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Abstract—By using a single-degree-of-freedom spring-slider

analog fault model, we generate a synthetic catalog of nearly 500

different seismic sequences. We explore the parameter space by

assuming different values of constitutive parameters and tectonic

environment. We also consider three different versions of the rate-

dependent and state-dependent friction laws [the Dieterich-Ruina

(DR), the Ruina-Dieterich (RD) and the Chester-Higgs (CH)

models], and different approximations of the behavior of the fric-

tion at high sliding speeds, as well as the radiation damping effects.

Our results indicate that for all the considered models, the recur-

rence time (Tcycle) exhibits an inverse proportionality on the

loading rate; a linear, positive dependence on the effective normal

stress; and a linear, negative dependence on the characteristic

distance controlling the state variable evolution. These results

confirm and generalize previous studies. Remarkably, we found

here that the coefficients of proportionality strongly depend on the

adopted friction model, on the high speed behavior and on the

reference set of parameters. Notably, we also found that the posi-

tive proportionality between Tcycle and the difference b – a,

confirmed for DR and RD laws, does not hold in general for the CH

law. Overall, we conclude that even in the simplest (and idealized)

case of characteristic earthquakes considered here, in which the

limiting cycle is reached by the system, and even in the framework

of a very simplified fault model, the possibility to a priori predict,

through an universal analytical relation, the inter-event time of an

impending earthquake still remains only a dream. On the other

hand, a numerical prediction of Tcycle would require the exact

knowledge of the rheological model (and its parameters at all times

over the entire life of the fault) and the actual state of the fault,

which indeed are often unknown.

Key words: Fault mechanics, recurrence time, earthquake

prediction, constitutive models, computational seismology.

1. Introduction

The grand challenge of seismology is to predict

earthquakes, which is not only a very important sci-

entific goal, but is also a major societal objective,

both in terms of human losses and economic

damages.

Contrary to other ambits of physics (e.g., in

quantum mechanics the Heisenberg’s uncertainty

principle establishes that it is theoretically impossible

to exactly predict the position and the momentum of a

particle, simultaneously; HEISENBERG 1927), there are

no theoretical reasons impeding the spatio–temporal

prediction of an earthquake event (BIZZARRI 2012b).

Despite technical and epistemic difficulties, the pre-

diction of earthquakes still remains a prominent

objective for the entire scientific community. Indeed,

seismology is a relatively young discipline, and it

suffers some severe limitations, represented by (1)

the epistemic, relatively incomplete understanding of

the physics of earthquakes; and by (2) the ignorance

about the state of stress of the faults. In other words,

our knowledge of both the equations to be solved

(more explicitly, the fault constitutive model, which

complements the equation of motion) and of the

initial conditions is still lacking, making the physics

of the earthquake source a very peculiar exact sci-

ence. Moreover, we do not have the possibility to

plan experiments at the real-world scale, such as

scientists in the fields of high energy physics or

molecular biology do. On the other hand, we can

perform cutting-edge numerical simulations, but do

not yet have yet a general consensus on the most

appropriate equations to describe the physical

behavior of a seismic source (see BIZZARRI 2011b for

a thorough review). This is in contrast, for instance,
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to climatology, which still can not plan experiments,

but knows the equations describing the problems to

be handled.

Statistical analysis—which accepts that several

properties of the faulting processes are out of range

and can be described only in probability terms (VERE-

JONES 2010)—relies on seismological records, and is

therefore affected by the relative infrequency of large

events. These events can then provide only a limited

data set for the study of their impact on modern cities

(e.g., ALLEN 2007). Moreover, some authors have

shown (WYSS et al. 2012; KOSSOBOKOV and NEKRAS-

OVA 2012; see also ZUCCOLO et al. 2011) that the

seismic hazard maps generated by the Global Seismic

Hazard Assessment Program (GSHAP; www.seismo.

ethz.ch/static/GSHAP), do not correctly give the

seismic hazard for disastrous earthquakes with M [
(6.9, 8.6). Indeed, KOSSOBOKOV and NEKRASOVA

(2012), by performing a quantitative comparison

between the GSHAP maps and the factual effects

under strong earthquakes, formulate a verdict useless

for this kind of probabilistic product in the framework

of any type of seismic hazard evaluation. The sci-

entific debate on this topic is indeed vigorous (see for

instance PANZA et al. 2011, 2012). It is also true that

during the last 50 years there have been insufficient

seismological records to constrain the dynamics of a

seismogenic fault over a time window of

100–1,000 years. In other words, the earthquake

cycle could often be far larger than the duration of the

instrumental, scientific observations.

The physical (or deterministic) description of

earthquake sources—which excludes any random

process—is affected by the epistemic, severe limita-

tions discussed above. Finally, we mention here that

the so-called neo-deterministic seismic hazard ana-

lysis (NDSHA)—which originated after a careful

scrutiny of the standard hazard maps (WYSS et al.

2012)—produces a set synthetic ground motions

based upon the physics of the earthquake source and

wave propagation models (e.g., PANZA et al. 2001;

ZUCCOLO et al. 2011 and referenced cited therein).

