension),

 $p_{fluid}$  is the pore fluid pressure,

*C* is the cohesion.

Assuming  $\mu$  and C constant over time, we have the Coulomb Failure Stress change:

$$\Delta CFS = \Delta \|\mathbf{T}\| + \mu (\Delta \sigma_n + \Delta p_{fluid})$$

where it has been assumed an isotropic failure plane.

 $\triangle CFS$  is used to evaluate if one earthquake brought another earthquake closer to, or farther from, failure:

$$\triangle CFS > 0 \Rightarrow \text{ fault plane loaded } \Rightarrow \text{ closer to failure}$$
  
 $\triangle CFS < 0 \Rightarrow \text{ fault plane relaxed } \Rightarrow \text{ farther from failure}$   
(Stress Shadow)

Neglecting the spatial dependence in tractions, are:

$$T(t) = T(0) + \Delta T(t) \qquad \sigma_n(t) = \sigma_n(0) + \Delta \sigma_n(t) \qquad \rho_{fluio}(t) = \rho_{fluio}(0) + \Delta \rho_{fluio}(t)$$

Therefore we can write:

$$\Delta CFS(t) = \| \mathbf{T}(0) + \Delta \mathbf{T}(t) \| - \| \mathbf{T}(0) \| + \mu (\Delta \sigma_n(t) + \Delta p_{fluid}(t))$$

 $\Delta \|T\|$  is the change in shear stress due to the first earthquake and it is resolved in the slip direction of the second earthquake;

 $\Delta \sigma_n$  is the change in normal stress due to the first earthquake and it is resolved in the direction orthogonal to the fault plane of the second earthquake.

#### Stress changes approaches (after Harris, 1998)


| Method                                                 | Parameters<br>Required                                                                                                                                                                                        | Successes                                                                                                                           | Problems                                                                                                                                   | Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Static Coulomb failure<br>stress (elastic)<br>ΔCFS     | mainshock static slip model, $\mu'$ , and $\Delta\sigma$ , $\Delta\tau$ , $\tau$ , on known fault planes and known slip directions*                                                                           | ΔCFS > 0 explains locations of aftershocks that do occur, ΔCFS < 0 predicts shadows (timing and locations); may give rupture extent | many ΔCFS > 0 faults do not experience subsequent large earthquakes, so it is hard to use ΔCFS > 0 as a predictive tool                    | Smith and Van de Lindt [1969],<br>Rybicki [1973], Yamashina<br>[1978], Stein and Lisowski<br>[1983], Simpson et al. [1988],<br>Yoshioka and Hashimoto<br>[1989a, b], Reasenberg and<br>Simpson [1992], etc. (see text<br>for more authors); Crider<br>and Pollard [this issue],<br>Hardebeck et al. [this issue],<br>Harris and Simpson [this<br>issue], Kagan and Jackson<br>[this issue], Nalbant et al.<br>[this issue], Nostro et al. [this<br>issue], and Toda et al. [this<br>issue], and Toda et al. [this |
| Dynamic Coulomb<br>failure stress<br>(elastic) ΔCFS(t) | mainshock dynamic fault slip model, $\mu'$ , and $\Delta\sigma(t)$ , $\Delta\tau(t)$ on known fault planes and known slip directions*                                                                         | may predict rupture lengths,<br>given fault geometry                                                                                | does not explain long<br>delays (more than<br>tens of seconds)<br>between subevents;<br>needs more testing                                 | Harris et al. [1991], Harris and<br>Day [1993], Hill et al. [1993],<br>Gomberg and Bodin [1994],<br>Spudich et al. [1994, 1995],<br>Cotton and Coutant [1997],<br>etc.                                                                                                                                                                                                                                                                                                                                            |
| Static rate and state                                  | mainshock static slip<br>model, $\Delta\sigma$ , $\Delta\tau$ , $\sigma$ ,<br>$\tau$ , $\dot{\tau}$ , $A$ , $B$ , $D_c$ , $H$ ,<br>time of last event,<br>recurrence interval<br>(to determine slip<br>speed) | seems to predict aftershock<br>duration                                                                                             | needs more testing;<br>rate-and-state<br>parameters defined<br>in the laboratory, but<br>not known for the<br>Earth                        | Dieterich [1994], Dieterich and<br>Kilgore [1996], Roy and<br>Marone [1996], Gross and<br>Bürgmann [1998], Gomberg et<br>al. [this issue], Harris and<br>Simpson [this issue], and Toda<br>et al. [this issue]                                                                                                                                                                                                                                                                                                    |
| Dynamic rate and state                                 | mainshock dynamic<br>fault slip model,<br>$\Delta \sigma(t)$ , $\Delta \tau(t)$ , $\sigma$ , $\tau$ ,<br>$\dot{\tau}$ , $A$ , $H$ , time of<br>last event, slip<br>speed                                      | may explain remote triggering                                                                                                       | needs more testing; still<br>need to define rate-<br>and-state parameters<br>in the Earth; inertial<br>terms not yet<br>included in models | Dieterich [1987] and Gomberg et al. [1997, this issue]                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Static Coulomb failure<br>stress (viscoelastic)        | mainshock slip<br>model, Maxwell<br>relaxation time,<br>relaxing layer<br>thickness                                                                                                                           | may explain time delays<br>between mainshock and<br>subsequent events, also<br>irregular recurrence<br>intervals                    | needs more testing,<br>also needs more<br>geodetic data to<br>confirm viscoelastic<br>parameters                                           | Dmowska et al. [1988], Roth<br>[1988], Ghosh et al. [1992],<br>Ben-Zion et al. [1993], Taylor<br>et al. [1996], Pollitz and Sacks<br>[1997], Freed and Lin<br>[this issue]                                                                                                                                                                                                                                                                                                                                        |
| Fluid flow                                             | mainshock slip<br>model,<br>permeability tensor                                                                                                                                                               | may explain time delays<br>between mainshock and<br>subsequent events                                                               | may not be successful<br>at predicting both<br>the spatial and<br>temporal aftershock<br>pattern                                           | Li et al. [1987], Hudrutt et al.<br>[1989], Noir et al. [1997], etc.;<br>Secber et al. [this issue]                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>\*</sup>If the aftershock fault planes are not known, then some authors assume optimally oriented faults; this requires knowledge of the background stress directions.





### Numerical Method: RK SS



m 
$$\ddot{\delta}$$
= k ( $\delta_{O} - \delta$ )  $-\tau_{f} + \Delta \tau$ ,  $\Delta \tau(t)$  perturbazione  $\tau_{f}$  = resistenza di attrito

#### Reologia: attrito rate- and state-dependent

 $\theta$  ( $\Phi$ ) = variable di stato della superficie,  $V = \delta$  velocità

#### A - Ruina-Dieterich

$$\tau_{f} = \tau_{*} + \theta + A \ln \left(\frac{V}{V_{*}}\right)$$

$$\frac{d\theta}{dt} = -\frac{V}{L} \theta + B \ln \frac{V}{V_{\bullet}}$$

#### **B** - Dieterich - Ruina

$$\tau_f = \tau_* + \theta + A \ln \left(\frac{V}{V_*}\right)$$

$$\tau_f = \tau_* - A \ln \left(\frac{V_*}{V}\right) + B \ln \left(\frac{\Phi V_*}{L}\right)$$

