Rupture propagation in a truly 3 - D fault model

30 Rementering climensionality ...

Dependence on x_{1}
Independence on x_{2}
$\Rightarrow u_{1}\left(x_{1}, t\right)$

Dependence on x_{1} Independence on x_{2}
$\Rightarrow u_{1}\left(x_{1}, t\right)$
$u_{2}\left(x_{1}, t\right)$

Dependence on x
Dependence on x_{2}
$\Rightarrow u_{1}\left(x_{1}, x_{2}, t\right)$
$u_{2}\left(x_{1}, x_{2}, t\right)$
We solve a truly 3 - D rupture problem:

- Both two components of solutions depend on two spatial coordinates and on time;
- Shear traction is collinear with fault slip velocity ($\mathrm{T} / / \mathrm{v}$), but the rake (i. e. the fault slip velocity azimuth) can vary during time.

3. Numerical Method: FD 3-D

In the assumed fault geometry, on a generic fault point (defined by the absolute coordinate $\left(x_{1}, x_{2}{ }^{f}, x_{3}\right)$), at time t, the traction vector is:

$$
\tau=\left(\sigma_{21},-\sigma_{n}{ }^{\text {eff }}, \sigma_{23}\right)
$$

where:

$$
\begin{aligned}
& \sigma_{n}^{\text {eff }}=\sigma_{n}-p_{\text {fluid }} \text { effective normal stress (normal stresses } \\
& \text { are negative for compression) } \\
& \sigma_{n}=-\sigma_{22} \\
& \begin{array}{l}
\text { is the regional normal stress (e. g. } \\
\text { lithostatic stress: } \left.\sigma_{22}=-p_{0} \delta_{22}=-\rho g x_{3}\right)
\end{array} \\
& \sigma_{21}, \sigma_{23} \quad \begin{array}{l}
\text { (shear stresses, associated to the adopted } \\
\text { fault constitutive law) }
\end{array}
\end{aligned}
$$

In the assumed fault geometry, on a generic medium point (defined by the absolute coordinate $\left(x_{1}, x_{2}, x_{3}\right)$), at time t, the stress tensor matrix is:

$$
\sigma_{i j}\left(x_{1}, x_{2}, x_{3}, t\right)=\lambda e_{k k}\left(x_{1}, x_{2}, x_{3}, t\right) \delta_{i j}+2 \mu e_{i j}\left(x_{1}, x_{2}, x_{3}, t\right)
$$

(i. e. the Hooke' s law for a linealry homogeneous, isotropic medium, within the small displacement approximation)
where:

$$
e_{i j}=1 / 2\left(U_{i, j}+U_{j, i}\right)
$$

is calculated from the displacement field \mathbf{U}, generated by the rupture propagation on the fault surface Σ.

3. The FD_3D Nmerical Code

We solve the fundamental elastodynamic equation, neglecting body forces \mathbf{f}

We discretize the volume in $x_{1} x_{2} x_{3}$ space by using cubic building blocks. The space is linearly elastic except that in 6 planes, representing 4 dipping and 2 vertical faults

Displacements, forces and tractions are staggered in time with respect to the slip velocity components

An explicit displacement discontinuity is assumed between the two sides of faults: Traction - at - Split - Node scheme

We take into account the rake rotation during propagation: the rake direction is calculated from fault strength.

The code is based on Dynelf by D. J. Andrews (nearly 1623 F77 code lines):

- 2 n - order in space and in time;
- FE scheme with specialized elements: the discretization is made by using the quadrilateral isoparametric elements (Hughes, 1987) with all edges parallel to the axes of the Cartesian coordinate system;
- planar free surface;
- finite differences in space are formulated to be equivalent to finite elements and therefore the numerical algorithm can be considered either as a Finite Element or as a Finite Difference scheme;
- the formulation is mathematically equivalent to the local stiffness matrix, but it is more efficient;
- the main physical quantities are updated explicitely through time;
- the fundamental physical variables are displacement and force at nodes;
- local forces are calculated using the 8-points Lobatto integration;
- stress is not uniform inside an element.
- Conventional - grid based code;
- Displacement components (U_{i})

- \mathbf{U} is known at half - integer time levels; other quantities at integer time levels.