By considering a single-degree-of-freedom mass-

spring analog fault model (e.g., GU et al. 1984),

BIZZARRI (2012b) emphasizes that a large number of

factors can dramatically influence the recurrence time

Tcycle; (1) fault interactions and stress triggering

phenomena, (2) the analytical expression of the fault

governing law, (3) the thermally-activated pressuri-

zation of pore fluids, (4) wear processes, (5) the

variations of the hydraulic properties of the fault zone

(such as permeability and porosity) and (6) the

Arrhenius nature of the so-called direct effect in the

framework of the rate-dependent and state-dependent

friction laws (e.g., RUINA 1983). Moreover, (7) CRUPI

and BIZZARRI (2013) demonstrate that the analytical

formulation of the equation of motion of the spring–

slider system (more explicitly, the incorporation of

the contribution of the energy lost as radiating waves,

ignored for a long time in previous 1-D models) has

relevant consequences in the determination of the

seismic cycle time. Finally, (8) BIZZARRI and CRUPI

(2013) point out that even the initial thermal state of

the fault can have significant effect on the prediction

of Tcycle in the framework of a rate-dependent, state-

dependent and temperature-dependent fault rheology

(CHESTER and HIGGS 1992). All these results can

somehow endanger the concept itself of seismic

cycle.

In this paper, we intentionally neglect all the

above-mentioned complications, and assume a con-

stant effective normal stress. We consider a perfectly

homogeneous and isolated fault, so that the 1-D

spring-slider model adopted in the numerical com-

putation presented and discussed in the present study

can be adequate to describe, at least as a first-order

approximation, such a seismogenic system; the lim-

itations of the model are discussed in more details in

Sect. 4. By conducting a large number of numerical

experiments (we produce an ensemble of nearly 500

different seismic sequences), we analyze whether it is

possible to extract from our catalog of synthetic

events a universal, analytical (empirical) equation

that can fit all the data, with the aim to explore

whether it is possible to analytically express a priori

the cycle time as a function of the source parameters.

2. Methodology

As anticipated in the previous section, we con-

sider the single-degree-of-freedom spring-slider

model, so that the we deal with a 1-D fault model,

in which the unique independent variable is time.
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The analytical and numerical details are summarized

in Appendix A. The fault system can be governed by

different formulations of the rate-dependent and

state-dependent friction laws, namely the Dieterich-

Ruina (DIETERICH 1994), the Ruina-Dieterich (RUINA

1983) and the Chester-Higgs (CHESTER and HIGGS

1992) constitutive models (for the remainder of the

present paper, we will refer to those laws with the

notations DR, RD and CH, respectively). In these

fault governing models, recalled for completeness in

Appendix A [see Eqs. (8), (9) and (10)], there are

basically three constitutive parameters; a, which

accounts for the so-called direct effect and represents

a velocity-hardening preparatory stage in the early

stages of the rupture; b, which controls the evolu-

tionary effects and basically describes the stress

release process; and L, which represents the charac-

teristic slip distance over which the state variable W
evolves. The latter physically accounts for the

memory effects (i.e., previous slip instability epi-

sodes) of the sliding interface, and has a different

meaning (and dimension), depending on the adopted

model (see BIZZARRI 2011b; his Sect. 7).

We consider two rather different configurations,

listed in Table 1. Configuration A, which is config-

uration A of CRUPI and BIZZARRI (2013), corresponds

to a strong velocity-weakening regime, characterizing

a fault with a relatively high degree of instability.

Configuration B, taken from LAPUSTA and BARBOT

(2012) and BARBOT et al. (2012), still defines a

velocity-weakening regime, but with a lower degree

of instability. We also emphasize that, changing from

configuration A to configuration B, we do not only

modify the constitutive parameters a and b, but also

the hypocentral depth (and thus the resulting effective

normal stress, rn
eff, and the initial temperature, T0,

which is assumed to follow a geothermal gradient),

the initial shear stress and the sliding velocity, as well

as the tectonic loading rate. Both the configurations

fail in the unstable regime, in that the ratio j between

the critical stiffness, kcr = (b – a)rn
eff/L, and the

machine stiffness, k, exceeds 1, so that the limiting

Table 1

Reference parameters adopted in this paper

Parameter Value

Configuration A Configuration B

Model parameters

Loading velocity, vload 3.17 9 10-10 m/s 1.17 9 10-9 m/s

Machine stiffness, k 10 MPa/m 7.5 9 10-2 MPa/m

Tectonic loading rate, _s0 = kvload 3.17 9 10-3 Pa/s 8.775 9 10-3 Pa/s

Vibration period of the analog freely slipping system, Ta.f. = 2p
ffiffiffiffiffiffiffiffiffi

m=k
p

5 sa 5 sa

Radiation damping constant, c (if present) 4.5 MPa s/m 2.86 MPa s/m

Critical velocity, vc 1 9 10-4 m/s 1 9 10-4 m/s

Threshold velocity defining a seismic instability, vl 0.1 m/s 0.1 m/s

Fault constitutive parameters

Effective normal stress, rn
eff 30 MPa 100 MPa

Initial sliding velocity, v0 3.17 9 10-10 m/s (=vload) 1.17 9 10-9 m/s (=vload)

Initial state variable, W0 3.15 9 107 s (=L/v0) 8.55 9 106 s (=L/v0)

Initial shear stress, s0 16.8 MPa (=l* 9 rn
eff) 65 MPa (=l* 9 rn

eff)

Initial temperature, T0 483.15 K (=210 �C) 373.15 K (=100 �C)

Logarithmic direct effect parameter, a 0.008 0.010

Evolution effect parameter, b 0.016 0.014

Characteristic scale length, L 0.01 m 0.01 m

Critical stiffness, kcr = (b – a) rn
eff/L 24 MPa/m 40 MPa/m

Reference value of the friction coefficient, l* 0.56 0.65

Reference value of the sliding velocity, v* 3.17 9 10-10 m/s (=v0) 1 9 10-6 m/s

Reference value of the temperature, T* 210 �C (=T0) 100 �C (=T0)

The initial conditions (denoted by the subscript 0) refer to t = 0
a We do not change the period of the analog freely slipping system, because we are not interested in performing a stability analysis of the

system

Vol. 171, (2014) Recurrence Time and Source Parameters 2539



cycle is reached (GU et al. 1984). As mentioned

above, we emphasize that the limiting cycle can not

be always reached if we include in the model addi-

tional complications, such as wear mechanism and

thermal pressurization (see BIZZARRI 2012b and ref-

erences cite therein) or if we consider the Burridge-

Knopoff (e.g., ERICKSON et al. 2011) with special

parameters settings.