$$\frac{d\Phi}{dt} = 1 - \frac{\Phi V}{L}$$

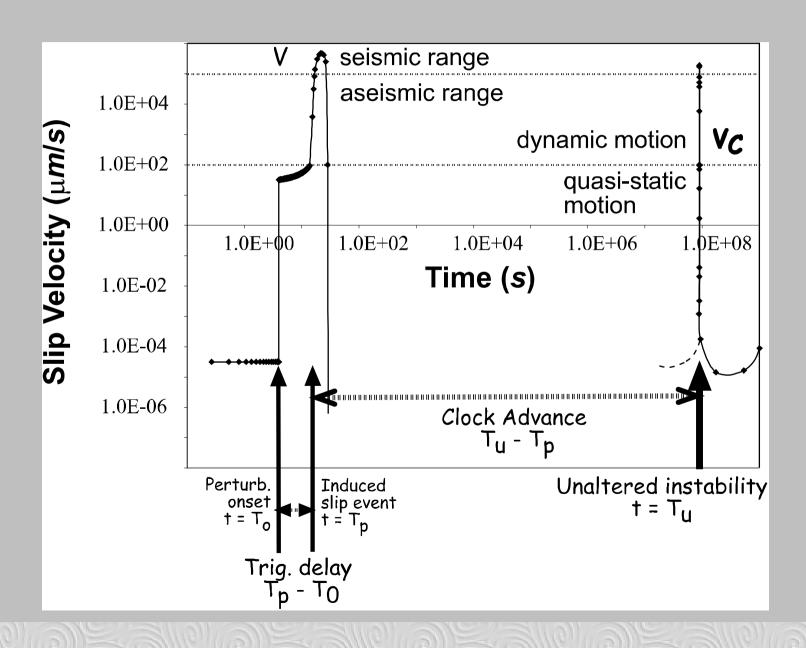
#### Stato del sistema: $(v(t), d(t), t_f(t))$

o condizioni mecc. faglia

appross. q. statica 
$$V < V_C = 0.1 \text{ mm/s}$$

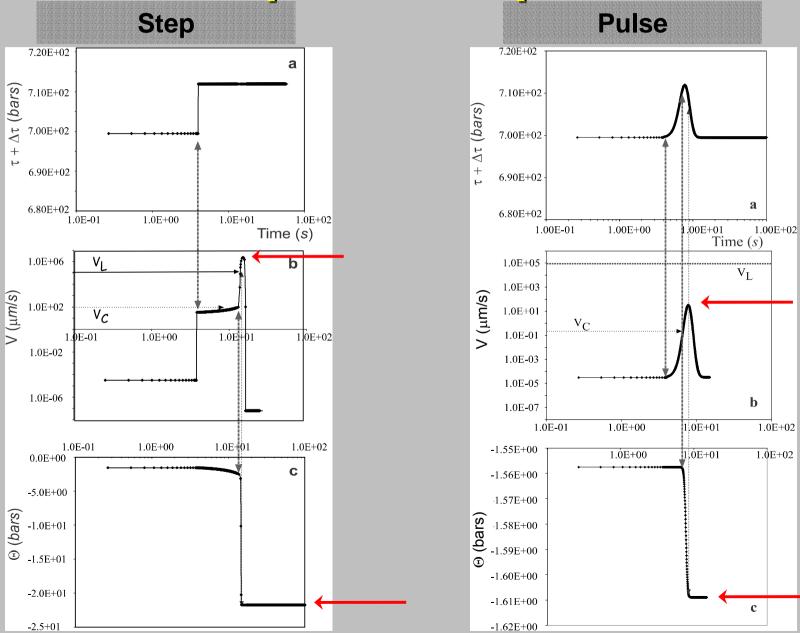
$$(V(t), t_f(t))$$

Inertia is negligible and the system passes through a sequence of equilibrium states



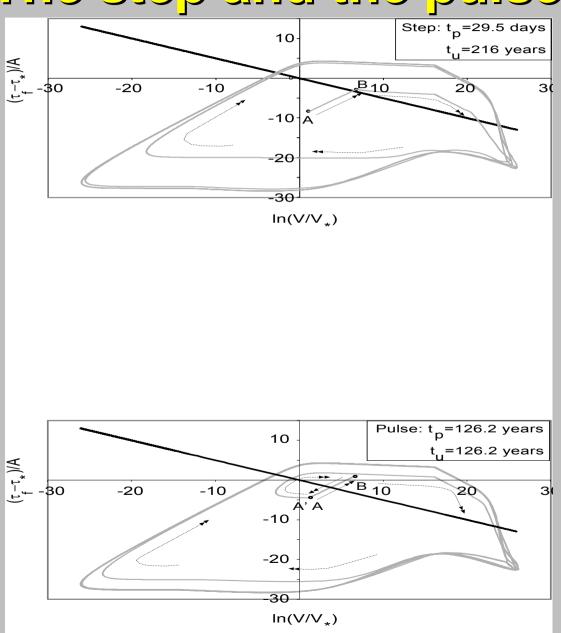

## Fault seismic cycle modeling





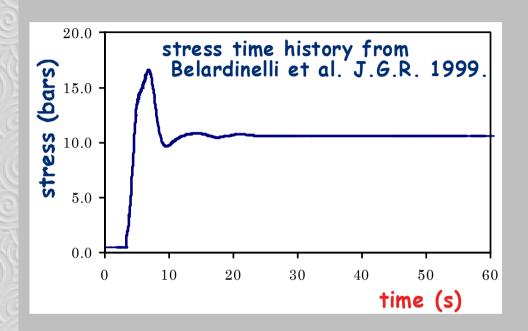

### Analytical stress perturbations






## Analytical stress perturbations The step and the pulse #1



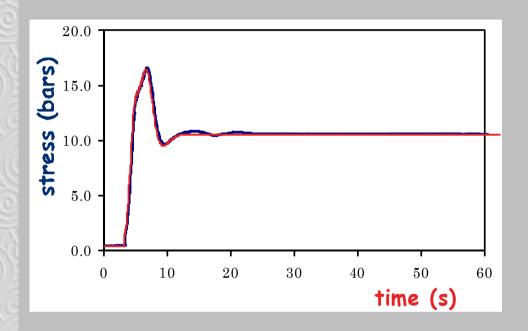


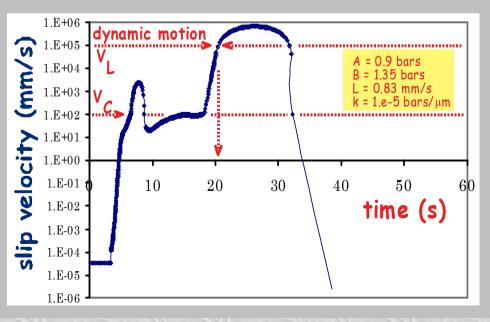


## Analytical stress perturbations The step and the pulse #2






## Realistic stress perturbations Syntetic seismograms #1








## Realistic stress perturbations Syntetic seismograms #2

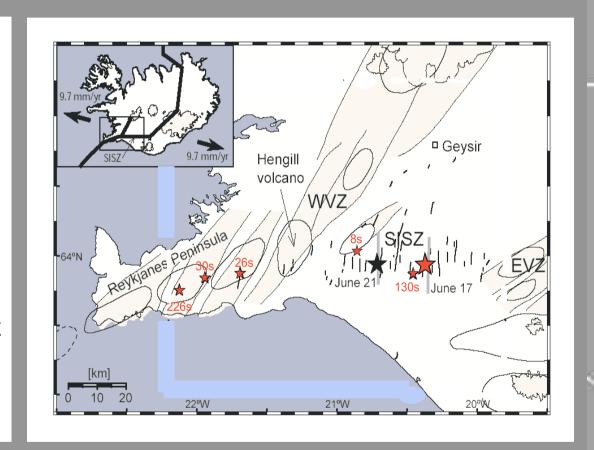






## Motivations and Goals

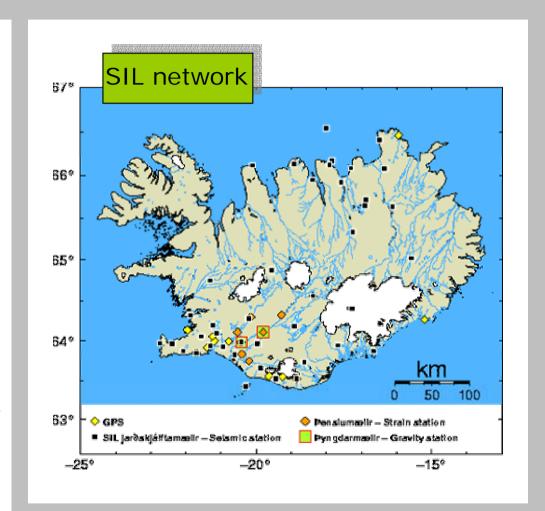
➤ To evidence the eventual effect of the transient part of the coseismic stress changes due to the 17 June 2000, M 6.6 South Iceland earthquake;


> The debate on the triggering potential of transient stress changes is still open;

> The observational evidences are difficult and few.

