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 Understanding the physics governing the seismogenic systems is of 

pivotal importance not only in the general contest of the Earth Sciences, but 

also in the framework of hazard assessment and risk mitigation scenarios. 

While statistical models accept that several aspects of the phenomenon under 

study are out of range and they are replaced by random processes whose 

behavior is described in probability terms, physical models focus on the 

understanding and the prediction of all the details of the considered process. 

In the recent years it has become clear that many competing chemical and 

physical mechanisms can take place during faulting (e.g., Bizzarri, 2010). On 

the other hand it is also evident that a large number of theoretical models for 

fault have been proposed, as discussed in details in Bizzarri (2011). 

 The study of the fault mechanics nowadays relies on the combined 

efforts from laboratory experiments, geological and field observations, 

numerical experiments and theoretical models. All these approaches have 

specific limitations and advantages, so that they are somehow complemented. 

 The main purpose of the present book is to careful review all the most 

prominent aspects of the above–mentioned lines of research, in order to give 

to the readers a comprehensive picture of the state of the art. Of course, all 

the research fields are in continuous and in some cases fast development; this 

is one of the most exciting aspects of the earthquake physics. 
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 In chapter 2 Festa and Zollo present some methods and strategies to 

retrieve the earthquake rupture slip history on the fault plane from the 

inversion of observations recorded at the Earth surface. After the definition of 

the representation theorem they discuss the influence of the Green’s functions 

and the source time function on the seismic/geodetic observations. To 

numerically solve the forward problem, they then describe the effect of the 

uniform and non–uniform discretizations on the computed displacement. 

 Robinson in chapter 3 reviews the main results pertaining to supershear 

earthquakes, i.e., ruptures which develop with a velocity greater than the S 

wave speed. Early theoretical work suggested that supershear ruptures are 

possible but unlikely to occur in the natural environment. This view was 

essentially unchanged until the beginning of the 21
st

 Century, when 

observations of several earthquakes suggest that supershear earthquakes 

could occur. This observation led to several carefully constructed lab 

experiments that aimed to produce supershear ruptures similar to those 

observed by seismologists. The majority of seismologists now accept that 

supershear earthquakes can and do occur, and now plenty of studies try to 

understand the circumstances under which these earthquakes occur and the 

effects that they may produce. 

 Numerical models of dynamic fault rupture provide a convenient 

framework to investigate the physical processes involved in the fault rupture 

during earthquake and the corresponding ground motion. This is the main 

focus of the chapter 4, where Dalguer reviews the state of the art of the 

present–days numerical techniques to solve the fundamental elastodynamic 

equation for fault, which is the counterpart for fault systems of the second 

law of dynamics in classical mechanical system. In particular, two 

approaches of fault representation are formulated, the first is the so–called 

traction–at–split–node (TSN) scheme, which explicitly incorporates the fault 

discontinuity at velocity (and/or displacement) nodes, and the second is the 

inelastic–zone scheme (i.e., the so–called stress–glut (SG) method), which 

approximates the fault–jump conditions through inelastic increments to the 

stress components. 

 In chapter 5 Madariaga reviews the most important results obtained in 

fracture mechanics and seismology for antiplane cracks (i.e., mode III) in the 

first years of earthquake dynamics. First, he studies a model of a rupture front 

that moves at constant speed with the load following it, as in rupture pulses. 

Then he considers a model of a rupture front that appears spontaneously and 

propagates afterwards at variable speed. Madariaga shows that these two 

types of rupture behave differently as speed increases. Steady propagating 

rupture pulses, like dislocations, can not approach the terminal speed. On the 
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other hand spontaneous ruptures moving at variable speed under time 

independent load increase their speed steadily until they reach the shear wave 

speed. He then discusses the seismic radiation, the generation of high 

frequency waves by seismic ruptures. He also shows that the radiation can 

only occur when rupture speed changes. Cracks moving at constant speed 

simply “pull” their static elastic field behind the rupture front without 

emitting seismic waves. Madariaga obtains a complete solution for radiation 

from an arbitrarily moving crack in 2–D. Finally the chapter introduces the 

friction following the original work by Ida (1972) who studied different slip–

dependent friction models. 

 In Chapter 6 Lapusta and Barbot discuss fault models based on rate– and 

state–dependent friction formulations that are capable of reproducing the 

entire range of fault slip behaviors, fueled by the increasing stream of high–

quality laboratory experiments, observational data, and computational 

resources. A wide range of earthquake complexity can be explained within 

the standard (Dieterich–Ruina) rate– and state–dependent models due to their 

rich stability properties combined with the interactive nature of long–range 

elastic interactions and inherent nonlinearity of frictional response. Some of 

the insights provided include that the longer history of the fault the shear 

stress becomes higher at an asperity as well substantially reducing its effect 

on dynamic rupture. Another insight is that seismic and aseismic slip can 

occur in the same region of the fault at different times consequently resulting 

i) In a model of small repeating earthquakes a large fraction of slip in the 

earthquake producing patches can be aseismic, resulting in the observed 

scaling of seismic moment with the recurrence time; ii) When a rate–and–

state nucleation site is perturbed by a favorable stress change, of the kind that 

should speed up the upcoming earthquake, the seismic event can be delayed 

instead due to the resulting aseismic transient slip. With the rate–and–state 

modeling of the Parkfield sequence of earthquakes they demonstrate the 

possibility of creating comprehensive physical models of fault zones that 

integrate geodetic and seismological observations for all stages of the 

earthquake source cycle. 

 In chapter 7 Noda illuminates about the fact that multiple lines of 

evidences discovered over the last couple of decades that the coseismic 

weakening of a fault which is much more dramatic than what is predicted 

from the conventional friction laws verified at low slip rates. Such a 

weakening undoubtedly affects the dynamic rupture propagation in various 

ways. For example, cosesimic weakening considered in a framework of rate–

weakening has been shown to play an important role in determining the 

manner of dynamic rupture propagation (crack–like versus pulse–like 

rupture) given a pre–stress level. Moreover in the sequence of earthquakes, 
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the pre–stress is affected by the coseismic frictional resistance. In this chapter 

some of the recent studies on the significance of high velocity friction are 

critically reviewed. 

 

References 
 

1. Bizzarri, A. (2010), Toward the formulation of a realistic fault governing law in 

dynamic models of earthquake ruptures, in Dynamic Modelling, edited by A. V. 

Brito, pp. 167–188, ISBN: 978–953–7619–68–8. InTech (Available at 

http://www.intechopen.com/books/dynamic-modelling/toward-the-formulation-of- 

a-realistic-fault-governing-law-in-dynamic-models-of-earthquake-ruptures). 
2. Bizzarri, A. (2011), On the deterministic description of earthquakes, Rev. 

Geophys., 49, RG3002, doi: 10.1029/2011RG000356.     

3. Ida, Y. (1972), Cohesive force across the tip of a longitudinal shear crack and 

Griffith’s specific surface energy, J. Geophys. Res., 77, 3796–3805, doi: 

10.1029/JB077i020p03796. 

  

 

http://www.intechopen.com/books/dynamic-modelling


Research Signpost 
37/661 (2), Fort P.O. 

Trivandrum-695 023  

Kerala, India 

 
 

 

 

 
The Mechanics of Faulting: From Laboratory to Real Earthquakes, 2012: 5-62                                   

ISBN: 978-81-308-0502-3 Editors: Andrea Bizzarri and Harsha S. Bhat  

 

2. From data to source parameters:  

Kinematic modeling 
 

Gaetano Festa and Aldo Zollo 

Dipartimento di Scienze Fisiche, Università di Napoli, “Federico II”, Naples, Italy 
 

 

 

 
Abstract. In this chapter we present methods and strategies to 

retrieve the earthquake rupture slip history on the fault plane from 

the inversion of observations recorded at the Earth surface. After 

the definition of the representation theorem which relates the 

space-time evolution of the slip to the displacement at the surface, 

we discuss the influnce of the Green’s functions and the source 

time function on the seismic/geodetic observations. To numerically 

solve the forward problem, we then describe the effect of the 

uniform and non-uniform discretizations on the computed 

displacement.  

      As concerns the inverse problem, we investigate the slip 

parametrization and its crucial role in retrieving the slip history on 

the fault plane. We discuss the possible choices for the 

parametrization, the interpolation strategies and the objective 

function to be minimized for the retrieval of the best-fit solution. 

We compare linearized versus global non-linear approaches for 

both solution search and uncertainty assessment. From careful 

inspection of data, we finally present some recent techniques based 

on time-reversal, back-projection and     beamforming which are able  
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to map selected portions of data into the source region to retrieve overall rupture 

characteristics, such as the fault patches which emitted the largest amount of radiation 

and the average rupture velocity.  

 We then discuss the seismic, geodetic, geological and tsunami observations and 

their potentiality in constraining the kinematic features of the rupture. Finally, two 

examples (the Tottori and Loma Prieta earthquakes) are presented.      