In order to explore whether the behavior at high

speeds can influence the results, we have also con-

sidered the so-called frozen approximation of the

friction law. In this approximation, the steady state

friction becomes independent of the sliding velocity

for speeds larger than a threshold value vT (WEEKS

1993; BIZZARRI 2012c). In this case, the formulation

of the RD law is expressed by Eq. (12); the coun-

terparts for the DR and the CH can be derived in a

straightforward way. In this paper, we also assume

that vT = v* (see Table 1); the results pertaining to

the frozen simulations are reported as open symbols

in the subsequent figures.

Finally, we have also considered the introduction

of the radiation damping term (RDT thereinafter;

RICE 1993; BEELER et al. 2001), which is known to

control the dynamics of the system [CRUPI and BIZZ-

ARRI 2013; see Eq. (13)].

Overall, we have thoroughly explored the

parameter space of both Configuration A and B, and

we generated a synthetic catalog. From this catalog,

we extracted the resulting cycle time (Tcycle). The

latter, which is the limiting cycle of this system (e.g.,

THOMPSON and STEWART 2002), is determined as

the time separating two subsequent instabilities:

T
½n�
cycle ¼

df
t½n� � t½n� 1� (see, among many other exam-

ples, Fig. 3 of RICE and TSE 1986) where t[n] is the

time occurrence of the nth instability, which in turn is

defined when the sliding speed exceeds a threshold

value (vl; see Table 1).

The aim of the present paper is not to perform a

detailed analysis of the stability of the system.

Indeed, the single mass-spring damped harmonic

oscillator is described by a system of three nonlinear

ordinary differential equations (ODEs), which have

universal properties summarized in a very compre-

hensive way by THOMPSON and STEWART (2002). The

body of the literature about the stability analysis of

the spring-slider system is immense; among many

others we cite here, the early studies of GU et al.

(1984) and RICE and TSE (1986), and the more recent

generalizations of RANJITH and RICE (1999), ERICKSON

et al. (2008), and PUTELAT et al. (2008, 2010, 2012).

As stated above, we want the present work to be a

contribution in the stream of papers dealing with the

problem of the prediction of earthquake recurrence.

In particular, we aim to explore whether it is possible,

from a numerical and/or analytical point of view, to

predict, in a deterministic way, the recurrence time of

the next earthquake.

3. Numerical Results

3.1. Variation of a and b

In Fig. 1a, we plot the simulated cycle times

depending on different values of the constitutive

parameter a. We can clearly see that as long as

a increases, Tcycle decreases with a linear pattern, and

this holds for all the considered friction laws in the

case of Configuration A (blue symbols). Remarkably,

the slope of the Tcycle vs. a curve (namely, the ratio

dTcycle/da) is the same for a given friction law, but it

changes if we consider a different set of parameters;

this is apparent from the slope of the dashed lines.

Moreover, that slope also depends on the adopted

constitutive model; this is evident by comparing, for

instance, the slope pertaining to the DR law (full blue

squares), that pertaining to the RD law (full blue

triangles) and that of the CH law (full blue circles).

On the other hand, if we modify the frictional

behavior at high speeds (i.e., if we include the frozen

approximation), even for the same governing equa-

tion, the ratio dTcycle/da changes. The same result

holds for the DR and the RD if we also add the

radiation damping term (RDT; small open squares

and rectangles).

The behavior is quite different if we consider the

CH law. Indeed, in the case of configuration B, we

observe a net increase of Tcycle with increasing a (full

red circles). On the other hand, the same behavior is

obtained for configuration A if we consider the frozen

approximation (open blue circles) and if we add the

RDT (small open circles). To interpret this result, we

have to remember that parameter a is responsible for
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the so-called direct effect of friction, and it deter-

mines the amount of frictional stress that has to be

exceeded in order to cause slip instability and thus the

stress release (see also BIZZARRI 2011b for a discus-

sion). In the framework of the CH law, the frictional

resistance depends explicitly on the temperature [see

Eq. (10)], and this dependence is particularly relevant

at sustained speeds. Once the slider tends to accel-

erate (so that the sliding speed becomes to be

significant), the frictional heat starts to increase

rapidly [see Eq. (11)], and its contribution to the

value of the frictional resistance is not negligible. In

other words, since the temperature affects the rupture

threshold, the effect of the changes in a can be

somehow masked by the overall dynamics of the

system. A similar situation happens when we con-

sider the parameter a varying explicitly with the

temperature, so that a = a(T) (BIZZARRI 2012a).