#### The choice of the events

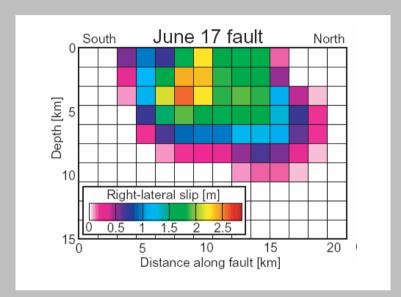
- O The largest events ( M ~ 5 ) occurring in the first five minutes
- > 8s, 26s, 30s, 130s, 226s
- O in intermediate far field
- > **3**, 26s, 30s, 10s, 226s
- O that reasonably are not secondary aftershocks
- > 26s, 30s,






#### The 25 s and 30 s events

- They were not detected teleseismically.
- 26 s (64 km far)
  - -Not detected by DInSAR.
  - -Known fault.
- 30 s ( 77 km far )
  - Waveforms partially obscured by the first event ( mechanism uncertain )
  - Detected by DInSAR and surface effects.
  - August 2003: M 5 event on N-S fault with the same epicenter.

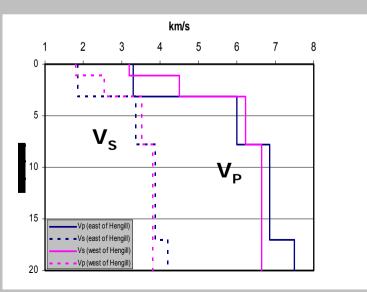

From SIL seismograms the 26 s and 30 s events occurred at the arrival (later than the first) of shear waves traveling at 2.5 km/s at their location.



| Event | Origin time | Latitude (°) | Longitude (°) | Depth (km) | $M_L$ | $M_{Lw}$ |
|-------|-------------|--------------|---------------|------------|-------|----------|
| 26s   | 154106.9    | 63.951       | -21.689       | 8.9        | 4.91  | 6        |
|       |             | $\pm 0.004$  | $\pm 0.008$   | ±1.3       |       |          |
| 30s   | 154111.254  | 63.937       | -21.94        | 3.8        | 4.68  | 5.9      |
|       |             | ±0.003       | ±0.01         | ±1.3       |       |          |

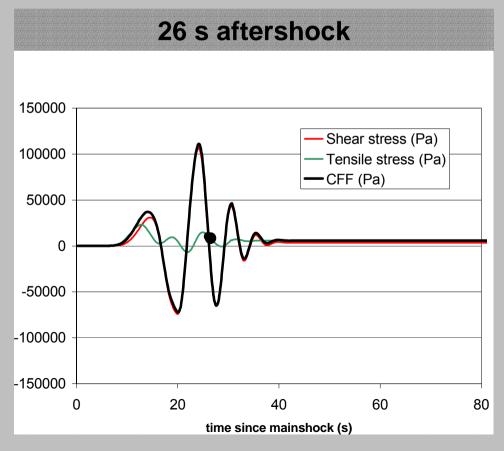
## Parameters used to compute the dynamic stress

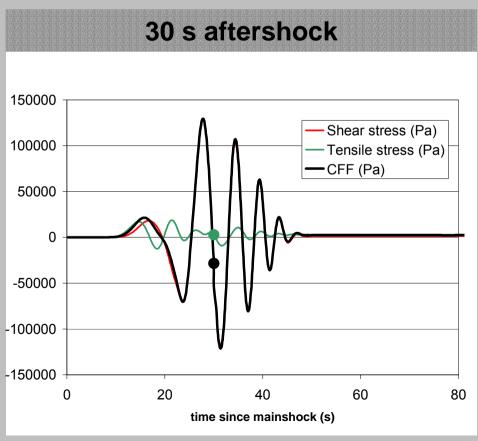
- Slip distribution from geodetic data (Arnadottir et al. 2003). Right lateral strike slip fault, strike 7° E, dip 86°.
- Rupture history: bilateral Haskell model, rise time: 1-2 s, rupture velocity: 2.5 km/s.
- 2 crustal models with 4 layers:



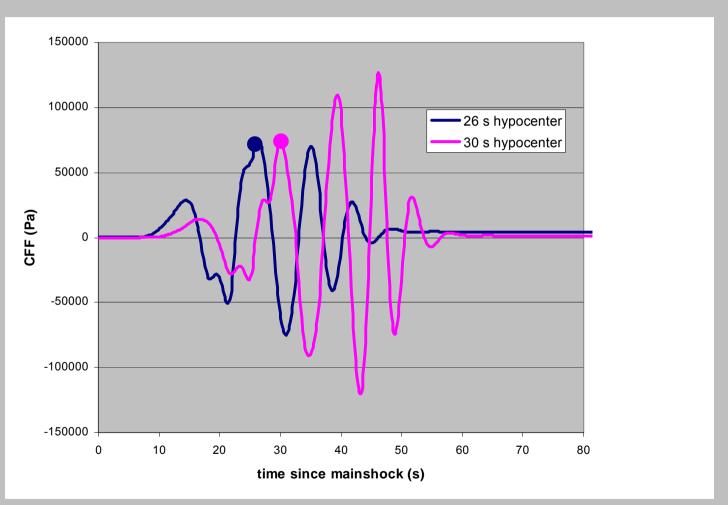

West of Hengill

| Depth   | $V_P$  | $V_S$  | Density |
|---------|--------|--------|---------|
| (km)    | (km/s) | (km/s) | (kg/m³) |
| 0-3.1   | 3.3    | 1.85   | 2300    |
| 3.1-7.8 | 6.0    | 3.37   | 2900    |
| 7.8-17  | 6.85   | 3.88   | 3100    |
| >17     | 7.5    | 4.21   | 3300    |


East of Hengill


| Depth   | $V_P$  | Vs     | Density              |
|---------|--------|--------|----------------------|
| (km)    | (km/s) | (km/s) | (kg/m <sup>3</sup> ) |
| 0-1.1   | 3.2    | 1.81   | 2300                 |
| 1.1-3.1 | 4.5    | 2.54   | 2900                 |
| 3.1-7.8 | 6.22   | 3.52   | 3100                 |
| >7.8    | 6.75   | 3.8    | 3300                 |

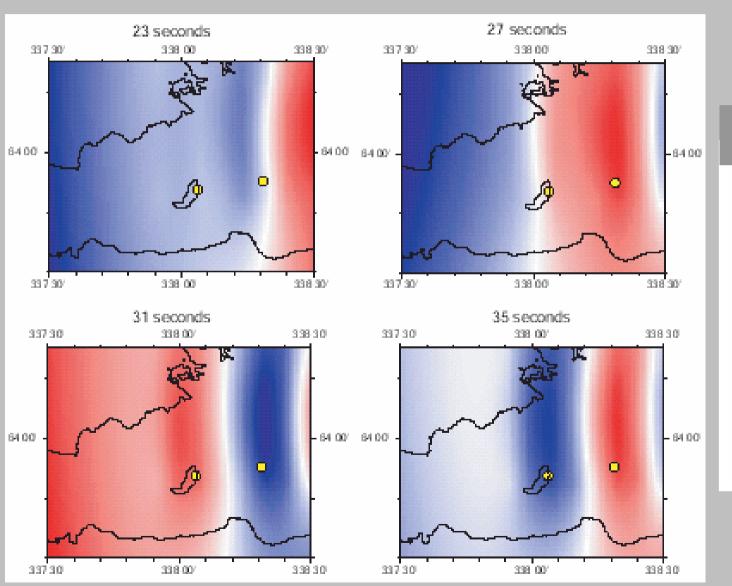


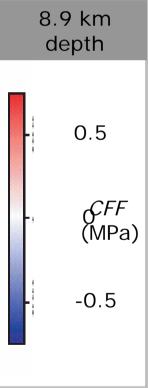

# Dynamic stresses at the two hypocenters

- O Nord Sud vertical right lateral faults
- $\bigcirc$   $\triangle CFF = \triangle \tau + \mu(1 B) \triangle \sigma_n$ , with  $\mu = 0.75$ , B = 0.47
- O Rise time: 1.6 s





