Appendix B Definition of the misfit function

In order to quantify in a rigorous way the differences existing between the solutions obtained by using the boundary integral method (BIE) and the finite difference (FD) approach, we have introduced in the x_1-t plane the misfit function $m(x_i, t_n)$, defined as

$$m(x_i, t_n) = \frac{\left| u^{\text{(BIE)}}(x_i, t_n) - \widetilde{u}^{\text{(FD)}}(x_i, t_n) \right|}{\left| u^{\text{(BIE)}}(x_i, t_n) + \widetilde{u}^{\text{(FD)}}(x_i, t_n) \right|}$$
(B.1)

In (B.1) $u^{(\text{BIE})}$ denotes the slip obtained with the BIE method, while $\tilde{u}^{(\text{FD})}$ is the value of the slip arising from the FD approach. While the solutions of the dynamic problem are defined in the same position along the x_1 coordinate, along the *t* coordinate they are defined in different points, because $t_n = (n-1)$ Appendix B

Dt and $Dt^{(\text{BIE})} \neq Dt^{(\text{FD})}$. We have therefore resampled the values of the array $u^{(\text{FD})}(x_i, t_n^{(\text{FD})})$ into the array $\tilde{u}^{(\text{FD})}(x_i, t_n^{(\text{BIE})})$, by means of a linear interpolation in time. In the (B.1), used also by Nostro et al. (1999), the misfit *m* is in the range [0,1]: in this way we magnify the numerical difference between the two solutions.