 

1. Introduction 
 

 Earthquake ruptures are generated by the relative motion (slip or 

dislocation) of crustal blocks, which occurs along fault surfaces embedded in 

the shallower Earth fragile layer. The faulting process involves a complex 

energy balance between the dissipation occurring along the fault and in the 

surrounding volume, the elastodynamic flux near the rupture tip and the 

radiated field, which is represented by the seismic waves propagating away 

from the source. Seismic waves carry on the information about the source 

processes and their recording at or nearby the Earth surface is used by 

seismologists to infer the rupture properties in terms of its space-time 

evolution. Geological observations indicate that the thickness of a fault is 

much smaller (tens to few hundreds of meters) than the wavelengths at which 

we investigate the rupture processes, justifying the assumption of a fault zone 

as an infinitely thin surface where the different dissipation mechanisms 

occurring during the earthquake rupture are homogenized. 

 The objective of this chapter is to describe methods and strategies to 

reconstruct the history of the rupture process on the fault plane from 

observations at the Earth surface. With this aim, we renounce to the description 

of the initial stress state to which the fault is subject before the dynamic rupture 

as well as to the characterization of the energy balance during the rupture 

propagation. We limit here the analysis to the effects of such an energy balance 

on the relative motion of the two sides of the fault itself. The space-time 

distribution of the slip is here referred to as the kinematic description of the 

rupture. Although it provides a partial view of the rupture process as compared 

to a dynamic model, kinematic descriptions of seismic ruptures give important 

insights into the physics of the rupture process and provide reliable estimations 

of the ground motion and its space-time variability.   

 Along this chapter, we discuss the methodologies to reconstruct the 

kinematic properties of the seismic rupture from the observations at the Earth 

surface. In the first section, we present the forward modeling, that is the 

computation of synthetic seismograms from a source kinematic model. After 

introducing the representation theorem, which relates the slip to the 

displacement measured at the Earth surface, we discuss the role of the 
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Green’s functions and the source time function on the final displacement. 

Finally we describe the numerical solution of the representation integral and 

the role of the discretization in providing reliable waveforms. In the 

following section, we introduce the inverse problem, through the slip 

parametrization, the choice of the objective function, the inversion strategies 

with linearized versus non-linear approaches, the assessment of the 

uncertainties on the slip function. We finally illustrate some recent techniques 

based on the back-propagation of seismic waves into the source region. In the 

section 3, we present the seismic, geodetic, geological and tsunami 

observations and their potentiality in constraining the kinematic features of 

the rupture. Finally two examples of kinematic inversion are described in 

detail: the 2000, Tottori, Japan earthquake and the 1989, Loma Prieta, 

California earthquake.   

 

2. Forward modeling 
 

2.1.  Representation of seismic sources 
 

 Let us consider a volume V internal to the Earth, bounded by the surface 

S=∂V inside which the linear elastodynamics hold, except for the fault 

surface  along which slip occurs. We assume homogeneous boundary 

conditions on S, which are, for example, representative of the traction-free 

Earth surface. We indicate with and the two lips of the fault which 

move away from each other, and we define the normal n to the fault as the 

normal to  entering  (Figure 1). Since the amount of slip is small 

(centimeters to meters) as compared to the size of the process zone, which is 

representative of the space scale at which both the dissipation and radiation 

occur (tens to few hundreds of meters), we can assume the small-            

strain approximation to hold and refer all quantities on  the faults         to   a reference 

 

 
 
Figure 1. A seismic fault is here represented as a surface inside a volume V along 

which slip occurs. We separate the two lips of the fault, to interpret the displacement 

discontinuity across such a surface. 
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configuration defined at time zero, when the two lips of the fault are at their 

original position. Due to the slippage, the kinematic quantities (the 

displacement and its time derivatives) are discontinuous across the surface . 

We define the slip function as the difference of the Lagrangian displacement 

u across the two sides of the fault surface 2 1
u u u . On the other hand, for 

spontaneous ruptures the traction must be continuous across . From Betti’s 

theorem, the displacement seismogram observed at a location x inside the 

Earth or at its surface can be computed as the convolution of the slip function 

with the elastic response of the propagation medium [1]:  
 

( , ) ( , ) ( , ; )mk
m i ijkl j

l

G
u t d u c n t dx x                      (1) 

 

In the above formula, referred to as the representation integral, c is the elastic 

coefficients tensor and is symmetric with respect to the exchange of all the 

indices. It has 21 independent components for a general elastic solid but can 

be reduced to only two coefficients for an isotropic medium: 

( )ijkl ij kl ik jl il jkc , where  and  are denoted as the Lamé 

constants. G is the Green’s function tensor representing the impulse response 

of the medium. Specifically ( , ; )ijG tx
 

is the i-th component of the 

displacement recorded at the position x and at the time t, generated by an 

unidirectional impulse force acting in the j-th direction at 
 
at time zero.  

 Using the property of reciprocity of the Green’s functions, we can 

exchange the source and receiver positions yielding 

( , ; ) ( , ; )mk kmG t G tx x . The quantity  

 

( , ; ) ( , ; )Gkm
ijkl j im

l

G
c t n T tx x                                                  (2) 

 

is the stress on the fault plane generated by an impulse force at x, contracted 

by the normal, that is the Green’s traction G

mT on the fault plane generated by 

an impulse force at x directed along the m-th direction. The representation 

theorem hence simplifies to  
 

( , ) ( )* ( ; )G

m i imu t u T dx x          (3) 

 

where we suppressed the time dependence and replaced the time integral by 

the convolution operator, denoted here by the symbol *. For a dominant shear 
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faulting mechanism, which is representative of the seismic rupture, we 

assume that the rupture may only occur in mode II (in-plane: slip parallel to 

the rupture direction) or mode III (anti-plane: on-fault slip orthogonal to the 

rupture direction) [1]. The component of the slip normal to the fault is always 

zero, reducing to six the number of non zero components of the traction 

needed for the computation of the displacement.  

 For a linear system, it is not surprising that the displacement associated 

to the waves arriving at the Earth surface can be obtained by propagating the 

boundary conditions (here the source term) via a convolution. By duality, if 

the boundary conditions on the fault are kinematically described by the 

displacement, the displacement discontinuity or one of their time derivatives, 

the propagator involves the space derivatives of the Green’s functions, that 

are the Green’s tractions. Neumann boundary conditions, defining the 

evolution of the traction along the boundary, are instead propagated away 

from the fault by the Green’s functions.  

 Formula (3) can be manipulated to represent an extended seismic source 

as a superposition of double-couple point sources, as it is common in 

seismology (body force equivalence). It is worth to note that such a body 

force representation is not unique on the fault plane, although the slip 

function is unique [1]. For instance, the radiated field generated by a double-

couple source in the volume V is equivalent to a superposition of a point 

source plus a single couple. To write the representation integral (1) in terms 

of a distribution of double-couple sources, we start to note that only the 

components of c with i j contribute to the Green’s tractions, since the slip 

vector lies on the fault plane and the normal is orthogonal to it. For an 

isotropic medium the observed displacement is indeed independent of the 

Lamé constant , leading to: 
 

( , ) ( , )
mjmi

m i j

j i

GG
u t d u n dx                                   (4) 

 

The first contribution in the Green’s function derivatives is the space 

derivative with respect to the normal direction. Its finite difference 

approximation can be written as:  
 

2 1

mi mi mi mi
j

j n n

G G G G
n                                                                (5) 

 

 The superscripts are referred to as the quantities computed on the two 

sides of the fault, while n is the distance along the normal direction. The 
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discrete formula (5) represents the superposition of the displacements 

provided by a couple of opposite forces acting on the two sides of the fault, in 

the direction of the slip (red couple in Figure 2). As 0n , the distance 

between the forces composing the couple shrinks, giving rise to a moment on 

the fault, with in-plane forces and arm along the normal direction. Such a 

moment, which would tend to locally rotate the fault, is balanced by a second 

couple acting on a plane perpendicular to the fault. From inspection of the 

second term in the Green function derivatives, this couple is formed by two 

forces directed along the fault normal with the arm along the slip direction 

(green couple in Figure 2). Indicating with Dmi the m-th component of the 

displacement generated by such a double couple, the representation theorem 

can be simplified to: 
 

( , ) ( )* ( ; )m i miu t u D dx x                                                                (6) 

 

Following (6), the computation of the Green function’s can be replaced by 

the displacement generated by a double couple of forces, whose orientation is 

defined by the slip and the fault normal vectors.   

 By properly changing the indices in the summation, formula (4) can be 

also rewritten as: 
 

( , ) ( ) mi
m i j j i

j

G
u t d u n u n dx                                                  (7) 

 

The quantity ( )ij i j j im u n u n has the dimension of a moment per area 

unit and it is denoted as the moment density tensor. It is symmetric by 

definition. For observer distances and signal wavelengths much larger than 

the size of the fault we can assume that the Green’s function derivatives are 

 

 
 
Figure 2. The double couple which can be used as an elementary source for the 

computation of the representation integral. 
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constant and bring those terms outside the surface integral (7). The integral of 

0ijm d M A u

 

has therefore the dimension of a moment and it is 

called the seismic moment. This quantity is an important overall measure of 

the earthquake size. In the far-field approximation, it is related to the 

amplitude of the displacement spectrum in the limit of zero frequency [1]. 