The code has been modified (now is more than 11,000 lines) to include:

1) Different governing laws (including rate - and state - dependent friction laws) using an accurate Fault Boundary Condition and accounting for spatial heterogeneities of the constitutive parameters. Rake can vary during time;
2) The implementation of thermal pressurization model and variation of the effective normal stress with time;
3) Various nucleation strategies to force the rupture to propagate;
4) Absorbing Boundary Conditions in order to eliminate reflections from the domain boundaries and to drastically reduce the computational requests (RAM and CPU time);
5) Computational optimization (loop unroll and routine inline), in collaboration with Thomas Schoenemeyer of NEC;
6) Calculation of rupture times on the fault and seismic moment. Outputting of arbirary numbers of time snapshots of all relevant quantities on the fault and in the surrounding medium

- Dynamic loads at time t, in each node of the fault plane (Σ):

$$
\mathcal{L}_{i}=f_{r i}+T_{0 i} \quad(i=1 \text { and } 3)
$$

where:
$f_{r i}$ are the components of the load (restoring forces per unit fault area, \mathbf{f}_{r}) exerted by the neighboring points of the fault; $f_{r i}=\left(M^{-} f_{i}^{+}-M^{+} f_{i}^{-}\right) /\left[\Delta\left(M^{+}+M^{-}\right)\right]$, with M^{+}and M^{-}are the masses of the " + " and " - " half split-node of the fault plane S (see Figure $2 b$) and \mathbf{f}^{+}the force per unit fault area acting on partial node " + " caused by deformation of neighbouring elements in the "-" side of Σ.
$T_{0 i}$ are the components of the initial shear traction

- Component of fault traction T_{i} are calculated solving the coupled equations

$$
\begin{aligned}
& \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} u_{1}=\alpha\left[\mathcal{L}_{1}-T_{1}\right] \\
& \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} u_{3}=\alpha\left[\mathcal{L}_{3}-T_{3}\right]
\end{aligned}
$$

where: $\alpha \equiv \mathcal{A}\left(\left(1 / M^{+}\right)+\left(1 / M^{-}\right)\right), \mathcal{A}$ being the split-node area (in the case of vertical fault $x_{2}=x_{2}^{f}$ is: $\mathcal{A}=\Delta x_{1} \Delta x_{3}$)

- Components of the shear traction are coupled througth the boundary condition

$$
T=\tau
$$

where:
$T=\sqrt{T_{1}{ }^{2}+T_{3}{ }^{2}}$
τ is the analytical expression of the governing law (namely the fault strenght)

- The latter depends on the effective normal stress

$$
\sigma_{n}^{e f f}=-\left(\Sigma^{(\hat{\mathbf{n}})} \cdot \hat{\mathbf{n}}+p_{f l u i d}\right)
$$

where:
$\Sigma^{(\hat{\mathbf{n}})} \cdot \hat{\mathbf{n}}$ is the normal stress acting on the solid matrix $p_{\text {fluid }}$ is the pore fluid pressure.

A time t is:

$$
\sigma_{n}^{e f f}\left(x_{1}, x_{3}, t\right)=-f_{r 2}+\sigma_{n}^{\text {eff }}\left(x_{1}, x_{3}, 0\right)
$$

Reference Cise

Slip

Traction

Slip_26ani_sw_total
Tau_26ani_sw_total

$$
S=0.8
$$

In. rake $=0.785398 \mathrm{rad}$.
In. rake $=0.785398 \mathrm{rad}$.

Conspanjojos beivyeen 2-D sinc 3 - D snodels H1

Fixed x_{1} coordinate

Fixed x_{3} coordinate

Consparision betyeen 2-D cind 3-D inodels ":

Slip velocity vs. Time
at $x _1=x _$init +18.0

Traction vs. Slip velocity at $x _1$ = x_init + 18.0

Traction vs. Time
at $x _1=x _$init +18.0

Consfosjojos betyeen 2-D sincl 3-D nuodels 竍

Superposition along Time
at $x _1=x$ init +18.0

FD 2-D with SW

FD 3-D with SW

The relse rotetions inse couplissg of the tyo asocles of propegsition

Fublke rotetions fis Theoreijcel beckgjousuc

- In the case of self - similar, expanding elliptical cracks the slip is everywhere parallel to the direction of pre - stress, even in the extreme situation of zero friction (Burridge and Willis, 1969).
- In the case of a finite circular crack Madariaga (1976) showed that rupture introduces a component perpendicular to the direction of pre - stress, which is quite small.
- The rake rotation is, by defintion, explicitely neglected in fault models where the pre - stress is assumed parallel to one coordinate axis and the slip is not allowed in the direction perpendicular to the pre - stress (Aochi et al., 2000a, 2000b; Fukuyama and Madariaga, 2000; Madariaga et al., 1998; Nielsen and Olsen, 2000) ...
... as well as in models where the governing law is assumed in a vectorial form (i. e. independentely for each components of physical observables), but only one component is non null (Fukuyama and Madariaga, 1998; Fukuyama et al., 2003; Olsen et al., 1997).