This result suggests, even at this early stage of

exploration of the parameter space, that it is very
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Figure 1
Cycle time (Tcycle) resulting by changing the constitutive parameters a [(panel (a)] and b [panel (b)]. All the other parameters are kept

unchanged with respect to those listed in Table 1. Blue symbols refer to configuration A, while red symbols refer to configuration B. Squares,

triangles and circles pertain to the Dieterich-Ruina [DR, Eq. (8)], Ruina-Dieterich [RD, Eq. (9)] and Chester-Higgs [CH, Eq. (10)] laws,

respectively. Empty symbols denote numerical simulations where the frozen approximation at high speeds has been considered [see Eq. (12)].

Finally, small symbols indicate synthetic earthquakes in which the radiation damping term is included in the equation of motion [see Eq. (13)].

The vertical rectangles emphasize the reference set of parameters for both configuration A and configuration B
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complicated to find an universal, analytical, empirical

relationship expressing the value of the recurrence

time as a function of the governing parameters,

especially in the case of the CH friction model.

In Fig. 1b, the behavior of Tcycle for various

b (and keeping all the other parameters as in Table 1)

is plotted. Here we can see that, in general, Tcycle has

a direct proportionality to b, for all the friction

models (DR, RD and CH), configurations (A and B)

and approximations (frozen or not, with and without

the RDT). Nevertheless, the slope of the Tcycle vs.

b curve (i.e., the ratio dTcycle/db) is slightly different

in the various cases, although it is constant for a given

law and configuration (as emphasized by the dashed

lines in Fig. 1b).

The results discussed above can be summarized

by plotting Tcycle vs. the difference b – a; this is done

in Fig. 2a (where only a is changed) and in Fig. 2b

(where only b is changed). We know that recurrence

time depends on the recovery time, i.e., on the time

required to increase the traction from the friction

level attained after a slip instability up to the upper

yield stress, which defines the rupture point (the latter

physically represents the maximum shear stress a

fault can sustain by elastic deformations). The

situation is described in Fig. 3 of BIZZARRI and CRUPI
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The same as in Fig. 1, but now we change the difference b – a. a Only the parameter a is changed. b Only the parameter b is changed
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(2013). Both the minimum and maximum traction

depend on b – a, as also discussed by BIZZARRI and

COCCO [2003; see their Eqs. (12) and (13)]. Since the

difference b – a is directly proportional to the degree

of instability of a fault [in other words, the greater

b – a is, the larger amount of stress is released; see

also GU and WANG (1991) and HE et al. (2003)], we

theoretically expect that the stress to be recovered

during the interseismic fault restrengthening phase,

which increases too, therefore leading to longer inter-

event times. This general behavior emerges from

Fig. 2, with the only exception of the CH law

occurring when a is changed (see open blue and full

red circles in Fig. 2a). This reflects exactly what we

observe in Fig. 1a.

3.2. Variation of the Characteristic Length

The constitutive parameter L is the characteristic

length scale appearing in the time evolution of the

state variable. Physically, it represents the amount of

slip over which the state variable W evolves from one

steady state to another (e.g., RUINA 1983). Moreover,

it is related to the breakdown time (BIZZARRI and

COCCO 2003), which is spent during the process of the

stress release (stress drop). Since the various govern-

ing models considered here have a different evolution

law [see Eqs. (8)–(10)], we expect to have different

values of the recurrence time even for the same value

of L; this is exactly what we observe in Fig. 3, where

we report the behavior of Tcycle for different L. With

the exception of the CH for configuration B (full red

circles), we can envisage from Fig. 3 a nearly linear

decrease of Tcycle for increasing L. Contrary to what

happens for variations of a and b, in the case of the

variation of L, the introduction of the frozen approx-

imation at high speeds does not change the slope of

the Tcycle vs. L curve, but merely causes an increase

of the recurrence time.

3.3. Variation of the Effective Normal Stress

Figure 4 reports the variations of Tcycle for

varying rn
eff. The variation of the effective normal

stress is associated with different focal depth and/or

different values of the pore fluid pressure in the fault

zone. It is clear that the dependence of the recurrence

time on the effective normal stress is linear over a

very broad range of compressive stresses. This

behavior is a stable feature for both the configurations

A and B and for all the considered friction laws. Also

in this case, we can see that the introduction of the

frozen approximation increases the value of Tcycle,

but does not deface the linear dependence between

the two quantities, although the slope of the Tcycle vs.

rn
eff curve tends to increase if we include the frozen

approximation. These results are consistent with the

theoretical predictions; indeed, when rn
eff increases,
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Behavior of Tcycle depending on the different values of the characteristic distance (L) controlling the evolution of the state variable. The

symbols have the same meaning as in Fig. 1
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the upper yield stress (su
eq in the naming convention

of BIZZARRI and COCCO 2003) also increases. At the

same time, also the dynamic stress drop increases,

because the fault becomes more unstable; we recall

that although b : B/A remains constant by changing

rn
eff (B = brn

eff and A = arn
eff), the other parameter

controlling the instability of the fault, j : kcr/k

(BIZZARRI 2011a), increases for increasing rn
eff. As a

net result, the stress to be recovered after a dynamic

instability in order to again reach the rupture point

increases for increasing effective normal stress, thus

leading to longer inter-event times.

An interesting issue is that the slope of the Tcycle

vs. rn
eff curve strongly depends on the adopted

governing model; in particular, for both the config-

urations A and B, the DR law is the model that is the

most sensitive to variations of rn
eff, while the CH

model is the least sensitive.

3.4. Variation of the Loading Rate

The last dependence we explore is that of the

loading rate. We change _s0 by changing the value of

the loading velocity (vload) and by keeping k (and thus

j) constant; this means that we do not change the

rheological properties of the fault, but only the

tectonic environment (i.e., the external conditions).