 All the representation integrals (1-7) can be also written in the frequency 

domain, where the convolution reduces to a multiplication of the single 

Fourier transforms. For example formula (3) writes as a scalar product of the 

slip times the traction [2]: 
 

( , ) ( , ) ( , ; )G

m mu dx u T x                        (8) 

 

The advantage of solving the representation integral in the frequency domain 

arises from the fact that the displacement can be computed frequency by 

frequency, thus making the process of inversion of band-pass filtered data 

more straightforward.  

 

2.2.  Green’s functions 
 

 From the representation theorem, the displacement recorded at the Earth 

surface can be expressed as the convolution of the local source time function 

by the Green’s tractions. Because of such a linear coupling, the determination 

of the source parameters from the seismograms requires an accurate modeling 

of the propagation effects down to the wavelengths at which we can resolve 

the rupture history. A complete description of the propagation medium 

transfer function requires the knowledge of the spatial distribution of the 

density, the P and S wave velocities and the anelastic attenuation parameters. 

Smooth wave velocity and attenuation models are generally derived from the 

tomographic inversions of first arrival-times and spectral amplitudes, mainly 

inferred from the analysis of local earthquake records. When using the ray 

theory for modeling arrival times and wave amplitudes, the resolution on the 

medium parameters critically depends on the coverage and the criss-crossing 

of rays, which may strongly vary in space and usually degrades at depth. In 

most cases, the best available model of the propagation medium is one-

dimensional, which can satisfactorily represent the low frequency 

propagation of seismic waves up to the surface. 1D models, however, may be 

inadequate to describe the seismic wavefield in the case of dominant 3D 

effects perturbing the amplitude and the phase of the seismic waves, such as 

the presence of basins, strong lateral heterogeneities or steep topography [3]. 
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In several active and well monitored areas, 3D models are available with a 

space resolution varying from few hundreds of meters to few kilometers, 

allowing for a more reliable computation of the Green’s functions. It is worth 

to note that the inaccuracy in modeling the propagation effects introduces 

uncertainties in the rupture description and in the estimation of the source 

parameters. Such an uncertainty is difficult to be assessed since the true 

propagation model is unknown and the errors on the velocity model and on 

the location and morphology of the interfaces non linearly affect the Green’s 

tractions computation. Several studies have shown that source models 

derived from the waveform inversion are strongly sensitive to the wave 

propagation [4,5,6]. Even when inverting synthetic waveforms the data misfit 

may rapidly degrade, when replacing the 3D true model with its best 1D 

approximation, and the estimations of the relative slip amplitudes, the rupture 

velocity and the rise time, e.g., the time required by the slip to reach its final 

value, are strongly sensitive to the considered Earth model. This effect 

becomes more pronounced at shorter wavelengths [6]. The poor knowledge 

of the propagation effects hence prevents from a complete match between 

real and simulated waveforms even if we arbitrarily increase the number of 

degrees of freedom of the kinematic rupture model.   

 Several techniques are widely used for the computation of the Green’s 

tractions in axisymmetric media, providing the visco-elastic dynamic response 

of a 1D medium. For horizontally layered media, the reflectivity method [7,8] 

solves the wave equation in the frequency-wavenumber domain by propagator 

matrix techniques, which account for the continuity of displacements and 

tractions at the model interfaces. Reflectivity can be efficiently coupled with 

the discrete wavenumber decomposition of the Green’s functions [9]. Such an 

approach was implemented in the code AXITRA (http://www-lgit.obs.ujf-

grenoble.fr/~coutant/axitra.tar.gz) [10] and it was recently improved by 

allowing to locate both source and receiver at the same depth [11]. With minor 

variations, the same ideas were also implemented in the frequency-

wavenumber integration code (FK) of Zhu and Rivera [12]. The discrete 

wavenumber finite element integration [13] becomes computationally 

competitive and possibly faster than the above methods when the velocity 

varies smoothly with depth. To accurately describe a velocity gradient, in fact, 

reflectivity techniques have to decompose the model into very thin layers, with 

thickness smaller than the wavelengths of interest. The finite element 

integration method is efficiently implemented for the evaluation of strong 

motion data from a finite fault in the COMPSYN code [14].  

 Several full 3D computational methods and codes are available for the 

evaluation of the Green’s tractions in complex geological structures such as 

the finite-differences method [15,16], the spectral element methods [17,18] 
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and the discrete Galerkin methods [19]. Many of these softwares are 

available at the EU-SPICE project library (http://www.spice-rtn.org/library/ 

software.1.html). As compared to 1D solutions, the computation of a 3D 

seismic wavefield still remains expensive and in many cases prohibitive for 

building up a Green’s functions archive, usable during the inversion 

procedure. The computation can be improved using the reciprocity of Green’s 

functions and, preferably, solving the representation integral in the form (3). 

If NS is the number of sources and NR the number of receivers, the direct 

computation of Green’s tractions requires NS runs for a fixed focal mechanism 

and 2NS runs, when the slip direction is not assumed a-priori. Using the 

reciprocity we can directly evaluate the tractions on the fault as the 

superposition of the signals provided by three orthogonal impulse sources 

located at each receiver, with 3NR runs. Since the number of receivers is 

generally small (few to several tens of stations) as compared to the number of 

sources (several hundreds to many thousands) the reciprocity is very often 

preferred to reduce the computational cost of the Green’s tractions evaluation.  

 Frequency-wavenumber methods, although restricted to 1D wave 

propagation models, are also suitable for the computation of the static field, 

which can be used to model GPS and SAR data. The capability of 3D 

techniques in representing the very-low frequency spectrum down to the 

static field depends instead on the size of the numerical bulk and on the 

ability of the absorbing boundary conditions/layers to not pollute the internal 

solution in this frequency band.  

 Teleseismic Green’s functions can be obtained using full 3D propagation 

methods in a realistic Earth model, which includes the crust, the oceans and 

the topography. Spectral element codes, such as SPECFEM3D-Globe 

(http://www.geodynamics.org/cig/software/specfem3d-globe) are available 

and widely used for this goal. A complete wavefield modeling is generally 

required for the interpretation of surface waves, which are sensitive to the 

shallow structure of the Earth and its lateral variations, and of body waves at 

regional distances, because the ray paths inside the crust and the upper mantle 

can be complex. When dealing with very long periods, the Green’s functions 

can be approximated by normal modes summation. On the other hand, direct 

body waves recorded between 30° and 90° travel in the almost homogeneous 

lower mantle and the ray theory approximation is generally adequate to 

describe the P and SH amplitudes. The most energetic arrivals are related to 

the direct waves and the first reflections from the free-surface (pP and sP for 

P waves and pS and sS for SH waves) [20].   

 Under the hypothesis of linear wave propagation, the Green’s functions 

may also be replaced by the records of small earthquakes occurring on the 

same fault with the same focal mechanism and the same stress drop, 
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commonly referred to as Empirical Green’s functions (EGFs) [21]. For a 

large earthquake, a database of EGFs could be represented by the records of 

the aftershocks following the main event. The EGF behaves as a localized 

moment source which can replace the numerical Green’s function in the 

integral (6), appropriately normalized by the seismic moment [22,23]. This 

holds for frequencies smaller than the corner frequency of the small event, 

beyond which the details of the rupture process of the small event become 

visible. Since the EGFs describe in an accurate way the propagation effects 

even at high frequencies, their use may broaden in principle the investigation 

band of the seismic source. As an example, we show in Figure 3 the comparison 

between observed data and synthetics obtained by a kinematic inversion of 

the 2008, Japan, Tokachi-Oki earthquake (M 8.1) in which the propagation 

has been modeled by the EGFs. In such a case the goodness of the fit is high 

for most of the stations up to 1 Hz.  

However, several drawbacks limit the applicability of the EGFs and a 

special care needs to be taken when they are used for the simulation of strong 

motion records. Generally, accelerometric networks do not record the EGFs 

with the same accuracy of the mainshock, but the ambient noise very often 

pollutes the low-frequency band of the small event because of instrumental 

sensitivity and dynamic range. To improve the quality of the aftershock 

records, strong motion stations should be complemented with short or 

intermediate period sensors. A particular care should be devoted to the  

determination of the focal mechanism and the earthquake location, that are 

not an easy task for small earthquakes. Finally, EGFs may not sample 

uniformly the fault plane. Aftershocks are likely to occur on fault regions that 

have not slept during the mainshock rupture. In fault areas where the largest 

slip occurred, the stress level mostly dropped down to the dynamic value 

during the main rupture and the probability that the same patch slips again 

during an aftershock rupture is low. As a consequence, the number of 

available EGFs is smaller than what required by the synthetic simulation and 

their location on the fault plane may not be optimal for retrieving the details 

of the main rupture. Hence, specific interpolation algorithms are needed to 

resample the EGFs on the fault plane and to compute the representation 

integral up to the frequencies of interest [24,25].   