Ftake rotation fitze evidences

From Spudich et al., (1998)
Slip paths reconstructed from striations

Surface faulting, Awaji Island, 1995 Hyogoken-Nanbu (Kobe) earthquake

Spatial heterogeneous rake

Slip distribution on the fault

Temporal heterogeneous rake

Temporal evolution of silp for a target point

Rake vs. Time

Time

Rake vs. Time

Rake vs. Time

Time

Rake vs. Time

Time

Time

$3=\square$
 Fuake rotition fras depenclence of the sibsolute stress level

Rake vs. Time dist $=$ r_init $\mathbf{+ 1 8 . 0}$
 Location \#1

2n- The rake rotation fot path / modulus

$$
\begin{gathered}
\qquad \mathrm{T}_{0}\left(x_{1}, x_{3}\right) \equiv \mathrm{T}\left(x_{1}, x_{3}, 0\right)=\left(T_{1}\left(x_{1}, x_{3}, 0\right), 0, T_{3}\left(x_{1}, \widehat{\left.\left.x_{3}, 0\right)\right)}\right.\right. \\
\text { Normal Traction } \longrightarrow \Sigma_{0}\left(x_{1}, x_{3}\right) \equiv \Sigma\left(x_{1}, x_{3}, 0\right)=-\sigma_{n}^{\text {eff }} \hat{\mathbf{n}}=(0,-30 \mathrm{MPa}, 0)
\end{gathered}
$$

Fault slip time snapshots - Linear SW assumed

Slip modulus:
$u=u^{(\bmod)}\left(x_{1}, x_{3}, t\right) \equiv\left\|\mathbf{u}\left(x_{1}, x_{3}, t\right)\right\|$

Slip path:

$u=u^{(p a t h)}\left(x_{1}, x_{3}, t\right) \equiv \int_{0}^{t}\left\|\mathbf{v}\left(x_{1}, x_{3}, t^{\prime}\right)\right\| \mathrm{d} t^{\prime}$

The ambiguity between modulus and path exists only for governing laws containing a dependence on fault slip (for instance in the case of rate - and state - dependent friction there is no other possibility than modulus of fault slip velocity).

In the papers taking into account both components of fault slip (and fault slip velocity and fault traction)

- Bizzarri and Belardinelli (2007); Bizzarri and Cocco (2005, 2006a, 2006b); Bizzarri and Spudich (2007); Olsen et al. (1997) considered the dependence on slip modulus;
- Dalguer and Day (2006); Day et al., (1982a, 1982b); Day et al. (2005) considered the dependence on slip path.

3-1 Efiect of the free susface

$\begin{array}{lllll}0.00 & 0.40 & 0.80 & 1.20 & 1.60\end{array}$
Fracture Energy

Sljp consplexity sud heterogeneities

Direct evidences:

1) Shallow geometrical complexity observed at all scales (Tchalenko and Ambrases, 1970; Aydin, 1978; Okubo and Aki, 1987; Aviles et al., 1987; Reches, 1988; Davy, 1993; Johnson et al., 1994);
2) Profilemetry measurements along exumed fault surfaces (Brown and Scholz, 1985; Power et al., 1988; Power and Tullis, 1991; Brown, 1995);
3) Long - range property fluctuations in geophysical logs (Hewett, 1986; Leary, 1991).

Indirect evidences:

1) Complex distribution of earthquake hypocenters (Kagan, 1994) and of size and repeated time of earthquake occurrence;
2) Presence of abundance of incoherent high - frequency seismic radiation from earthquake rupture zones (Hanks and McGuire, 1981; Papageorgiou and Aki, 1983; Joyner and Boore, 1988; Stevens and Day, 1994);
3) Short risetimes in earthquake slip hystories (Heaton, 1990; Wald, 1992);
4) Stress drop fluctuations in small events (Guo et al., 1992; Abercrombie and Leary, 1993; Hough and Dreger, 1995).

Slip distribution of large earthquakes

1999 Izmit

Ground motion from Chi - Chi, Taiwan, EQ

Brodsky and Kanamori (2001)
Ma et al. (1993)

Slip_var10ani_sw_total
S_3 $=0.8$
S $2=S 1=3.0$
In. rake $=0.785398 \mathrm{rad}$.

Homogeneous

Heterogeneous

Rakediff_26ani_sw
Rakediff_var10ani_sw

$$
\begin{gathered}
S _3=0.8 \\
S _2=S _1=3.0
\end{gathered}
$$

In. rake $=0.785398 \mathrm{rad}$.

