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Appendix C 
Convergence and stability conditions for 2 – D 

fault models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In this Appendix we briefly summarize the convergence and stability 

conditions that have to be satisfied in order to correctly resolve the dynamic 

traction evolution and the slip velocity behavior within the cohesive zone 

during the propagation of a dynamic rupture obeying to rate− and 

state−dependent friction.  

 In numerical analysis the term “convergence“ is essentially used to 

quantify how the solution of a problem is good. Such an evaluation is composed 

by two subsequent steps: first, one have to quantify the consistence (i. e. how 

the discretized equations well represent the (physical) problem to be solved); 

second, one have to check the stability (i. e. if the numerical, approximated 

solution is unique, non divergent and how it is close to the exact one, in 

particular as the grid is refined or remeshed). The first step leads to the 

continuum approximation problem, while the second one leads to a 

comparative analysis. It is well–know that analytical solution of the fully 
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dynamic, spontaneous problem do not exist. Therefore the comparison may be 

done using different numerical methods (Bizzarri et al., 2001), different fault 

boundary conditions (Andrews, 1999) or comparing the solution obtained with 

different grid sampling (see the Section Convergence analysis in the present 

work). The latter approach represent also an useful tool to evaluate the 

behavior of the numerical noise and the changes in the truncation errors. 

 

 

 

C.1. BIE with slip – weakening law 

 

 In order to obtain physically acceptable solutions by using the BIE method, 

several conditions have to be satisfied to determine a correct discretization of 

the dynamic problem. We remind that equation (2.4) is valid under the 

assumption that ∆x ≥ vP ∆t. This condition is typical of all the boundary 

integral equation methods. According to Andrews ( 1985 ) linear analysis 

considerations yields  

 

 

 

or for an in − plane crack, examined in this study: 

 

 

 

where a is the square root of the vP / vS ration (a2 ≡ vP / vS), S is the strength 

parameter previously defined, and lc is the critical half length ( whose 

expression is derived in Appendix D ).  

 Moreover, in order to resolve the cohesive zone, that is to verify that the 

discretization guarantees a sufficient number of points in the breakdown zone, 

it is required that ∆x < d0. 

 We emphasize that these conditions are quite important to verify the 

dynamic solutions. In particular, the last condition is very important to 

properly take into account the adopted constitutive law. Different simulations 
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have shown that a very suitable choice is d0 ≅ 6 ÷ 7 ∆x. It is important also to 

point out the previous conditions are simultaneously satisfied only when         

τu − τf  ≥ µ vP / vS . 

 

 

 

 

C.2. FD with slip – weakening law 

 
 For the slip – weakening constitutive law there is not a definition of critical 

stiffness kcr as in the rate – and state – dependent friction laws framework        

( see next Section ). The first conditions that has to be satisfied is the correct 

resolution of the cohesive zone 

 

(C.2.1) 

   

 

 The second requirement is that the spatial and time steps are coupled by 

the general condition ( Andrews, 1985; Fukuyama and Madariaga, 1998; 

Bizzarri et al., 2001, among many different others ) 

 

∆x ≥ vP ∆t,                                                    (C.2.2)  

 

which states that no coupling exists between first neighbors. 

 

 

 

C.3. FD with rate – and state – dependent friction laws 

 

 The first condition that has to be satisfied is a requirement introduced by 

Rice ( 1993 ) to demonstrate that artificial numerical complexity can appear if 

the medium is not correctly discretized as a continuum; it depends on the fault 
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geometry and on the boundary conditions. In full of generality it can be 

expressed as kdiag >> kcr, where kdiag is the diagonal term of stiffness matrix and 

kcr is the critical stiffness. The requirement kdiag >> kcr corresponds to impose 

that locally each single element of the discretized fault is conditionally stable 

(Scholz, 1990). This avoids that a single point may fail independently of the 

neighbors (artificial complexity and numerical noise) and guarantees that the 

discrete medium can be considered as a continuum. The local stiffness is 

expressed as kdiag = 1/C, where C is the local compliance ( Andrews, 1985; 