 

2.3.  Source time functions 
 

 The representation integral (1-7) relates the slip function on the fault to 

the displacement observed at the Earth surface. The slip u may be an 

arbitrary function of position and time, that has to satisfy only three 

conditions. The slip modulus must vanish at time zero (no dislocation occurs 
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Figure 3. Comparison of observed ground velocities (gray traces) and synthetics 

(black traces) for the transverse component of the ground velocities at four stations 

which recorded the 2008, Japan, Tokachi-Oki earthquake (M 8.1). Synthetics are 

generated from a slip model obtained by a kinematic inversion of the strong motion 

data up to 1Hz coupled with Empirical Green’s functions. The figure is extracted from 

[23], Copyright © 2011 by Seismological Society of America.  

 

before the rupture process starts) ( , 0) 0u t , the modulus of the slip rate 

tends to zero as the time grows (the rupture cannot continue indefinitely) 

( , ) 0u t , and the time at which each point on the fault starts to slip 

must satisfy a causality criterion, e.g. the rupture is not allowed to propagate 

http://www.seismosoc.org/
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faster than the largest wave velocity in the medium (P wave speed for in-

plane ruptures and S wave speed for anti-plane ruptures). However, a first 

limitation in the estimation of the slip function comes from the impossibility 

to retrieve its characteristics at arbitrary small scales due to the limited 

number of observations and to the uncertainties in the data, source and 

propagation models. As a further simplification, we assume that the slip is 

factorized into separated contributions:  
 

( , ) ( ) ( ( ); ( )) ( )Rt A S t Tu r                                                  (9) 

 

The function A represents the final amplitude of the slip: the product of A by 

the shear modulus, integrated on the fault plane, provides the seismic moment 

of the earthquake. The unit vector indicates the local direction of the slip 

vector, referred to as the rake. Finally, the function S accounts for the finite 

time during which the slip reaches its final value (the rise time ) and 

describes the slip evolution with time at a specific point of the fault. S is 

delayed by the rupture time ( )RT , namely the time needed by a rupture 

nucleating at the hypocenter to reach the point . Since we separated the 

contribution of the slip amplitude A, the function S is normalized so that its 

final value is the unity. 

 The time derivative of S, the slip velocity time function, is generally 

known as the source time function (STF) [1]. 

 The representation (9) can be equivalently written in the frequency 

domain as:   
 

( )ˆ( , ) ( ) ( , ( )) ( )Ri T
A S eu r      

                  (10) 

 

where the rupture time appears as a phase delay and Ŝ is the Fourier 

transform of the slip time function. In the kinematic approach, the functional 

form of the STF is generally prescribed and assumed to be the same for all 

the points on the fault plane. Such a strong assumption limits the number of 

parameters to be retrieved and helps in stabilizing the slip inversion but it is 

not necessarily consistent with the results issuing from the dynamic 

simulations of seismic ruptures. For instance, when modeling a 

heterogeneous rupture velocity with dynamic simulations, the peak, the 

duration and the shape of the STF becomes strongly sensitive to the 

acceleration and deceleration of the rupture [26].    

 The analysis of seismic data supports the hypothesis that most of the 

earthquake radiation is emitted in a rather short time as compared to the 

rupture duration, suggesting a pulse-like mode for the rupture propagation 
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[27]. As a consequence, the STFs are expected to be significantly different 

from zero in a limited time interval. Several functional forms for the STF 

have been proposed; here we recall the boxcar [28], the triangle [29], the 

exponential [30], the power law [6] and the Yoffe [26,31,32] functions 

among many others. We summarize their analytical expressions in Table 1 

and plot their shape in Figure 4, left panel (for the power law we set the 

exponent p=1). Moreover, in the middle panel of Figure 4, we plot the 

amplitude spectrum of the STFs and in the right panel, its time integral, 

which represents the slip evolution with time. With the exception of the 

exponential function, whose spectrum slowly decreases with the frequency, 

all the STFs show an almost flat spectrum up to a given corner frequency, 

whose reciprocal is proportional to the duration of the STF. At frequencies 

larger than the corner frequency, the spectral decay looks different from one 

STF to another. The holes of the boxcar and triangle STF spectra are related 

to the zeros of the sinus function and are twice more frequent for the boxcar 

as compared to the triangle. The high frequency decay of the power law 

practically reduced to an -2 decay for the exponent value p=1, the same 

followed by the envelope of the triangle spectrum. The Yoffe function, 

finally, describes the slip velocity solution of a steady-state rupture pulse 

[33,34]. Although consistent with the rupture dynamics, the it shows a 

pronounced singularity at its beginning   resulting into a larger high frequency  

 
Table 1. Analytical expressions of several source time functions. The functions are 

normalized such that its integral is one over the duration. H is the Heaviside step 

function, while the indicator function ( , ) ( ) ( )I t H t H t represents a time function 

which is one in the range [0, ] and zero elsewhere. The constant CL(p) depends on p 

and its value is 
5

0
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( )

1
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p
C p

n n p
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Figure 4. Left panel: Several source time functions as a function of time, centered in 

t= . Mid panel: Amplitude spectra of the STFs represented in the left panel. Apart 

from the exponential function, all spectra are flat up to a corner frequency which is 

comparable with the duration of the STF. Right panel: Slip source time functions 

obtained by integration of the STFs.  
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content in the spectrum (its spectrum decays slower with frequency than the 

other spectra). Such a function+ hence produces larger amplitudes in the high 

frequency strong motion, which could be reduced by the convolution with a 

triangle function [32]. 

 Many inversions estimated the average rise time associated with M<7 to 

be of the order of 1 second or smaller, although this value is affected by large 

uncertainties. This time scale is generally smaller than the minimum period at 

which the kinematic rupture model is estimated from the inversion of strong 

motion data. Excluding the exponential function, all the other proposed STFs 

behave as a low-pass filter with the cut-off frequency linearly related to the 

STF duration. The choice of a specific STF is therefore not expected to 

significantly influence the inversion results. Most of the variations may affect 

the wavelengths whose associated frequencies are close to the cut-off 

frequency of the STF. Unfortunately, such a conclusion does not hold for 

strong motion simulations, where we are interested into a correct modeling of 

the high-frequency content and its decay with distance. In such a case the 

choice of the STF may become critical.  

 Some authors have proposed to relax the assumption of a fixed STF and 

to use multiple time windows in the attempt of discretizing a complex STF with 

elementary master pulses. As an example, some authors [35] superimposed a 

series of overlapping triangles to retrieve the shape of the STFs from the 

waveform inversion. Afterwards, the results of the kinematic inversion 

obtained with a single STF were compared to the multiple time window 

method [36]. In the latter case the number of free parameters significantly 

increases allowing for a larger flexibility in reconstructing the complexity of 

the STF. On the other hand, however, the inverse problem tends to become 

strongly ill-posed. As a conclusion, rarely the use of a multi-window 

approach produces better results than an a-priori assumed STF in retrieving 

the seismic moment and the average velocity of earthquake ruptures [37].  

 

2.4.  Numerical solution of the representation integral 
 

 To numerically compute the representation integral for the simulation of 

the displacement at the Earth surface, the fault is discretized in a grid, on 

which the slip function and the Green’s tractions are projected. The space 

step of this grid is related to the minimum wavelength that the seismic data 

are able to resolve. To reduce the spurious oscillations from numerical 

dispersion and to have a correct space reconstruction of all the source 

contributions down to a minimum wavelength , we need a space step which 

is 5-15 times smaller than  [6,38]. This is because the apparent wave speed 

depends on the specific source-receiver configuration and it is significantly 



Gaetano Festa & Aldo Zollo 20 

reduced when the rupture propagates away from the receiver (anti-directivity 

effect).  