Effects of Free Susfoce

This slide is empty intentionally.

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

2 - D Mode II (pure in - plane):

$$
\mathbf{u}=\left(u_{1}\left(x_{1}, t\right), 0,0\right)
$$

2 - D Mode III (pure anti - plane):

$$
\mathbf{u}=\left(0, u_{2}\left(x_{1}, t\right), 0\right)
$$

3 - D Mixed mode:

$$
\mathbf{u}=\left(u_{1}\left(x_{1}, t\right), u_{2}\left(x_{1}, t\right), 0\right)
$$

3 - D having only one non null component:
$\mathbf{u}=\left(u_{1}\left(x_{1}, x_{2}, t\right), 0,0\right)$

Truly 3 - D:

$$
\mathbf{u}=\left(u_{1}\left(x_{1}, x_{2}, t\right), u_{2}\left(x_{1}, x_{2}, t\right), 0\right)
$$

Test \#	26ani_sw 3-D	FD
Constitutive law	Slip - weakening	
Simulation Date	14-12-02	
System	Mk	
Categorized as	Homogeneous	
Input Set type	Non - dimensional units	
$\Delta x, \Delta y, \Delta z$	0.20 .2	0.2
Arrays size	254 83	251
Iterations in time	350	
Mass density (ρ)	1.	
v_{S}, v_{P}	1.1 .732	
Initial stress (τ_{0})	1.	
Yield stress (τ_{u})	1.8	
Frictional level (τ_{f})	0.	
Strength (S)	0.8	
Characteristic length (d_{0})	1.3 1.3	1.3
Normal stress (σ_{n})	1.	
Initial rake	0.785398 rad.	
Initial slip velocity	0.5	
Nucleation point	25.425.	
Fault type	Vertical Strike - slip	

Test \#	37ani_sw 3-D	FD
Constitutive law	Slip - weakening	
Simulation Date	15-10-02	
System	Mk	
Categorized as	Homogeneous	
Input Set type	Non - dimensional units	
$\Delta x, \Delta y, \Delta z$	0.20 .2	0.2
Arrays size	254	251
Iterations in time	350	
Mass density (ρ)	1.	
v_{S}, v_{P}	1.1 .732	
Initial stress (τ_{0})	1.	
Yield stress (τ_{u})	1.8	
Frictional level (τ_{f})	0.	
Strength (S)	0.8	
Characteristic length (d_{0})	1.3 1.3	1.3
Normal stress (σ_{n})	1.	
Initial rake	0.785398 rad.	
Initial slip velocity	0.5	
Nucleation point	25.425.	
Fault type	Vertical Strike - slip	

Test \#	var10ani_sw	$3-\mathrm{D}$	FD
Constitutive law	Slip - weakening		
Simulation Date	19-12-02		
System	Mk		
Categorized as	Heterogeneous		
Input Set type	Non - dimensional units		
$\Delta x, \Delta y, \Delta z$	0.8	0.2	0.8
Arrays size	254	83	251
Iterations in time	700		
Mass density (ρ)	1.		
v_{S}, v_{P}	1.	1.732	
Initial stress (τ_{0})	1.	1.	1.
Yield stress (τ_{u})	1.8	4.	4.
Frictional level (τ_{f})	0.	0.	0.
Strength (S)	0.8	3.	3.
Characteristic length (d_{0})	1.3	1.3	1.3
Normal stress (σ_{n})	1.		
Initial rake	0.785398 rad		
Initial slip velocity	0.5		
Nucleation point	25.4	10.	
Fault type	Vertical Strike - slip		

Test \#	var8_sw 3-D	FD
Constitutive law	Slip - weakening	
Simulation Date	08-11-02	
System	Mk	
Categorized as	Heterogeneous	
Input Set type	Non - dimensional units	
$\Delta x, \Delta y, \Delta z$	0.8	0.8
Arrays size	254	251
Iterations in time	700	
Mass density (ρ)	1.	
v_{S}, v_{P}	1.1 .732	
Initial stress (τ_{0})	1.1	1.
Yield stress (τ_{u})	1.8 3.	3.
Frictional level (τ_{f})	0.0	0.
Strength (S)	0.8 2.	2.
Characteristic length (d_{0})	1.31 .3	1.3
Normal stress (σ_{n})	1.	
Initial rake	0.785398 rad .	
Initial slip velocity	0.5	
Nucleation point	25.410.	
Fault type	Vertical Strike - slip	