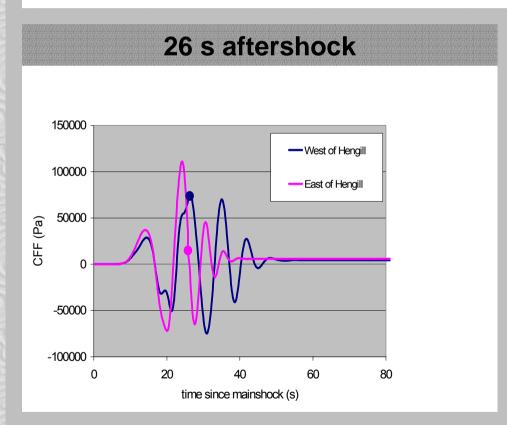

## ACFF(t) at the two hypocenters

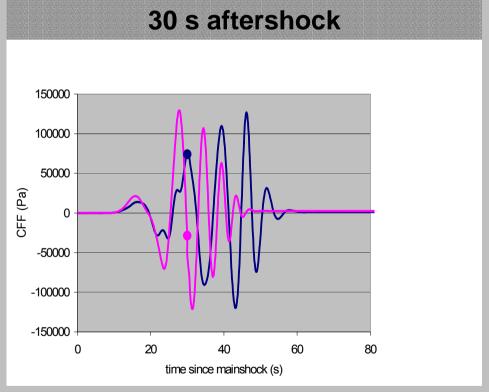





Time separation between the events and between stress peaks comparable.

## Snapshots of dynamic stress

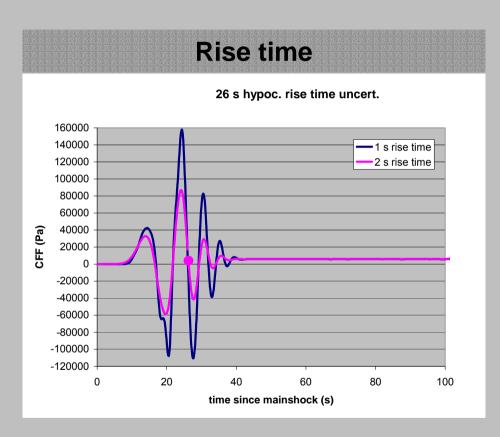


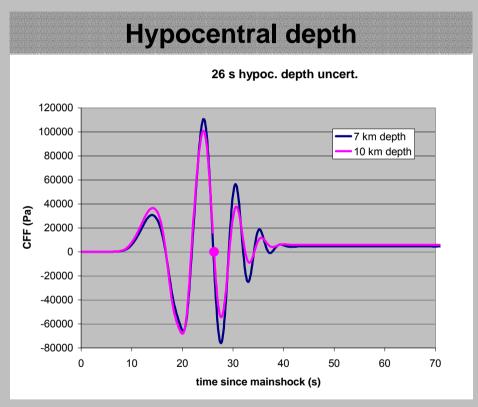






### Parameters sensitivity #1

- Stress at each hypocenter is affected by uncertain parameters such as the crustal model, rise time and the hypocentral depth.
- Crustal model




➤ The origin times (from mainshock) of the two events remain at, or follow closely the second CFF peak for ~1 - 2 s rise time.



## Parameters sensitivity #2

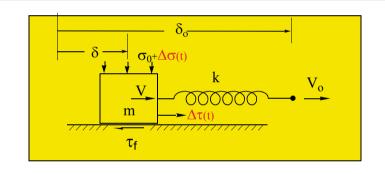


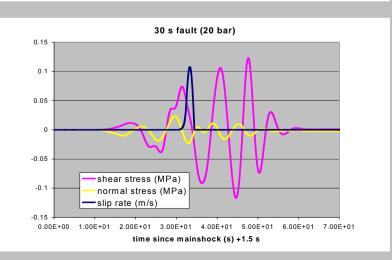


Uncertainties in stress amplitudes.



### The fault response


- We study the fault response to the stress changes as evaluated at the two hypocenters with varying the parameters within their uncertaintes;
- We use a spring-slider model with rate- and state-dependent friction for variable effective normal stress  $\sigma_n^{eff}$ ;
- The system is perturbed either in shear stress and normal stress ( $\Delta \tau(t)$ ,  $\Delta \sigma_n^{eff}(t)$ );
- We investigate the possibility of instantaneous triggering (during the transient stress perturbation).


#### Dieterich and Linker (1992)

$$\tau = \left[ \mu_* + a \ln \left( \frac{v}{v_*} \right) + b \ln \left( \frac{\Psi v_*}{L} \right) \right] \sigma_n^{eff}(t)$$

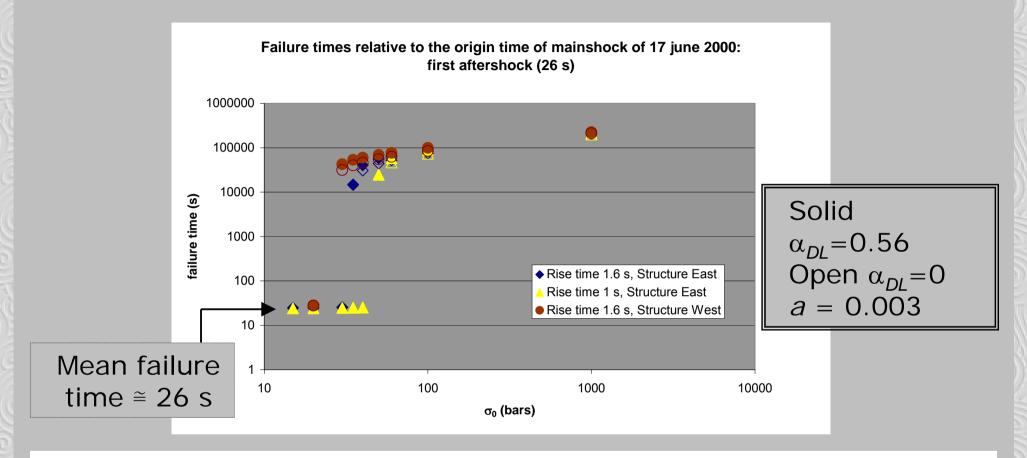
$$\frac{d}{dt} \Psi = 1 - \frac{\Psi v}{L} - \alpha_{LD} \frac{\Psi \dot{\sigma}_n^{eff}}{b}$$

$$\alpha_{LD} = 0 \implies \sigma_n^{eff} = \sigma_n^{eff}(0)$$





## 1


### The instantaneous trigger

- $h \sim 10$  km linear fault dimension,
- standard values of rheological parameters (  $\mu_*$  = 0.7, L = 1 mm, b = 0.01),
- $v_0 = 2$  cm/yr (spreading rate in the SISZ),
- fault in close to failure conditions ( 100% steady state **9** unperturbed failure expected at less than 2 yr from June 17, 2000)
- The fault tends to fail within 1 s after a peak in CFF, as evaluated at the two hypocenters

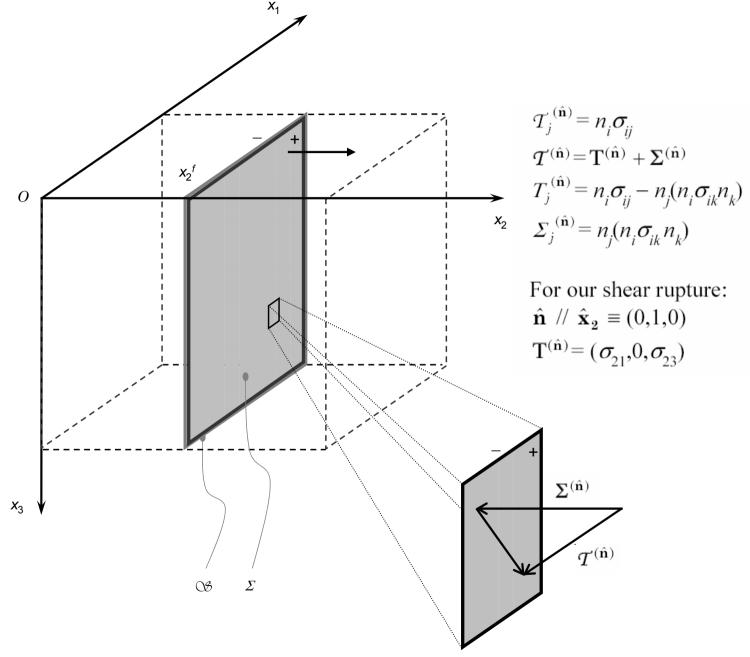
if

- 1. the initial effective normal stress  $\sigma_0$  is enough low, so that the shear stress perturbation  $\Delta \tau$  at that peak is much larger than  $a(\sigma_0 + \Delta \sigma)$
- 2. and the direct effect of friction a is enough low to keep fault unstable ( $k/k_{crit}$  < 1) for low values of  $\sigma_0$ .