Physically, we expect that the larger _s0 is, the shorter

Tcycle is. This makes sense, because when the loading

force applied to the spring increases, then the

interseismic recovery phase is faster (and correspond-

ingly Tcycle is smaller). This expectation is verified

from the results of our synthetic catalog, as depicted

in Fig. 5, from which we can clearly appreciate an

inverse dependence of Tcycle on _s0. Remarkably, this

holds for all the adopted governing laws, although, as

for the dependence on rn
eff, the DR law is the most

sensitive to variations in _s0, the CH is the least

sensitive, and the RD is intermediate between the

two. This is a stable feature for both configuration A

and configuration B.

The dependence of Tcycle on _s0 can be also

understood from the analysis of the phase diagrams

shown in Fig. 6. They refer to configuration B, but

the results are qualitatively the same for Configura-

tion A. We denote with the Dsrec the amount of stress

that the fault has to recover to again reach the rupture

point (and thus cause a new slip instability). It is clear

that as the loading rate increases, the resulting Dsrec

decreases, because, for the DR and the RD laws, the

minimum sliding speed and the final level of friction

increase, and because, at the same time, the upper

yield stress decreases (Fig. 6a, b). Interestingly, in the

case of the CH (Fig. 6c) the opposite holds, in that as
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_s0 increases, the minimum sliding speed and the final

level of friction decrease, but the upper yield stress

increases. As observed previously, this ‘‘anomalous’’

behavior (if compared to the DR and the RD law) is

imputable to the explicit dependence of friction on

developed temperature. The net result for the CH law

is that Dsrec decreases for increasing _s0, but more

slowly than in the case of DR and RD laws.

4. Discussion

In this paper, we have considered a single-degree-

of-freedom mass-spring analog fault system (1-D) to

investigate whether it is possible to express the

recurrence time of earthquakes (Tcycle) through an

universal, analytical equation depending on the con-

stitutive properties of the seismogenic structure. This

amenable picture requires some caveats. First of all,

we emphasize that the concept itself of the cycle time

(or limiting cycle) can somehow be misleading;

indeed, as discussed by BIZZARRI (2012b) and in Sect.

1, some different mechanisms can take place during

faulting, affecting the overall dynamics of the

seismogenic structure and therefore making the con-

cept of Tcycle even meaningless. In idealized

conditions, it is well known that a velocity-weaken-

ing 1-D system will reach its limiting cycle (e.g., GU
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Behavior of Tcycle depending on the different values of the loading rate ( _s0). In panel (b), we expand the dashed region marked in panel (a)
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Figure 6
Phase diagrams in the case of configuration B for various values of the loading rate. a Orbits for the DR law, which correspond to the full red

squares of Fig. 5a. b Orbits for the RD law, which correspond to the full red triangles of Fig. 5a. c Orbits for the CH law, which correspond to

the full red circles of Fig. 5a. All the quantity are normalized; s* and v* are references values for the shear stress and the sliding velocity,

respectively
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et al. 1984, among many others), which is charac-

terized by the same recurrence time, because the

states of the dynamical system (expressed in terms of

sliding speed and shear stress) are defined by a lim-

iting orbit in the phase space (i.e., the limiting cycle;

see THOMPSON and STEWART 2002). This behavior

mathematically expresses the concept of the charac-

teristic earthquake (CE; REID 1910). This simplistic

(and idealized) picture is dramatically altered if we

account for possible phenomena, such as stress trig-

gering and fault interaction, wear processes on the

fault core, permeability and porosity evolution, etc.

(BIZZARRI 2012b). Practically, these phenomena can

impede the fault from reaching its limiting cycle, so

that Tcycle can not be determined, but this intimately

depends on the actual state of the fault (which is

usually unknown for natural faults).

Another important point is inherently related to

the choice of the analog fault model. As pointed out

earlier by RICE and TSE (1986), the single mass-spring

model is certainly oversimplified, in that it predicts

that an asperity fails once it reaches its critical state;

indeed, we can expect that at natural conditions some

patches on the fault can reach the failure point and

nucleate the rupture. Moreover, the spring-slider

model exhibits only a dependence on time, implying

that all the properties of the fault are spatially

homogeneous and that they can be represented, in an

average sense, by the adopted values of the consti-

tutive parameters. Indeed, the role of spatial

heterogeneities in the fault rheology are important in

the whole dynamic of a seismic fault zone (e.g.,

OGLESBY and DAY 2002; TINTI et al. 2005; AMPUERO

et al. 2006; RIPPERGER et al. 2008; BIZZARRI et al.

2010; SONG and SOMMERVILLE 2010). Therefore, the

single spring-slider model can only be regarded as a

first approximation of the behavior of a real-world

fault. Indeed, since it naturally represents the stick-

slip mechanism, it has been successfully employed to

study the traction evolution on a seismic fault and to

simulate repeated earthquake events (BOATWRIGHT

and COCCO 1996; BEELER et al. 2001; BIZZARRI 2010;

MITSUI and COCCO 2010 among many others). As

pointed out by BIZZARRI and BELARDINELLI (2008), the

agreement between results from a single spring-slider

model and from an continuum, extended (3-D) fault

model is excellent during the slow nucleation phase;

during the subsequent acceleration phase, in a given

fault point, the 3-D model experiences the contribu-

tion of the stress redistribution on the fault (i.e., of the

load due to the neighboring points that are already

slipping and releasing stress). This phenomenon is

obviously neglected in the single spring-slider model.