 Generally the fault surface is subdivided in small areas (subfaults) inside 

which the source parameters and the Green’s tractions are assumed constant 

and evaluated at the center of the subfault. The representation integral is then 

discretely replaced by a finite summation over the single subfaults:  
 

1

( , ) ( ' , ) ( , ') '
N

G

n n Rn n n

n

t A S t T t t dtu x r T x                                 (11) 

 

The total displacement is hence obtained as summation of the displacements 

provided by the single subfaults, each of them contributing with its own 

moment and its own STF. In the frequency domain, the integral can be solved 

for each frequency through the formula: 
 

1

ˆ( , ) ( , ) ( , )Rn

N
i T G

n n n n

n

A S eu x r T x       (12) 

 

In the formulas (11-12) the subscript n indicates the value referred to the n-th 

subfault and N is the total number of subfaults. Since we assume that the 

kinematic fields and the tractions are constant inside each subfault, they are 

not continuous across contiguous subfaults. Small subfault sizes are hence 

required to make this jump negligible and not perturbing the synthetic 

waveforms. Better interpolations can be realized by making the slip and the 

Green’s tractions (and eventually their derivatives) continuous along the 

fault. A finite-element discretization of the fault, for example, insures the 

continuity by defining the physical quantities at the nodes of the discrete grid 

and by building an interpolation rule to evaluate them everywhere on the 

fault. Such a representation has also the advantage that it can also easily 

handle grids whose size changes along the fault. At fixed frequency, the 

variability of the Green’s tractions is related to the local shear wave velocity, 

while changes in the slip function are related to the rupture velocity, which is 

also dependent on the local S wave speed. As the frequency increases, the 

wavelength decreases: when choosing a constant grid size, the latter is 

associated to the maximum frequency that the data can resolve and to the 

smallest shear velocity value, which is generally attributed to the shallower 

part of the fault. Depending on the fault width and dip, the shear wave 

velocity can significantly vary (up to a factor of two) between the shallow 

and the deep regions of the same fault. In such cases we should use a finer 

mesh in the shallow fault region and a coarser mesh at depth. Eventually this 

gridding scheme needs to be refined as the frequency increases allowing for a 
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faster forward problem computation than taking the grid size fixed with the 

frequency. A finite element discretization can be obtained by a fault 

triangulation [39] or a quadrangulation [6] interpolating scheme. We briefly 

describe the triangulation method in the frequency domain, but the same 

concepts with minor differences can be applied for the quadrangular finite 

element integration. It can also easily extend to the time domain, where a 

local convolution is additionally required. After the definition of a set of 

nodes, whose inter-distance is related to the local shear wave speed, a finite 

element decomposition 
1, E

i i N
E can be obtained through a Delaunay 

triangulation. The representation integral (8) can be then decomposed onto a 

summation over the single triangles: 
 

1

E
G G

i

N

i

i E

d dEu T u T                                                              (13) 

For each triangle Ei, we define the linear mapping ( ) transforming the 

reference right triangle into Ei (see Figure 5: 
 

3

1

( ) ( )a a

a

N         (14) 

 

where 
a

 are the coordinates of the a-th vertex in the physical domain and Na 

the interpolation linear function (shape function) on the reference element: 
 

1 1 2 2 1 3 2( ) 1 ; ( ) ; ( )N N N                    (15) 

 

 
 
Figure 5. Linear mapping between the reference right triangle and the physical triangle. 
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 Each function Na has the property that its value is 1 in the vertex 
a

 and 

zero in the other vertices, linearly decreasing inside the reference element 

[40]. We then move the integral from the physical element Ei onto the 

reference triangle E:   
 

( )

( )

ˆ( ) ( , ( )) ( ) ( , ; )

ˆ( ) ( , ( )) ( ) ( , ; ) ( )

R

i

R

i T

E

i T

E

A e S d

A e S J d

r T x

r T x

                                (16) 

 

( )J the Jacobian of the transformation ( )  
and since this latter is linear,

 
( )J  is constant and twice the area of the physical triangle (the Jacobian is 

the ratio between the areas of the physical and the master triangles). 

 Let us define the function ( ) ˆ( ) ( ) ( , ( )) ( ) ( , ; )Ri T
A e S r T x , 

for the sake of simplicity. We use the same shape functions to linearly 

interpolate the function inside the reference triangle:  

 
3

1

( ) ( )a a

a

N         (17) 

 

With the above approximation, the integral yields:  

  
3

1

( )
( ) ( )

3
i

i
a

aE

Area E
J d                                                              (18) 

 

 Inside each triangle, the integral is the average of the function evaluated 

at the vertices, multiplied by the area of the triangle. Hence, a finite-element 

integration becomes equivalent to a triangular subfault model, in which the 

product of the slip by the Green tractions is averaged over the values that the 

function assumes at the vertices. Finally the integral on each triangle can be 

gathered and assembled to build up an integration rule which is based on the 

nodes instead of the subfsults, as it is standard for finite element methods. We 

can write it into two separated vectors: the point-by-point contribution of the 

slip function (which depends on the specific source model) and the product of 

the Green’s tractions by the areas of the triangles, which are fixed and 

evaluated once at the beginning of the inversion. The displacement can be 

therefore written as the scalar product of these two vectors, allowing to speed 

up the computation. 
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3. Inverse modeling 
 

3.1.  Slip parametrization 
 

 When inverting the near-fault and/or teleseismic data for the retrieval of 

the earthquake source characteristics, we assume that the elastic/anelastic 

properties of the propagation medium and consequently the Green’s tractions 

are known. The inverse problem therefore consists in the determination of the 

slip function. With the representation formula (9), the kinematic evolution of 

the rupture can be reconstructed through the estimation of the final slip, the 

rupture times, the rise time and the slip direction. As discussed above, the 

shape of the STF can be assumed a-priori or estimated, at the cost of 

increasing the number of the unknowns of the inverse problem. Owing to the 

small number of observation sites, the limited data bandwidth, and the 

uncertainties in the data and modeling, the source characteristics are unlikely 

to be retrieved at very small space scales. In addition, it is appropriate to 

reduce the number of the unknowns to a small number to stabilize the 

inversion and to increase the redundancy in the data by making the inverse 

problem over-determined. The set of unknowns selected to represent the slip 

function on the fault plane is referred to as the slip parametrization and the 

unknown final slip, rupture time, rise time and slip direction are the 

parameters to be estimated by the inversion. 

 The most intuitive way to limit the number of parameters is to subdivide 

the fault plane in large areas where the parameters are assumed constant. These 

areas are still denoted as subfaults although they should not be confused with 

the subfault discetization used for the computation of the representation 

integral. The size of the subfault is related to the minimum wavelength resolved 

by the data and the parameters grid in the inverse problem is generally one 

order of magnitude coarser than the discrete grid used in the computation of the 

forward problem. The i-th subfault is characterized by nx parameters mij, 

j=1,..nx and the total number of parameters is np = nsnx  where ns is the number 

of subfaults. With this choice for the parametrization the value of a given 

parameter in a point of the fault is trivially the value that this parameter 

assumes inside the subfault to which the point belongs.  

 Another possibility is to define the parameters on nc control points 

1 2, ,...,
cn

, and then interpolate them on the fault plane. In such a case, 

the value of a parameter at a fault point can be expressed as a function of the 

values of the same parameter at the control nodes: 

 

1 2( ) ( ; , ,..., )
cj j j n jm I m m m                      (19) 
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where I is the interpolating function and mij the value of the j-th parameter at 

the i-th control node. It is worth to note that no correlation is assumed among 

parameters, i.e., the value of the mj parameter in any point of the fault does 

not depend on the values of the other parameters mk, with k≠j. As an 

example, the function I can be represented by a bilinear Lagrange interpolator 

[6] or by a bicubic spline function [41]. This latter function provides a 

smoother representation by also imposing the continuity of the first and the 

second cross-derivatives. As a drawback, when strong variations occur 

between two nearby points, such a representation can lead to undesired large 

oscillations. Finally, the unknowns can be decomposed over a set of functions 

which represent a discrete version of a space filter [39], allowing to rule out 

all the wavelengths that do not contribute to the frequency spectrum 

determined by the waveform data. In this case the parameter mj is represented 

by a combination of the selected functions 

 

1

( ) ( )
fn

j ij i

i

m m         (20) 

 

and the unknowns to be determined are the coefficients of the summation 

(20). The effect of different parametrizations on the same slip map is shown 

in Figure 6.  

 For any possible choice for the parametrization, we collect all the 

parameters to be determined in a single vector, that we indicate here as m. 

Among the parameters which directly appear in the representation (9), the 

rupture times are the most problematic to be achieved from the inversion, 

because it is difficult to impose the causality condition between contiguous 

regions of the fault [30]. For this reason the rupture times are often replaced 

by the rupture velocity as a parameter in the inversion. Rupture times are 

assumed to be related to the rupture speed through the eikonal differential 

equation 
1

R

R

T
v

. Rupture velocity is generally preferred to rupture times 

because the positivity constraint intrinsically insures the causal rupture 

propagation. In addition, based on steady-state dynamic models we may 

constrain the ratio between the rupture velocity and the S wave speed as a 

function of the propagation mode to be consistent with the theory, and 

therefore limiting the exploration range of this parameter. However, since the 

slip function does not explicitly depends on rupture velocity, the rupture 

times have to computed by numerical integration of the eikonal equation, 

which can be efficiently performed by the finite – difference algorithm of 

Podvin and Lecomte [42]. 
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Figure 6. The same slip map represented by different parametrizations. On the left, a 

cell-style discretization, in the middle, a bi-cubic spline interpolation based on control 

nodes, on the right a superposition of overlapping Gaussian functions. The two 

smooth images are very similar, with differences related to the shape of the 

singularities.  