#### Etlust bedrutred ent to semit enulist



- For  $a \le 0.003$  and  $\sigma_0 \cong 20$  bar, we obtained instantaneous trigger within 1 second after the second peak of CFF, as expected for the two aftershocks in the SISZ.
- For a = 0.003 and  $\sigma_0 > \gamma$  20 bar,  $1 < \gamma < 10$  (increasing with the amplitude of the second peak of  $\Delta \tau$  ) the trigger is not instantaneous (failure time > 4 hours).

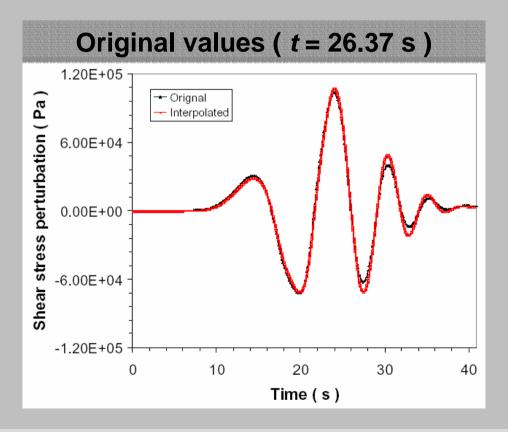

## Conclusions

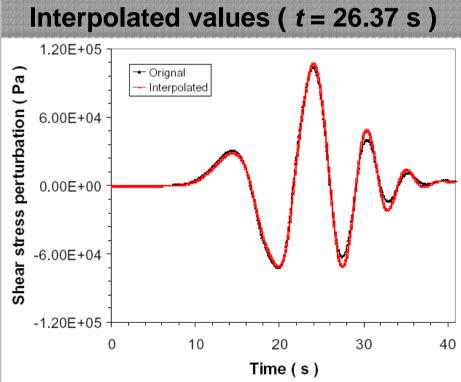
- ✓ The 26 and 30 s events occurred near one of the important geothermal areas of Iceland;
- ✓ They were neglibly affected by static stress changes;
- ✓ They followed closely a peak of positive CFF;
- ✓ These results favour the hypothesis of dynamic triggering;
- ✓ Dynamic models of fault responses can explain observations for low values of effective normal stress (near lithostatic pore pressure).





The va 2.78 H 1650 n 6550 n





up to spaced 950 m,



The spatial sampling of the receiver grid is <u>not</u> sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a  $C^2$  cubic spline to interpolate  $\Delta \sigma_{ij}$  in space and in time.







At time t, in each fault node, the dynamic load is:  $\mathcal{L}_i = f_{ri} + T_{0i} + \Delta \sigma_{2i}$  (i = 1 and 3).

 $T_{0i}$  are the components of the initial traction ( $T_0(x_1,x_3) = \tau_0(x_1,x_3)(\cos(\varphi_0),0,\sin(\varphi_0))$ )

 $f_{ri}$  are the components of the load (namely the contribution of the restoring forces,  $f_r$ ) exerted by the neighboring points:

$$f_{ri} = (M - f_i^+ - M^+ f_i^-)/(M^+ + M^-),$$

where  $M^+$  and  $M^-$  are the masses of the "+" and "–" half split–node of the fault plane  $\Sigma$  and  $f^+$  is the force acting on partial node "+" caused by deformation of neighbouring elements located in the "–" side of S (and viceversa for  $f^-$ ).

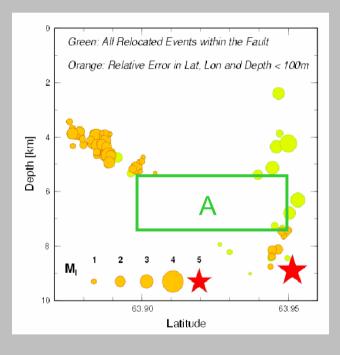
 $\{\Delta \sigma_{2i}\}$  are coupled to the components of the fault friction  $T_i$  via

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_1 = \alpha \left[ \mathcal{L}_1 - T_1 \right]$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} u_3 = \alpha \left[ \mathcal{L}_3 - T_3 \right]$$

where  $\alpha = A ((1/M^+) + (1/M^-))$ ,  $A = Ax_1Ax_3$ .  $T_i$  express on the governing law.

#### einistience IsnoiisvieedO

- 1) Perturbed rupture time  $t_r = 25.9 \pm 0.1 \text{ s}$
- 2) Hypocenter (63.951  $\pm$  0.004 °N, 21.689  $\pm$  0.008 °W, 8.9  $\pm$  1.3 Km)  $\leftrightarrow$  on fault coordinates of (16500  $\pm$  450, 8900  $\pm$  1300) m (Antonioli et al., 2005)
- 3) From the aftershocks distribution shown in Hjaltadottir and Vogfjord (2005) we consider the seismic part of the fault (A) limited in latitude between 63.890 °N and 63.951 °N (in the case of Nord–South fault this corresponds to [9700, 16500] m in strike direction) and limited in depth between 5400 m and 7400 m




#### Upper bound estimates:

 $M_0 = 1.23 \times 10^{15} A^{3/2} = 6.15 \times 10^{16} Nm;$ 

Av. fault slip:  $\langle u \rangle_A = M_0/(\rho v_S^2 A) = 0.12 \text{ m};$ 

Av. stress drop:  $\langle \Delta \tau \rangle_A = 2M_0/(\pi W_A L_A) = 1.44$  MPa



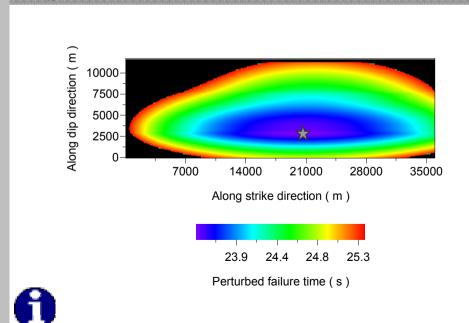
4)  $M_w \ge 5$  (Arnadottir et al., 2006; Vogfiord, 2003)  $\Rightarrow M_0 \cong 3.2 \times 10^{16}$  Nm

#### Results with DR law - homogeneous

#### Dieterich - Ruina governing law

$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[ \mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Psi = 1 - \frac{\Psi t}{L}$$


 $\frac{\mathrm{d}}{\mathrm{d}t} \Psi = 1 - \frac{\Psi v}{L}$  Can be neglected (see Antonioli et al., 2005)

#### Perturbed rupture times

$$v(x_1,x_3,t) \ge v_1 \implies t_p(x_1,x_3) = t$$

 $v_i = 0.1$  m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)