We also mention here the comparison performed by

WEATHERLEY and ABE (2004) between a 1-D chain of

mass-block models and a lattice solid model.

Given these significant limitations, we have con-

sidered here the most simple situation in which the

system reaches the limiting cycle; in such a situation,

the system forgets the initial conditions (t = 0). In

this case, which represents the CE model, we can

write (see also BARBOT et al. 2012):

Tcycle ¼
Dsrec

_s0

ð1Þ

The inverse proportionality between stress drop

and loading velocity (recall that the tectonic loading

rate equals k vload) and the direct proportionality

between recurrence intervals and stress drop have

been previously shown in the case of the RD law by

CAO and AKI (1986) and GU and WANG (1991) and

extended to the DR model by HE et al. (2003).

In the framework of the rate-dependent and state-

dependent friction laws, both the maximum yield

stress (su
eq) and the dynamic stress drop [Dsd; see

Eq. (12) of BIZZARRI 2012b] are a priori unpredictable

(BIZZARRI 2003). This translates into the fact that

Dsrec can not be predicted exactly a priori.

By adopting two rather different configurations

(see Table 1), and by adopting three different gov-

erning models (the Dieterich-Ruina (DR), the Ruina-

Dieterich (RD) and the Chester-Higgs (CH) laws; see

Appendix A), we have generated a synthetic catalog

of nearly 500 different seismic sequences.

Our simulations clearly confirm for all the adop-

ted governing equations (including the CH model, the

frozen versions of governing laws and with the RDT)

the inverse proportionality between Tcycle and _s0

stated by Eq. (1) (see Fig. 5), which is relatively

obvious from a physical point of view. Moreover, our

numerical results suggest, in general, the following

dependencies:
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Tcycle / b � a ð2Þ

(see Fig. 2),

Tcycle / reff
n ð3Þ

(see Fig. 4), and

Tcycle / �L ð4Þ

(see Fig. 3).

The dependencies we found in Eqs. (2) and (3)

confirm the results that GU and WANG (1991) and HE

et al. (2003) obtained for the canonical formulations

(i.e., without frozen and without RDT) of the RD and

DR models, respectively. Indeed, they found [see Eq.

(4) in GU and WANG 1991] that

Dsrec ¼ b � að Þ reff
n K � f ln

vload

v�

� �� �

ð5Þ

where K is a parameter with an inverse proportion-

ality with 1/j and having a weak dependence on

m and f & 2. Remarkably, GU and WANG (1991) and

HE et al. (2003) do not consider the dependence of

Dsrec (and thus of Tcycle) on L.

LAPUSTA et al. (2012) and BARBOT et al. (2012), in

order to fit the recurrence times of the Parkfield

segment of the San Andreas fault with the DR friction

law, proposed the following analytical relation:

Tcycle ¼
b � að Þ reff

n

_s0

ln
vco

vinter

� �

ð6Þ

where vco is a coseismic values of the fault slip

velocity (they use vco = 1 m/s) and vinter is the in-

terseismic fault slip velocity (they use

vinter = 1 9 10-12 m/s, so that the correcting, non-

dimensional factor ln vco

vinter

� �

equals 27.63). The

parameters of Eq. (6) have been tuned in order to

reproduce a posteriori the observed recurrence times

at Parkfield. We note that Eq. (6) has been derived by

assuming that the stress drop between two subsequent

instabilities can be determined analytically in terms

of the governing parameters and of the two velocities

vco and vinter.

In general, rn
eff can somehow be estimated, based

on the representative hypocentral depth of a seismo-

genic zone, and _s0 can be inferred from geological

and seismotectonic observations. However, from a

predictive point of view, Eq. (6) has some problems,

in that it is very difficult to a priori constraint the

values of vco and vinter; both of them are known to

vary over several orders of magnitude, especially

vinter (see for instance Fig. 6, from which is it clear

the high variability of the sliding speeds attained

during the interseismic phase). Moreover, it is also

known that vco can be higher than 1 m/s; for instance,

the thermal pressurization of pore fluids, the flash

heating of micro-asperity contacts (and in general

every mechanism causing a dramatic fault weaken-

ing) are usually associated with very high values of

coseismic slip peak (see for instance BIZZARRI 2012a).

We emphasize that a variation of a factor of 10 in
vco

vinter
—very common in numerical simulations—cau-

ses a variation roughly of 8 % in Tcycle. Incidentally,

we mention here that if we ad hoc tune the values of
vco

vinter
differently for all the set of parameters used in

the DR models, we can adequately reproduce the

observed cycle time with Eq. (6), but we emphasize

that his tuning is done a posteriori and without any

physical or observational constraints.

Moreover, Eqs. (6)— and (5) as well—do not

explicitly incorporate the dependence on the charac-

teristic distance L, which controls the evolution of the

state variable, and which, although small, cause

variations of Tcycle (see Fig. 3).

In the framework of the rate-dependent and state-

dependent friction laws, the dynamic stress drop can

be associated with the difference b – a (e.g., RUINA

1983; GU et al. 1984; GU and WANG 1991; HE et al.