 
 Very often the grid size of the slip parametrization is related to the 

minimum wavelength that the data can resolve. Such a link is justified for the 

slip amplitude, which is linearly related to the observed ground motion. This 

is not necessarily the case for the rise time and the rupture velocity, which 

non-linearly depend on the data. Some authors hence have proposed the use 

of separate grids for the estimation of the slip amplitude, the rupture velocity 

and the rise time [43]. Specifically, while maintaining fixed the 

parametrization for the slip amplitude, the inversion starts by retrieving 

uniform values of the non linear parameters. In the following steps, the grid 

associated with these parameters is more and more refined as long as the data 

can justify such a complexity increase in the parametrization.     
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3.2.  Inversion procedure 
 

 We have described the rupture kinematics using a rather small number of 

parameters, which have been grouped into the vector m. The goal of the 

inversion is to give an estimation of m, through a set of observations at the 

Earth surface, that we also gather into a data vector d. The representation 

integral is the physical model which links the parameter space to the data 

space through the non-linear application g, yielding the equation 
 

( )d g m          (21) 

 

The function g is the forward problem operator, deriving from the 

discretization of the representation integral, as described in the section 2.4. It 

is a non linear function of the kinematic properties of the fault but, when the 

rupture times, the rise time and the rake are fixed at all the points of the fault, 

it linearly depends on the slip amplitude. Let us indicate with d
obs the data 

recorded at the surface and with dtheo the synthetic estimation obtained by the 

forward computation g(m). It should be pointed out that in the case of 

waveform data, the components of vector d are, for each station, the 

amplitudes of the digitized signal as a function of time in a given time 

window along the seismogram or equivalently the Fourier spectrum. The 

solution of the inverse problem is the set of parameters m
+ such that dobs = 

g(m+). Exact solutions however are unlikely to occur, due to uncertainties in 

the data and in the source and propagation modeling. An estimation of the 

true model is expected to be given by the vector m* such that the distance 

between dobs and g(m*) is minimum in the sense of a defined norm. 

 A first attempt to find a solution of equation (21) can be obtained by a 

linearization of the equation around an initial model m0. Using the Taylor 

expansion, we can replace g(m) with its first order approximation 

g(m0)+G(m-m0), which holds in the neighborhood of the initial model for a 

small perturbation m= m- m0. The corresponding linearized problem writes: 
 

0( )obs
G m d g m                                                                            (22) 

 

where the elements of the matrix G are the partial derivatives of the function 

g with respect to the source parameters, evaluated at the reference model m0: 
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m
m m

                       (23) 
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Depending on the specific choice of the parametrization, the partial 

derivatives with respect to the slip amplitude and rise time can be evaluated 

analytically. In most of cases, however, partial derivatives are numerically 

computed through their finite-difference approximation. Since the problem is 

over-determined, a solution for m can be obtained with the use of the 

generalized least-squares method:   
 

1

0( ) ( ( ))T T obs
m G G G d g m                      (24) 

 

where G
T is the transpose of the matrix G. Since we deal with a small 

number of parameters (in the range of 10 to 103), the generalized inverse can 

be computed explicitly, through, for instance, the Cholesky decomposition 

(LU) or the singular value decomposition (SVD), where the components with 

small eigenvalues can be appropriately weighted and damped [44], 

accelerating the convergence of the algorithm and separating the null 

subspace of the parameter space [45]. The solution of the linear system (24) 

leads to the evaluation of the first perturbation, correcting the initial model to 

m1= m0+ m. This point can be considered as a new starting point, around 

which a new perturbation can be computed. The procedure can be iterated 

until some convergence criterion is met (e.g., the norm of the perturbation 

becomes smaller of an assigned threshold). The equations relating the 

parameters to the data can be properly weighted by left multiplying the 

matrix G by a diagonal matrix of weights, accounting for the uncertainty in 

the Green’s functions computation or reducing the importance of large 

amplitudes in the data [46]. The preconditioning, however, does not change 

the nature of the linear system (22).  

 The inversion of a kinematic rupture model is known to be unstable, that 

is when adding a small perturbation to the data, the solution can be 

significantly different from the one obtained with unperturbed data. For this 

reason additional constraints need to be added to the linear problem (22). 

First, the slip amplitude, the rise time and the rupture velocity are positive 

quantities, defining an additional series of inequalities to be added to the 

linear problem. Such constraints can be included through the use of a 

penalization function, which sharply increases as the inequality is violated 

[47], through the substitution of the parameters with their logarithm [48,49], 

or artificially setting to zero the parameters when they assume negative 

values during the inversion process. This latter approach is efficiently 

implemented in the NNLS (Non Negative Least Squares) algorithm [50]. 

Second, an additional smoothing constraint is usually included to limit strong 

variations of the parameters between nearby subfaults or points. To maintain 

this condition linear, the smoothing is defined through a differencing operator 
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D, which equates to zero the difference between parameters from contiguous 

elements. The complete system becomes 
 

G d
m

D 0
                       (25) 

 

where  represents the weight of the smoothness as compared to the data fit. 

The choice of the smoothing value is critical: the larger the smoothness, the 

blurred the final solution and the worse the misfit between data and 

synthetics. Hence the smoothing value comes out from a compromise 

between the stability of the solution and the degradation of the fitness 

function. Usually the smoothing contribution ranges between 1% and 10% as 

compared to the misfit value. Several authors [51,52] propose the use of a 

statistical criterion, such as the Akaike Bayesian information criterion 

(ABIC) [53], to define the optimal choice for the smoothing coefficient.  

 The main drawback of the linearized approach is that the solution is 

critically dependent on the initial reference model. The risk to fall in a local 

minimum, which is far from the global one, is high and it is expected to 

increase as the number of parameters becomes large. Such a problem can be 

partially overcome, by testing a large amount of initial models and by 

comparing the final misfits values reached by the algorithm. Such an 

approach, although interesting, may become computationally expensive 

because of the numerical computation of 
mg .  

 Instead of searching for solutions of a linear problem, gradient-free 

global exploration methods directly compare the observations d
obs with the 

theoretical estimation dtheo. They explore the parameter space, searching for 

the solution m* (or the solutions) which minimizes the distance between data 

and synthetic predictions ( ) ( )obs theoS m d d m , defined in the sense of 

some norm. Such a function is referred to as the cost, misfit, fitness or 

objective function. The use of global methods have recently become 

attractive because the computational resources allow for the exploration of a 

huge amount of models by the fast computation of the forward problem and 

the parallelization.  

 When the number of parameters is very small (up to five), the 

exploration of the parameter space can be systematically carried out on 

regular grids or by a Montecarlo sampler. As the dimension of the parameter 

space increases, the exploration needs to be appropriately driven, avoiding 

the sampling of areas where the misfit is large and densifying the research in 

regions of smaller misfit. We will describe here three techniques: the 

simulated annealing, the genetic algorithm and the neighborhood algorithm, 
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which are commonly used in the investigation of the kinematic source 

parameters, without giving a preference to a specific method. We will discuss 

advantages and drawbacks of the techniques instead. 

 The simulated annealing (SA) algorithm numerically reproduces the 

physical process of the quasi-static cooling of a high-temperature solid down 

to the ambient temperature [54]. When the cooling occurs very slowly with 

time, the solid is expected to reach the minimum energy state, escaping 

possible metastable states that can be reached during the process. By analogy, 

the energy of the system is here represented by the cost function S(m), the 

global minimum of which we want to search for. The algorithm starts from 

an initial random state m0 and moves to other models through driven random 

walks until the temperature reaches its final value. At the k-th iteration, if the 

system is in the state mk, it moves to a new state mk+1, if S(mk+1) < S(mk). If 

the latter condition is not satisfied, the algorithm accepts worse solutions with 

a probability  
 

1( ) ( )

( ) const
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TP T e
m m

                                                                           (26) 

 

which depends on the absolute temperature and the difference between the 

two cost functions. At the beginning of the schedule, when the temperature is 

high, the search looks like a random exploration, while at the end the 

algorithm moves only downwards, falling in the minimum closest to the last 

states. When the temperature decreases very slowly, the probability of 

escaping local minima is large but also the computational cost becomes 

expensive; hence there is a trade-off between the convergence rate and the 

probability to fall in a local minimum. The most used variant is the heat-bath 

SA [55], which is largely used in kinematic source inversion [6,56,57]. With 

this scheme, only one parameter, one component of m, at a time is randomly 

changed during a given iteration, while the others are fixed. The main 

drawback of SA is that the success of the algorithm depends on the choice of 

several input parameters: the initial temperature, the temperature decrease 

rate and the generator of neighbor models. These parameters generally 

demand an initial tuning and may be problem dependent, such that several 

explorations are required to find the optimal compromise between 

computational costs and global exploration.  