 $\sigma_n^{eff}$  = 2.5 MPa everywhere; acting only  $\Delta \sigma_{21}$ 



 $t_p^{min} = 23.47 \text{ s} \otimes (20700,2900) \text{ m}$ 

 $M_0 = 2.37 \times 10^{19} \text{ Nm}$ 

Whole fault

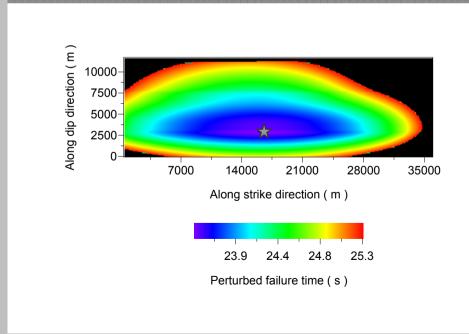
Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)

#### Results with DR law - homogeneous

#### Dieterich - Ruina governing law

$$\tau = \mu(v, \Psi) \sigma_n^{eff} = \left[ \mu_* + a \ln\left(\frac{v}{v_*}\right) + b \ln\left(\frac{\Psi v_*}{L}\right) \right] \sigma_n^{eff}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Psi = 1 - \frac{\Psi t}{L}$$


 $\frac{\mathrm{d}}{\mathrm{d}t} \Psi = 1 - \frac{\Psi v}{L}$  Can be neglected (see Antonioli et al., 2005)

#### Perturbed rupture times

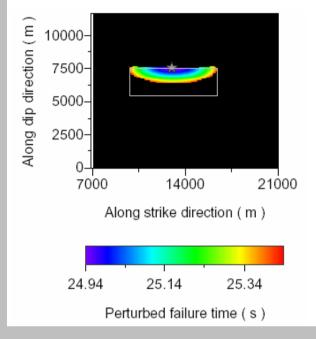
$$v(x_1,x_3,t) \ge v_1 \implies t_p(x_1,x_3) = t$$

 $v_i = 0.1$  m/s, in agreement with Belardinelli at al. (2003); Antonioli et al. (2005); Rubin and Ampuero (2005); Ziv and Cochard (2006)

#### $\sigma_n^{\text{eff}}$ = 2.5 MPa everywhere; acting also $\Delta \sigma_{22}$



$$t_p^{min} = 23.47 \text{ s} \otimes (16500,2900) \text{ m}$$


$$M_0 = 2.23 \times 10^{19} \text{ Nm}$$

Whole fault

Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)



#### Results with DR law - heterogeneous



Effective normal stress profile



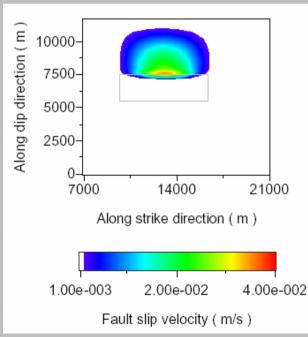
Velocity strengthening behavior

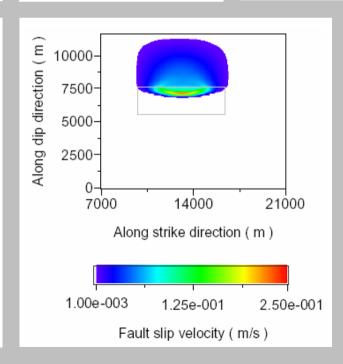
(a > b) for

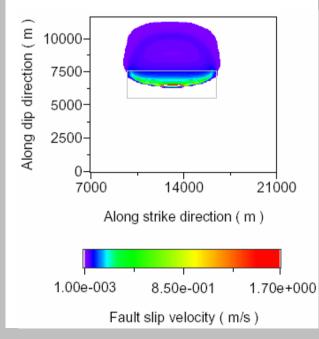
 $x_1 < 9700 \text{ m},$ 

 $x_1 > 16500 \text{ m},$ 

 $x_3 > 8800 \text{ m}$ 


 $t_p^{min}$  = 24.94 s @ (13200,7500) m

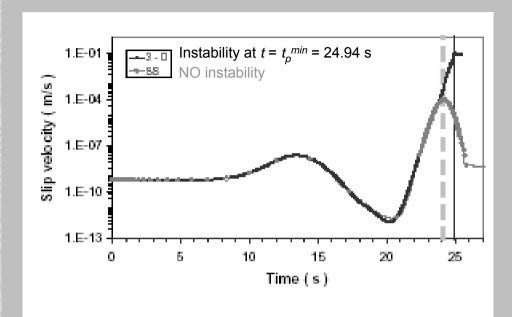

 $M_0 = 2.27 \times 10^{16} \text{ Nm}$ 

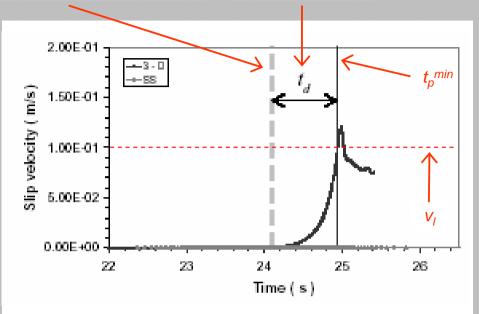

[9700,16500] m in strike direction

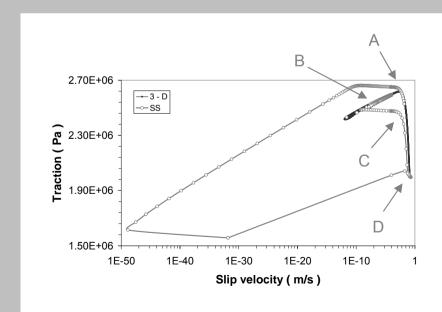
[6400,7500] m in dip direction

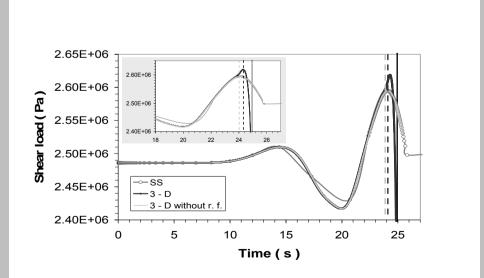
From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)







#### Peak in shear perturbing stress

#### Triggering delay









From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)

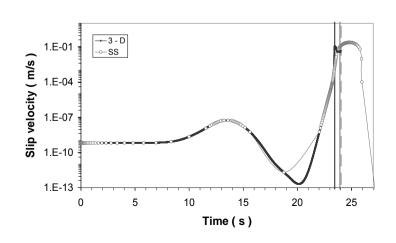


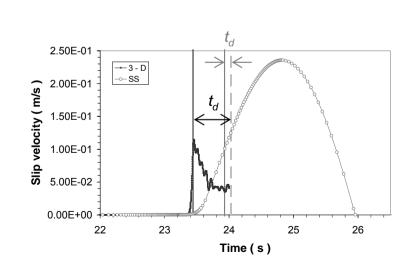
## Results with RD law - heterogeneous

#### Ruina - Dieterich governing law

$$\tau = \left[\mu_* + a \ln \left(\frac{v}{v_*}\right) + b \ln \left(\frac{\Psi v_*}{L}\right)\right] \sigma_n^{eff}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Psi = -\frac{\Psi v}{L}\ln\left(\frac{\Psi v}{L}\right)$$
 Can be neglected

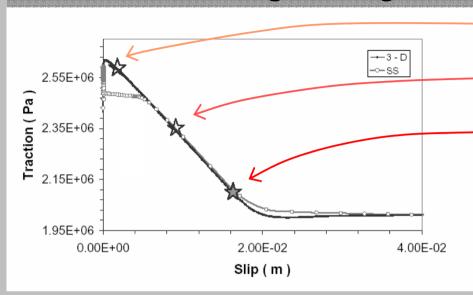

 $t_p^{min}$  = 23.44 s @ (15700,7900) m


 $M_0 = 2.02 \times 10^{16} \text{ Nm}$ 

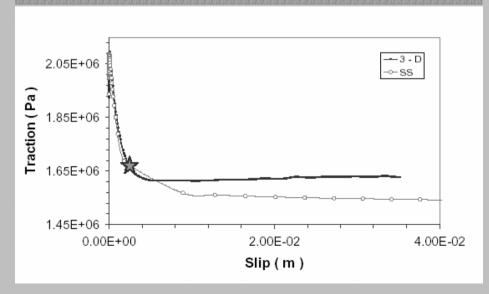
[9000,17300] m in strike direction

[6300,8000] m in dip direction









From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)