2003, among many others). However, we have seen

that it is extremely difficult to a priori predict the two

states in the phase plane which determine Dsrec (i.e.,

the minimum in (v, s) and the upper yield stress), and

therefore it is hard to exploit Eq. (1) in order to give a

quantitative prediction of the recurrence time. This is

particularity true in the case of the CH law, for which

the explicit dependence on temperature complicates,

with respect to the DR and the RD laws, the traction

evolution at high speeds. More explicitly, tempera-

ture evolution controls the rupture point (i.e., the

upper yield stress level), the dynamic stress release

and the final level of friction (and thus the level of

friction at which the long-stage interseismic phase

begins).
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5. Conclusions

The quantitative determination of the recurrence

time of an earthquake definitively remains one of the

most pursued objectives in seismology. It has been

already demonstrated that the concept of recurrence

time itself can be misleading or even meaningless, in

that many causes can alter the idealized cyclic

behavior postulated by the theory of characteristic

earthquakes (CE; see the discussion on BIZZARRI

2012b).

At a fundamental level, in addition to statistical

inferences (i.e., probabilistic predictions), which are

disregarded here, there are analytical and numerical

predictions of the recurrence of a next earthquake.

The former can be ideally retrieved theoretically, or

empirically inferred from data. The latter is a result of

a specific numerical experiment, where the physics of

the fault, as well as all the parameters of the model,

are assumed to be known.

The laboratory-derived, macroscopic theory of the

rate-dependent and state-dependent friction laws

provides a framework in which the whole life of a

seismogenic structure can be modeled, and thus the

cycle time can be calculated. In this framework, by

using a 1-D spring-slider dashpot model and

neglecting all possible phenomena that can cause

deviations from the CE model, we have generated a

synthetic catalog of nearly 500 different seismic

sequences, by considering a large class of fault gov-

erning models and approximations. Through a

systematic exploration of the parameter space, we

confirm that Tcycle is directly proportional to the

recovery stress (Dsrec; e.g., Fig. 6a) and inversely

proportional to the loading rate ( _s0; see Fig. 5); see

Eq. (1). We also found a linear, positive dependence

of Tcycle on the effective normal stress [rn
eff; see Fig. 4

and Eq. (3)], previously found in some cases. More-

over, our numerical experiments indicate a linear,

negative dependence of Tcycle on the characteristic

distance [L; see Fig. 3 and Eq. (4)]. Remarkably, these

dependences hold for all the governing models con-

sidered here, the Dieterich-Ruina (DR), the Ruina-

Dieterich (RD) and the Chester-Higgs (CH) laws, and

also with the frozen approximation and or with the

RDT. Our study therefore generalizes previous find-

ings by GU and WANG (1991) and HE et al. (2003).

One of the major outcome of the present study is

that the proportionality coefficients strongly depend

on the specific form of the adopted constitutive

model, on its behavior at high speeds and on the

possible introduction of the radiation damping term

(mimicking the energy lost as radiated seismic

waves).

Moreover, we also found that the positive pro-

portionality between Tcycle and the difference b – a,

confirmed in general for DR and RD laws, does not

hold for the CH law in some cases (see Fig. 2). This

difference is basically attributed to the effect of the

temperature developed by frictional heat, which

directly controls the evolution of traction in the CH

case, because it is incorporated explicitly in the

governing equations.

As an overall conclusion, although our catalog is

qualitatively compatible with previous relations

inferred for the RD by LAPUSTA and BARBOT (2012);

(see also BARBOT et al. 2012) in the case of the DR

and the RD laws, the exact, a priori determination of

the recurrence time (through an universal, analytical

equation) is very complicated, even in the simplest

(and idealized) case of the CE model. This is because

the proportionality coefficients depend on the adopted

friction law and on the global set of model parameters

(just as an example, from Fig. 4 we have that the

slope of the Tcycle vs. rn
eff curve for the DR is sig-

nificantly different from configuration A to

configuration B). The a priori prediction, again

through a unique equation, of the recurrence time is

virtually impossible if we postulate that the traction

evolution of the fault is described by the CH law; in

such a case, we can even invert the proportionality

relation observed for the other two friction models

(see Fig. 2).

To conclude, we have shown that, even in the

simplest case of the CE models considered here, the

belief that it is possible to predict the recurrence time

of a next earthquake through an universal, analytical,

empirical equation is not supported by numerical

evidence. Indeed, the results presented here can

provide some general guidance about how the

recurrence intervals can depend on the adopted model

parameters.

As mentioned above, there is another approach to

try to predict (still in a deterministic framework) the
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recurrence time. Numerical simulations (such as

those performed here or even with more elaborated

models, such a Burridge-Knopoff or continuum

models) should enable us to have a numerical esti-

mate of a subsequent earthquake. But the problem

here is that, in spite of significant advances in the

understanding of the plate tectonics and fault struc-

tures, we currently know little about the stress state in

the Earth (initial and external conditions) and about

the most proper friction law that can describe a given

earthquake sequence (earthquake source physics).

Moreover, we have to exactly know the values of the

governing parameters (input data in the forward

models), which are often not so well constrained by

independent observation or can even change through

time (i.e., during the whole life of the fault), making

the problem highly nonlinear.

From another point of view, it might be empha-

sized that recurrence intervals are not the best way to

infer the frictional properties of a given seismogenic

structure, because we do not know if the available

fault constitutive models are adequate to describe the

whole life of that fault, or simply which is the best

one among the various possibilities. However, vari-

ations in stress drop in repeating earthquakes can give

some indication on the healing rate (e.g., MARONE

1998; MARONE et al. 1995), which becomes dominant

once the fault has slowed significantly. At the same

time, the analysis of repeating slip failures are used to

constrain the loading rate (e.g., NADEAU and MCE-

VILLY 1999; IGARASHI et al. 2003).