 The genetic algorithm (GA) emulates the evolution process in 

maintaining and combining the best models inside a given population, where 

the quality of the models is defined according to the cost function S(m) 

[41,43,58]. Starting from a random population, where models are codified 

through a genotype, the species tends to preserve good fitness models and 
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replace bad fitness individuals. In building a new population, children may 

inherit the same genotype of their parents or their genotype can be a 

recombination (crossover) of the genotypes of two parents, according to their 

fitness function. Such a procedure tends to homogeneize the population, 

simulating the convergence toward a small set of minima. Random mutation 

of genotypes, instead, allows to continue the global investigation of the 

parameter space and possibly to escape from local minima. As for the SA, 

GA requires the setting of the several parameters (size of the population, 

crossover and mutation probabilities, number of iterations), which is realized 

through an ad-hoc tuning, generally tackled in synthetic tests emulating the 

source-receiver geometry and the frequency content of data. Moreover, GA 

has recently raised a large criticism since it has not a theoretical base (it is not 

sampling a probability distribution). Hence the convergence is not insured 

and the exploration cannot be used for the computation of marginal 

probabilities in the error estimation.  

 Finally, the Neighborhood Algorithm (NA) geometrically explores the 

parameter space, through a tessellation based on Voronoi cells [59]. The 

initial set of points is randomly chosen, then the exploration is intensified in 

regions where the misfit function is smaller, resulting into a cell refinement 

around deep local minima in the parameter space. The algorithm maintains a 

global character at the cost of a slow convergence. Instead of converging to a 

single minimum, it points to several regions where the global minimum can 

be located. Such an algorithm, hence, is well suited for ill-posed problems, 

such as the kinematic inversion, where the solution may not be unique. The 

algorithm requires the setting of only two parameters, which control the 

sampling process (number of initial points and number of re-sampled cells). 

After individuating the regions where the misfit function is smaller than 

elsewhere, the algorithm can be accelerated by coupling the exploration with 

a local derivative-free search method, such as the downhill simplex [60] (for 

application to the kinematic source inversion see [61,62]).  

 A global sampler is based on the minimization of a fitness function S(m), 

whose functional form may become critical in the reconstruction of the 

rupture process. There are not so many criteria which are used to compare 

data and synthetics in the kinematic inversion of the seismic source. The 

easiest way to compare data and synthetics is the Euclidean distance. For 

linear problems, the use of least-squares techniques and implicitly of the L2 

norm comes from the hypothesis of Gaussian uncertainties. The 

corresponding fitness function is the square L2 norm of the difference 

between observations and predictions 
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In the above representation, nd is the dimension of the data space. Such a 
choice has several advantages. First, least-squares methods lead to easier 
computation as compared to other techniques. Second, the Parseval theorem 
warrants that the L2 norm in the time domain is the same as in the frequency 
domain (apart from a constant factor depending on the definition of the 
Fourier transform). Often this latter should be computationally preferred, 
since the dimension of a time-series is of the order of 103-104, while the 
dimension of a band-limited Fourier series is on average two orders of 
magnitude smaller. The main drawback of the L2 norm is its lack of 
robustness, since the norm is sensitive to a small number of outliers. 
Additionally, the use of such a norm in the inversions mainly reproduces the 
data portions with large amplitudes, and penalizes the stations where the 
overall amplitude is smaller than elsewhere (e.g. anti-directive stations). The 
L1 norm should limit the weight of errors in the data, increasing the 
contribution of low amplitude data [61,63]. Its expression is 
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Its application in time or frequency domains may lead to different results 

because the two quantities are not directly linked. Some authors propose a 

linear combination of the two norms L1+L2, to take advantage form both 

norms [56,64].  

 Very often, arrival times of synthetic seismic phases are not aligned with 

the ones from real data, owing to uncertainties in the structure model and in 

the hypocenter location. Cross-correlation of data may help in eliminating the 

shift between real and synthetic waveforms. A misfit function based on the 

correlation coefficient has been proposed in the framework of 1D velocity 

models [65] and then widely applied to source modeling [6,66]. This function 

tends to represent the shape of the signal but it is also sensitive to the 

amplitudes, albeit with a reduced importance as compared to the L2 norm. We 

write here its expression in the frequency domain:   
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 In the above formula, the summation of the contribution of the single 

frequencies was separated from the contribution of the stations (ns is the total 

number of stations) [6]. Hence the indices i and j in the data and synthetics 

are related to the i-th station and the j-th frequency respectively.  

 

3.3.  Errors and resolution 
 

 Data and theory are not exact and the associated uncertainties affect the 

model parameters (slip amplitude, rupture velocity and rise times). The 

propagation of the uncertainties from data and modeling on the source 

parameters leads to the definition of the errors associated with the retrieved 

model. If the error bars for a specific parameter are significantly smaller than 

our prior knowledge, we also say that such a parameter is resolved by the 

inversion [48]. Hence resolution is a slight different concept as compared to 

the standard errors associated with a given estimation. Specifically to the 

kinematic inversions, a feature in the slip model is resolved if it is really 

required to justify the data. Hence, to interpret a slip solution coming from 

the inversion of earthquake data, we have to know which slip patches, which 

variations in the rupture velocity and rise time are resolved on the fault plane 

and which is the error that affects such estimations.  

 The evaluation of the errors and the assessment of the resolution are not 

an easy task in non-linear inverse problems and in the case of the slip 

inversion, it is made harder by the difficulties in assessing the error on the 

Green’s functions due to the uncertainties in the velocity structure. In the case 

of a linearized problem, however, a closed expression can be written for both 

the error and the resolution, if we assume Gaussian uncertainties in the data 

and in the theory. Let us indicate with Cd and CT the covariance matrices 

associated with data and theory, respectively. Then, the generalized solution 

of the linear problem, in the sense of the weighted least-squares, is 
1 1 1

0( ) ( ( ))T T obs

D Dm G C G G C d g m , where the matrix CD = Cd + CT [48]. 

Such an expression, which does not account for an a-priori statistical 

information on the parameters, corrects formula (24) and reduces to it when 

CD is diagonal with constant elements. The operator  

 
1 1( )T

m DC G C G
                                                                                   

   (30) 

 

is the covariance matrix in the parameter space. The diagonal components of 

this matrix represent the variance associated with the parameters and its 

square root is the standard error that can be ascribed to the single estimations. 

Off-diagonal elements cannot be directly inspected. The normalized values 
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represent instead the correlation between couples of parameters. ij ranges 

between -1 and 1, where large absolute values are associated to highly 

correlated or anti-correlated parameters, depending on the sign of ij, while 

values close to zero indicate almost independent parameters. 

 For a given model m*, let us consider now the forward theory producing 

synthetic data d*=G’m*. Then, let us invert these data to find a solution m. 

The operator R, which relates the original model to the inverted one 

(m=Rm*) is referred to as the resolution operator. In the case of least-squares 

with no a-priori information in the parameter space the resolution operator 

can be written as 1 1 1( ) 'T T

D DR G C G G C G . If the same operator is used for 

the forward and inverse problem (G’=G) and Cm admits an inverse, R 

reduces to the identity. However, for the regularized linear problem (25), this 

condition does not hold because the smoothing is artificially added to the 

inverse problem.   

When the problem has been tacked with a non-linear approach, the solution 

can be always developed around the minimum to find out the local 

covariance operator. If the cost function is represented by the weighted L2 

norm 1( ) ( ) ( )
T

DS Cm d g m d g m , the Hessian of the function S at the 

minimum, i.e. local the curvature, approximates the inverse of the covariance 

operator in the parameter space: 
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 The estimation of the curvature can be also performed by discretely 

evaluating the partial derivatives of the function S with a finite-differences 

approach.  

 The computation of errors and resolution requires finally the definition of 

the rows of the matrix CD. Errors in the data are related to the noise, which 

represents in a generic sense the contribution to the record that is not modeled 

by the theory. The main sources of noise are the ambient, which usually 

produces a very low amplitude disturbance as compared to the strong motion 

signal, the instrumental baseline and the data processing. When using 

displacement data coming from a double integration of accelerograms, 

baselines from instrumental tilting can lead to a noise amplitude at low 

frequency as large as the signal. When removing the baseline or appropriately 
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high-pass filtering the data, the noise can be as small as 1% or less as compared 

to the signal in the whole frequency band of investigation. On the other hand, 

the error associated with the theory is more difficult to be estimated. It is 

mainly related to the uncertainties in the Green’s functions, to the chosen 

analytical form of the STF, to the smoothing used to stabilize the inversion and 

to the parametrization. In the framework of the comparison between 1D and 3D 

velocity models in the retrieval of large wavelength source properties, 

preliminary synthetic tests were performed to assess the effect of the velocity 

model on the data as well as on the final slip model [4]. Although the overall 

comparison between waveforms could be good as well as the shape and 

amplitude of first arrivals, the amplitude of later reflected /converted phases 

may be quite different, indicating a degradation in waveform fitting as the time 

from the first arrival increases. To check the quality of the Green’s functions, a 

good test is to compare the synthetic waveforms with the records from the 

aftershocks, that can be assimilated to EGFs. Such a technique was initially 

applied for comparing several velocity models available for the Landers area 

[36]. In such a case the authors found an average variance reduction from the 

best model around 25% even at very low frequencies (f<0.25 Hz), indicating 

that the choice of specific velocity models is very critical for the rupture 

investigation. The comparison between synthetic Green’s functions and 

aftershock records can be further exploited to find the optimal 1D model that 

minimizes the misfit between the waveforms [67]. To minimize the error in the 

estimation of the Green functions, some authors propose the use of station 

dependent 1D velocity models [68]. However, if these models are different also 

at depth, we should be aware that they do not insure the same seismic moment 

at all the stations. Another possibility to investigate the weight of the 

uncertainties in both theory and data is to use the variance reduction associated 

with the best solution of the inverse kinematic problem [41]. 