## In the "virtual" hypocenter

#### Dieterich - Ruina governing law



#### Ruina – Dieterich governing law



 $v^{H}$  = 0.01 m/s ( t = 24.56 s )

 $v^{H}$  = 0.05 m/s ( t = 24.84 s )

 $v^{H} = v_{I} = 0.1 \text{ m/s} (t = t_{p} = 24.94 \text{ s})$ 

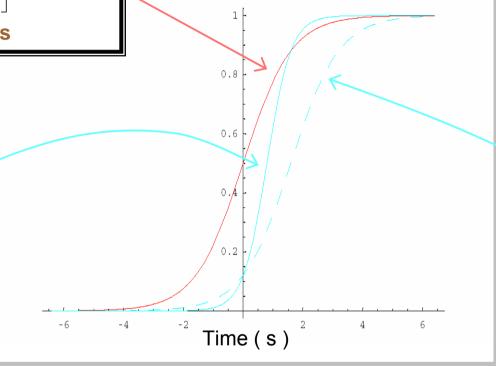
Failure occurs before traction reaches the residual level.

RD with L = 5 mm:

 $t_p^{min}$  = 23.99 s @ (14600,7600) m  $M_0$  = 1.27 x 10<sup>16</sup> Nm [9500,16800] m in strike direction [6500,7700] m in dip direction

RD with L = 10 mm

 $t_p^{min}$  = 24.72 s @ (13300,7300) m  $M_0$  = 2.27 x 10<sup>16</sup> Nm [9500,16700] m in strike direction [6000,7400] m in dip direction


From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR)

## Alternative source time functions

#### Bouchon source time function:

$$f(t) = \frac{1}{2} \left[ 1 + \tanh\left(\frac{t}{t_0}\right) \right]$$

Bouchon, 1981;  $t_0 = 1.6 \text{ s}$ 



#### Modified Bouchon source time function:

$$f(t) = \frac{1}{2} \left[ 1 + \tanh \left( \frac{t - \frac{t_0}{2}}{\frac{t_0}{2}} \right) \right]$$

corrected from Cotton and Campillo, 1995;  $t_0 = 1.6 \text{ s}$ 

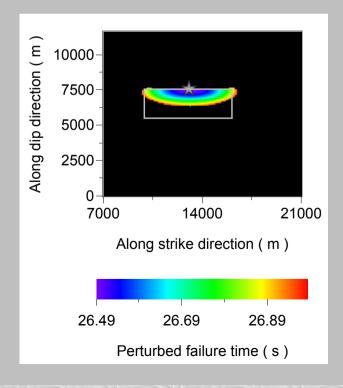
#### Modified Bouchon source time function:

$$f(t) = \frac{1}{2} \left[ 1 + \tanh \left( \frac{t - \frac{t_0}{2}}{\frac{t_0}{2}} \right) \right]$$

corrected from Cotton and Campillo, 1995;  $t_0 = 3.2 \text{ s}$ 



## Alternative source time functions


#### Bouchon modificata, $t_0 = 3.2 \text{ s}$

$$t_p^{min}$$
 = 26.49 s @ (13000,7500) m

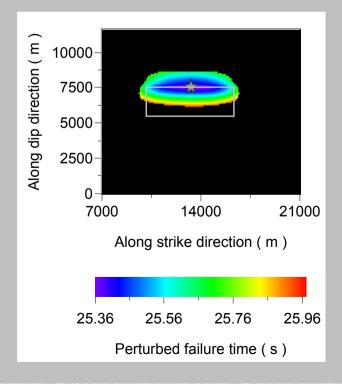
 $M_0 = 2.30 \times 10^{16} \text{ Nm}$ 

[9700,16500] m in strike direction

[6400,7600] m in dip direction



From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )


# Bouchon modificata, $t_0 = 1.6 \text{ s}$ ; $\sigma_n^{\text{eff*}} = 4.2 \text{ MPa}$

$$t_p^{min}$$
 = 25.36 s @ (13500,7600) m

$$M_0 = 2.59 \times 10^{16} \text{ Nm}$$

[9500,16700] m in strike direction

[6200,8700] m in dip direction



# Conclusions

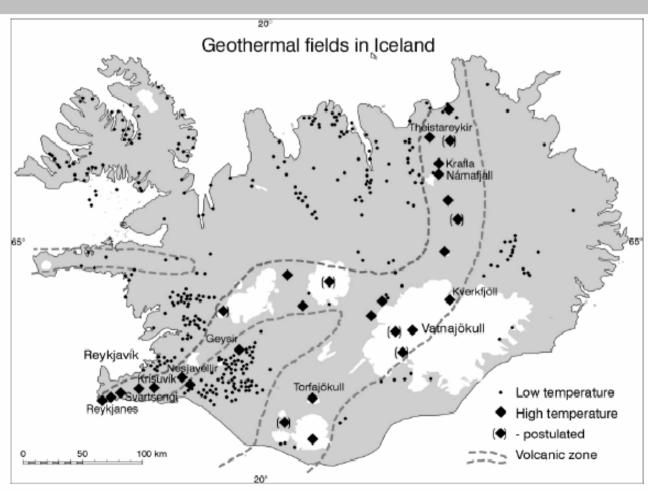
- ✓ We simulate the remote triggering in a truly 3–D fault model with different governing laws;
- ✓ We generalize the results of Antonioli et al. (2006), providing additional details of the 26 s event: the location of the hypocenter, its failure time, the rupture area and the seismic moment;
- ✓ The spring-slider and the 3–D model are intrinsically different, but we observe an excellent agreement during the slow nucleation phase...
- ... during the acceleration, in the 3–D model the dynamic load of the slipping points further decrease the perturbed failure time;
- ✓ Dieterich–Ruina and Ruina–Dieterich laws are valid candidate to model the activation of the Hvalhnúkur fault at 26 s;

- ✓ On the contrary, with slip—dependent friction laws it is not possible to simulate the activation of the 26 s aftershock;
- ✓ The agreement with observations increases considering a modified (and more causal) source time function;
- ✓ If a detailed information of the initial state of the fault, potentially highly heterogeneous, was available the agreement with observations will be even better.