Bizzarri et al., 2001 ). C represents the proportionality constant between 

instantaneous traction and dynamic slip and in our 2 – D FD fault model is     

C = 3½ vSρ / (8wCFL∆t), where wCFL is the Courant – Friedrichs – Levy ( CFL ) 

ratio, that relates ∆x to ∆t (wCFL = vS ∆t/ ∆x; see Fukuyiama and Madariaga, 

1998; Bizzarri et al., 2001 ). The critical stiffness can be expressed as (b − a) 

σn
eff /L ( Ranjith and Rice, 1999 ), where the constitutive parameters a, b, σn

eff 

and L have been assigned. When kdiag =  kcr, we have the critical grid size: 

  

(C.3.1) 

 

The Rice’s condition can be therefore expressed as: 

 

∆t << ∆t*      or, alternatively, as      ∆x << ∆x*                    (C.3.2)  

 

  For our purposes we have to verify also that the numerical integration is 

able to correctly resolve time scales typical of the dynamic evolution of the state 

variable. Following Ohnaka and Yamashita ( 1989 ) and Cocco and Bizzarri ( 

2002 ), we define here the equivalent breakdown zone duration ( or time ) as 

Tb
eq and the equivalent cohesive zone size as Xb

eq. We remind here that during 

the breakdown time duration and over the cohesive zone distance the friction 

decreases from the maximum yield value to the kinetic level and, according to 

our interpretation, such a dynamic behavior is controlled by the state variable 

evolution. Therefore, the requirement of resolution of this characteristic time 

duration and spatial scale consists to impose the following  

conditions: 
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(C.3.3a) 

 

or, in a different way: 

         (C.3.3b)  

 

 

where vcrack is the crack speed propagation and <v>Tb
eq is the average slip 

velocity calculated within the equivalent breakdown zone time ( see Bizzarri et 

al., 2001 for further details ).  

 Finally, the spatial and time steps are coupled by the general condition       

( Andrews, 1985; Fukuyama and Madariaga, 1998; Bizzarri et al., 2001, among 

many different others ) 

 

∆x ≥ vP ∆t,                                                    (C.3.4)  

 

which states that no coupling exists between first neighbors. This condition is 

common to Boundary Integral Equation ( BIE ) methods and to Finite 

Difference ( FD ) approaches. 

 In practice, in our simulation we adopt the following procedure. First, we 

choose the spatial discretization in order to satisfy the Rice’s condition 

concerning the validity of the continuum approximation: ∆x << 8 vS
2ρL /3½ (b − 

a)σn
eff. Thus, we choose the spatial time step in order to resolve the cohesive 

zone 

 

∆t << d0
eq / <v>Tb

eq ≅ Lln(v0/vinit) / <v>Tb
eq 

 

and to satisfy the first neighbors decoupling condition ( ∆t ≤ vP ∆x ). Therefore, 

we assign ∆x and ∆t ( consequently, we fix wCFL ) in a way that all the three 

convergence and stability disequations are satisfied. However, we emphasize 

that fulfilling these set of relations does not specify how much ∆x has to be 

smaller than 8vS
2ρL /3½ (b − a)σn

eff or, analogously, how much ∆t has to be 

smaller than d0
eq / <v>Tb

eq. It has been shown in Bizzarri and Cocco ( 2003 ), 
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their Figures 4 and 5, that even if all three conditions are correctly satisfied the 

behavior of the solutions is quite different if we further refine our discretization 

or if we change the CFL ratio. The only way to choose the best discretization is 

to check the time histories, phase diagrams and slip–weakening curves for 

different discretization cases, like in Figures 4 and 5 of Bizzarri and Cocco        

( 2003 ). Then we chose the first smallest values of ∆x and ∆t below which all 

curves become independent on the adopted numerical discretization. A further 

analysis may be necessary to tune the value of the CFL ratio. 
  

 