The present exercise falls in the stream of papers

dealing with the earthquake prediction, and can be

regarded as a possible, although preliminary, way to

connect the source physics to the earthquake prediction.
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Appendix: Numerical Details of the Model

and Constitutive Equations

In this section, we briefly recall all the equations

adopted in the present study. Readers can refer to the

cited references for a more verbose discussion of the

equations.

As mentioned in Sect. 2, we use here the single-

degree-of-freedom (1-D) spring-slider analog fault

model. The equation of motion of such a system is

that of an harmonic oscillator (far of being exhaus-

tive, we mention here Gu et al. 1984; GU and WANG

1991; HE et al. 2003; RANJITH and RICE 1999):

m€u ¼ k uload � uð Þ � s ð7Þ

in which the overdots indicate the time derivative, m

is the mass per unit surface, k denotes the elastic

constant of the spring (which mimics the elastic

behavior of the medium surrounding the fault), uload

is the displacement of the loading point (which

moves at the prescribed velocity vload : _uload), u is

the displacement and s is the frictional resistance

acting of the sliding surface. As described in the

following, the choice of the analytical expression of s
defines the adopted governing model. The elasto-

dynamic problem for our 1-D fault system is solved

numerically by using the fourth-order Runge-Kutta

algorithm with auto-adaptive time stepping (PRESS

et al. 1992).

The single mass-spring system is an obvious

simplification of the more elaborated Burridge-

Knopoff model (see BURRIDGE and KNOPOFF 1964;

CARLSON and LANGER 1989a, b; CARLSON et al. 1991;

ERICKSON et al. 2011, among many others), where

multiple masses are connected with springs. This

inherently discrete fault model can account for spatial

heterogeneities and it is a first step toward the con-

tinuum finite difference or finite element models.

In the present paper, we use various governing

laws; the Dieterich-Ruina model (DIETERICH 1978,

1994):

s ¼ l� þ a ln m
m�

� �

þ b ln wm�
L

� �h i

reff
n

d
dt

w ¼ 1� wm
L

(

ð8Þ

the Ruina-Dieterich model (RUINA 1983; MARONE

1998):
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s ¼ l� þ a ln m
m�

� �

þ b ln wm�
L

� �h i

reff
n

d
dt

w ¼ � wm
L

ln wm
L

� �

8

<

:

ð9Þ

and the Chester-Higgs model (CHESTER and HIGGS

1992; CHESTER 1994):

s¼ l� þa ln v
v�

� �

þ b ln Wv�
L

	 


þ aQa

R
1
T
� 1

T�

� �h i

reff
n

d
dt

W ¼ � Wv
L

ln Wv
L

	 


þ Qb

R
1
T
� 1

T�

� �h i

8

>

<

>

:

ð10Þ

In Eqs. (8)–(10) v is the sliding velocity, W is a state

variable (an empirical variable accounting for the previ-

ous sliding history of the system and usually interpreted as

the average characteristic lifetime of contacting asperi-

ties; MARONE 1998; RUINA 1983), a, b and L are the

constitutive parameters, l* and v* are reference values of

the friction coefficient and sliding velocity, respectively

(namely, l* is the steady state value of the friction coef-

ficient when the sliding velocity equals v*) and rn
eff is the

effective normal stress (assumed constant through time in

the present modeling). In Eq. (10) Qa and Qb are apparent

activation energies (we use Qa = Qb = 1 9 105 J/mol

as in CHESTER 1994), R is the universal gas constant,

T is the (absolute) temperature produced by frictional heat

and T* is a (absolute) reference temperature value. T is

computed as follows (MCKENZIE and BRUNE 1972;

KATO 2001; BIZZARRI and CRUPI 2013):

T tð Þ ¼ T0 þ
1

2 C
ffiffiffiffiffiffiffi

p v
p

Z

s t0ð Þ v t0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t � t0
p dt0 ð11Þ

in which T0 is the (absolute) initial temperature, C is

the heat capacity of the bulk composite for unit vol-

ume [we use C = 3 9 106 J/(m3 K)], v is the thermal

diffusivity (we use v = 1 9 10-6 m2/s) and t is time.

To perform a more comprehensive comparison of

the various governing models that can be used to

describe the traction evolution, we also consider a

modification of the canonical rate-dependent and

state-dependent friction laws, where the steady state

friction (defined as the friction when the state vari-

able is constant through time, i.e., when d
dt

W ¼ 0)

becomes independent on the sliding velocity at high

speeds. Namely, for v greater than a threshold value

vT the Ruina-Dieterich model (10) becomes:

s ¼ l� þ a ln mT

m�

� �

þ b ln wm�
L

� �h i

reff
n

d
dt

w ¼ � wm
L

ln wmT

L

� �

8

<

:

ð12Þ

This modification, basically due to WEEKS (1993),

comes from the laboratory inferences of SCHOLZ and

ENGELDER (1976) and DIETERICH (1978).

Finally, we consider a modification of the equa-

tion of motion (7), where the so-called radiation

damping term (RDT) is introduced (XU and KNOPOFF

1994; BEELER 2001, 2006; BEELER et al. 2002; CRUPI

and BIZZARRI 2013),

m€u ¼ k uload � uð Þ � s� cv ð13Þ

where

c � G

2 vS

ð14Þ

with G being the rigidity of the elastic medium and vS

the S wave velocity away from the fault plane.

Physically, the radiation damping approximation

(RICE 1993) mimics the energy lost due to seismic

wave propagation, which is inherently present con-

tinuum fault models.
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