| Case | σ <sub>n<sub>0</sub></sub><br>profile | Constitutive<br>law      | Heterogeneous<br>rheology | Rupture<br>extension<br>along<br>strike<br>(m) | Rupture<br>extension<br>along<br>dip<br>(m) | Hypocenter<br>location<br>(m) | Origin<br>time<br>(s) | Total<br>seismic<br>moment<br>M <sub>0</sub><br>(Nm) |
|------|---------------------------------------|--------------------------|---------------------------|------------------------------------------------|---------------------------------------------|-------------------------------|-----------------------|------------------------------------------------------|
| А    | (b)                                   | DR                       | No                        | Whole<br>fault                                 | Whole<br>fault                              | (20700,2900)                  | 23.47                 | 2.37 × 10 <sup>19</sup>                              |
| В    | (b)                                   | DR                       | No                        | Whole<br>fault                                 | Whole<br>fault                              | (16500,2900)                  | 23.47                 | 2.23 × 10 <sup>19</sup>                              |
| С    | 1                                     | DR                       | No                        | [0,<br>27400]                                  | [6000,<br>11600]                            | (15400,6600)                  | 24.08                 | $1.94 \times 10^{17}$                                |
| D    | 2                                     | DR                       | No                        | Not defined                                    |                                             |                               | 1.21 × 10 14          |                                                      |
| Е    | 3                                     | DR                       | No                        | [6600,<br>20000]                               | [6400,<br>7500]                             | (13200,7500)                  | 24.94                 | 6.43 × 10 <sup>16</sup>                              |
| F    | 3                                     | DR                       | Yes                       | [9700,<br>16500]                               | [6400,<br>7500]                             | (13200,7500)                  | 24.94                 | 2.27 × 10 <sup>16</sup>                              |
| G    | 3                                     | DR                       | No                        | [15700,<br>35100]                              | [6000,<br>7800]                             | (27300,7500)                  | 23.44                 | 1.22 × 10 <sup>17</sup>                              |
| Н    | 3                                     | RD                       | Yes                       | [9000,<br>17300]                               | [6300,<br>8000]                             | (15700,7900)                  | 23.44                 | 2.02 × 10 <sup>16</sup>                              |
| I    | 3                                     | RD $(L=5 \text{ mm})$    | Yes                       | [9500,<br>16800]                               | [6500,<br>7700]                             | (14600,7600)                  | 23.99                 | 1.27 × 10 <sup>16</sup>                              |
| L    | 3                                     | RD $(L = 10 \text{ mm})$ | Yes                       | [9500,<br>16700]                               | [6000,<br>7400]                             | (13300,7300)                  | 24.72                 | 2.17 × 10 <sup>16</sup>                              |
| M    | 3                                     | OY                       | Yes                       | Not defined                                    |                                             |                               | $1.46 \times 10^{14}$ |                                                      |
| N    | 3                                     | OY                       | No                        | Whole<br>fault                                 | Whole<br>fault                              | (24000,7700)                  | 23.75                 | 2.49 × 10 <sup>19</sup>                              |
| О    | 3                                     | DR                       | Yes                       | [9700,<br>16500]                               | [6400,<br>7600]                             | (13000,7500)                  | 26.49                 | 2.30 × 10 <sup>16</sup>                              |
| Р    | 3                                     | DR                       | Yes                       | [9500,<br>16700]                               | [6200,<br>8700]                             | (13500,7600)                  | 25.36                 | 2.59 × 10 <sup>16</sup>                              |
|      | Observational constraints             |                          |                           |                                                | [5400,<br>7400]                             | (16500 ± 450,<br>8900 ± 1300) | 25.9 ±<br>0.1         | ≡ 3.2 ×10 <sup>16</sup>                              |

# This slide is empty intentionally.




# Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

## 6

## Geothermal areas in Iceland



Proceedings World Geothermal Congress 2000

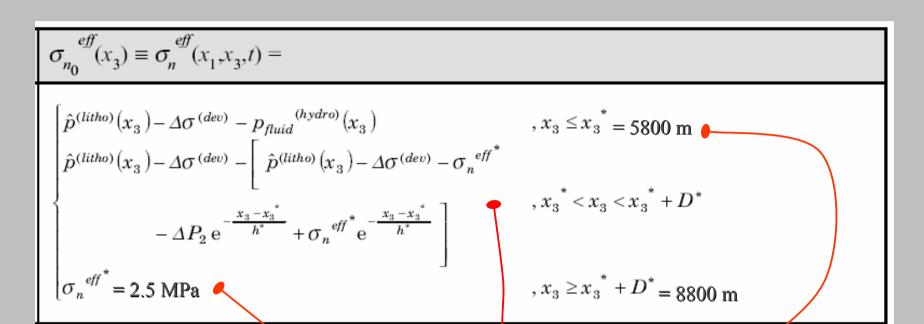
#### NATURAL CHANGES IN UNEXPLOITED HIGH-TEMPERATURE GEOTHERMA

Halldór Ármannsson<sup>13</sup>, Hrefna Kristmannsdóttir<sup>13</sup>, Helgi Torfason<sup>23</sup> and Magnús Ólafssot Orkustofnun, <sup>13</sup>Research Division, Goochemistry Department, <sup>23</sup>Energy Management Division Grensbovger 9, 108 Reykjavík

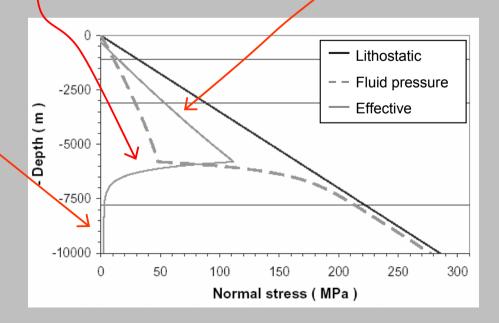
Figure 1. Geothermal areas in Iceland. The five main exploited high-temperature areas, Svartsengi, Reykjanes, Nesjavellir, Krafla and Námafjall are shown as well as the four unexploited high-temperature geothermal areas selected for study of natural changes, Krýsuvík, Theistareykir, Torfajökull and Kverkfjöll areas.



| Parameter                                              | Value                                                                        |     |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------|-----|--|--|--|
|                                                        | parallelepiped that extends $x_{1_{end}} = 36.5$                             | Km  |  |  |  |
| ₩ W                                                    | along $x_1$ , $x_2 = 10$ Km along $x_2$                                      |     |  |  |  |
|                                                        | $x_{3_{end}} = 11.6 \text{ Km along } x_3$                                   |     |  |  |  |
| $\Sigma = \mathcal{O}$                                 | $\{ \mathbf{x} \mid x_2 = x_2^f = 5000 \text{ m} \}$                         |     |  |  |  |
| $\Delta x_1 = \Delta x_2 = \Delta x_3 \equiv \Delta x$ | 100 m                                                                        | (a) |  |  |  |
| Number of nodes                                        | 4,289,571                                                                    |     |  |  |  |
| $\Delta t$                                             | $1.27 \times 10^{-3} \text{ s}$                                              | (a) |  |  |  |
| Number of time levels                                  | 33,650                                                                       |     |  |  |  |
| $v_I$                                                  | 0.1 m/s                                                                      |     |  |  |  |
| $\sigma_n^{\it eff^*}$                                 | 2.5 MPa                                                                      |     |  |  |  |
| $\varphi(x_1, x_3, 0)$                                 | $\varphi_0 = 180^\circ$                                                      |     |  |  |  |
| $v(x_1, x_3, 0)$                                       | $v_{init} = 6.34 \times 10^{-10} \text{ m/s } (= 20 \text{ mm/yr})$          |     |  |  |  |
| $\Psi(x_1, x_3, 0)$                                    | $\Psi^{ss}(v_{init}) = 1.577 \times 10^6 \text{ s } (\cong 18.25 \text{ d})$ |     |  |  |  |
| $\sigma_n^{eff}(x_1, x_3, 0)$                          | See Table 3                                                                  |     |  |  |  |
| $\tau_0(x_1, x_3)$                                     | $\mu^{ss}(v_{init})\sigma_n^{eff}(x_1,x_3,0)$                                |     |  |  |  |
| а                                                      | 0.003                                                                        | (b) |  |  |  |
| b                                                      | 0.010                                                                        |     |  |  |  |
| L                                                      | $1 \times 10^{-3}$ m                                                         |     |  |  |  |
| $\mu_*$                                                | 0.7                                                                          |     |  |  |  |
| $V_*$                                                  | V <sub>init</sub>                                                            |     |  |  |  |
| $lpha_{\!L\!D}$                                        | 0                                                                            |     |  |  |  |




# Crustal profile (from Vogfjord et al., 2002; Antonioli et al., 2005)


| Layer<br>#<br>k | v <sub>P<sub>k</sub></sub> (m/s) | $\frac{v_{S_k}}{(\text{m/s})}$ | $ ho_{rock_k}$ $ ho_{rock_k}$ $ ho_{m}$ | Up do depth of $x_{3_k}$ (m) |
|-----------------|----------------------------------|--------------------------------|-----------------------------------------|------------------------------|
| 1               | 3200                             | 1810                           | 2300                                    | 1100                         |
| 2               | 4500                             | 2540                           | 2540                                    | 3100                         |
| 3               | 6220                             | 3520                           | 3050                                    | 7800                         |
| 4               | 6750                             | 3800                           | 3100                                    | 11600                        |

## esente Ismnon evitoeite Isitinl





$$\varDelta P_2 \equiv \hat{p}^{(litho)} \left( x_3^{\phantom{3}*} \right) - \varDelta \sigma^{\phantom{3}(dev)} - p_{\mathit{flaid}}^{\phantom{3}(hydro)} \left( x_3^{\phantom{3}*} \right)$$