 When dealing with a non-linear problem and possibly non Gaussian 

statistics, one could use the exploration as a sampling of the parameter space. 

If the exploration is based on random Monte-Carlo techniques, such as for 

simulated annealing and neighborhood algorithms, a probability density 

function can be defined from the misfit as ( )P( )=const Se m
m . In such a case, 

the normalization constant can be computed by constraining the integral over 

the whole parameter space to be 1. After normalization, the mean value and 

the covariance matrix can be computed as: 
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The integrals can be then computed using the Monte Carlo method, providing 

that the sampler stores the values of the cost function in all the explored 

points of the parameter space. 

 Instead of searching for the unique solution of the inverse problem, the 

sampling algorithms may also provide several solutions which have almost 

the same misfit. These solutions may be found in the same final population or 

as the result of several explorations started from different initial 

models/populations. As a better kinematic representation of the source, some 

authors [69] propose to perform a statistical analysis on the final models and 

select the mean model as the best solution, the standard deviations as the 

errors associated with the parameters. The statistical analysis can be 

performed through all the models investigated during a single exploration, 

with the solution chosen as the weighted mean of the explored models and 

the weights inversely proportional to the cost function [57]. However, we 

should be aware that the misfit of the average solution can be significantly 

larger than the one associated with the minimum of the objective function.  

 In most cases the model resolution is investigated through synthetic tests, 

with the same geometrical configuration of the fault and source-receiver 

distribution [43,56,70]. The goal of the test is to verify if a retrieved slip 

patch, an anomalous value of the rupture velocity etc., resulting from the 

inversion, are a method artifact or are justified by the data. The test is built by 

computing synthetic data with an assigned rupture model. After the addition 

of white or correlated noise in a small percentage (5-10%), synthetics are 

inverted to retrieve the rupture history, which is directly compared with the 

original one. As a result, we are able to understand if the presence, the shape 

and the amplitude of the anomaly is really required by the data or if it was 

caused by a smearing effect due to the acquisition layout.  

 

3.4.  Back-projection, beamforming, time-reversal techniques 
 

 Broad-band records from large earthquakes are a complex combination 

of body and surface waves, near field and static contributions, the correct 

modeling of which requires an accurate Green’s functions computation. In 

several cases, however, inspection of waveforms may allow to simplify the 

estimation of the propagation contribution, either because the single phases 

are well separated in time, as for teleseismic or regional records, or some 

phases are dominant along the seismogram, as the direct S waves are in the 

far field condition for local records [71]. The arrival time and the amplitude 

of a selected body wave can be modeled in the ray-theory asymptotic 

approximation and time-reversal techniques can be applied to back-project 
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such an information on the fault plane to retrieve the space-time history of the 

seismic rupture.   

 When seismic waves are recorded far from the source by dense networks, 

array beamforming methods can be used to measure the back-azimuth and the 

velocity of the incoming waves [72]. Such a technique can be efficiently 

applied to the P-wave train, which can be clearly identified on the 

seismograms and separated from later phases. To further reduce the 

contribution of later arrivals, direct P waves can be aligned by waveform 

cross-correlation and then stacked.  Relative amplitudes are hence back-

propagated on the fault to infer the slip as a function of space and time. Such 

methods allow for the estimation of the large scale source parameter 

variations (rupture duration, rupture velocity, seismic moment) and may 

individuate the regions on the fault plane that emitted the largest amount of 

radiation. Back-projection techniques can be applied when the high 

frequency contribution radiated by the source is still recorded at distances 

larger than the fault dimensions. Such a condition holds for large magnitude 

events recorded at teleseismic distances [72,73] and moderate magnitude 

events at regional distances [74]. In Figure 7 (right panel) we show the back-

projected kinematic model for the L’Aquila earthquake. It is obtained by a 

beamforming technique using the data recorded by ISNet, the Irpinia Seismic 

Network, installed in Southern Italy. Back-projection of the P wave signals 

(Figure 7, left panel) into the source region shows in this case a southward 

directivity and an average rupture velocity of 3 km/s.  

 At local scales, the direct S waves dominate the far–field records when 

the source-receiver distance is larger than few (3 to 5) wavelengths. Such a 

condition can be hence applied to records from stations located at distances 

larger than a dozen kilometers from the fault and for frequencies higher than 

0.1 Hz. For a single body-wave phase, the far-field representation theorem 

can be further simplified. Assuming zero rise time (the slip instantaneously 

reaches its final value), the displacement at a given receiver located at x can 

be obtained as: 
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The quantity 
54 ( ) ( ) ( ) ( )

c
c F

K
c cx x

 accounts for the source and 

receiver impedances and for the amplitude changes that a wave undergoes 

during its path because of the free surface and the interfaces ( is the density, 
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c the wave velocity, Fc the total interface amplitude factor). c

ijR  is the 

radiation pattern, rp the geometrical spreading and C is the Doppler 

coefficient at the source  
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c v
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being  the take-off angle of the ray connecting the point on the fault to the 

receiver. Such a relationship holds for any body wave phase (P and S) with 

propagation velocity c. Finally L is a curve on the fault plane satisfying the 

condition that the sum of rupture and propagation times is constant:  

 

( ) ( , ) constR cT T x                                                                            (36) 

 

Such a curve is referred to as the isochrone [75,76]. The information coming 

from points lying along the same isochrone simultaneously reaches the 

receiver located at the surface where it may constructively or destructively 

interfere. In a homogeneous medium such curves are forth-order ellipses, 

whose eccentricity depends on the ratio between the rupture and the wave 

velocities and on the relative location of the receiver with respect to the fault. 

For directive stations and S waves, the isochrones are more elongated than 

for lateral stations and for P waves [77].  

 The main idea of the back-projection is to distribute the amplitude 

recorded at a given time and at a given receiver as slip along the 

corresponding isochrone on the fault plane [43]. When no a-priori 

information is available about the location of high-slip patches, the slip is  

assumed to be uniformly partitioned along the isochrone. Hence, with only 

one recording station, one is not able to distinguish which points along the 

same isochrone provided the effective dislocation. When stacking amplitudes 

on isochrones from several stations, which sample the fault plane from 

different angles, the regions which provided effective slip can emerge from 

the background. However, because of the limited number and the uneven 

distribution of the stations, the final slip image still remains defocused around 

the main slip patches. A restarting procedure can be applied, according to 

which the back-projection is iterated and the n-th slip map is built assuming 

as an a priori information the slip map obtained at the previous iteration. The 

restarting can be arrested when the improvement in the objective function 

comparing data and synthetics becomes incremental or degrades. When 

applied to real data, such a procedure still helps in reducing the smearing of 

the slip, but it is generally efficient for a small number of iterations. 
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However, back-projection of displacement amplitudes requires an ad-hoc 

data processing because baselines strongly degrade the quality of the signal 

and the radiation pattern may lead to instabilities when it changes its sign 

along the same isochrone [43]. Several authors propose the use of the 

displacement or velocity envelopes [78,79] which are positive defined and 

less sensitive to the radiation pattern. The isochrones can be drawn on the 

fault plane as far as the rupture velocity is known. Before starting a kinematic 

inversion instead, the rupture velocity is generally unknown. To bypass the 

assumption of a defined rupture velocity map, we can include the back-

projection method into a more general technique which searches for a rupture 

velocity map, in a non-linear approach, as described in the Section 3.2. As 

soon as a rupture velocity map is available, the corresponding slip map is 

obtained by back-projection. From the comparison of data and synthetics, an 

objective function can be computed for each couple rupture velocity-back 

projected slip, and the one which minimizes the misfit is chosen as the 

solution to the problem. In addition, some authors suggest to separate the 

discretization of the slip, whose space scale is related to the maximum 

frequency investigated in the data from the discretization of the rupture 

velocity [43]. For this latter, they propose to start from a constant value and 

then add variations at smaller and smaller scales. Such a procedure can be 

arrested when a further reduction of the discretization grid does not 

contribute to a significant reduction of the objective function. 

 With the development of computation resources, an interesting back-

projection technique based on time reversal imaging is going to be developed 

for the reconstruction of the rupture process. Time-reversal is widely used in 

acoustics and exploration seismology for source location and structure 

imaging by noise and/or signal cross-correlation. Since the wave equation is 

symmetric with respect to time, the wavefield recorded at the stations can be 

time-reverted to collapse again into the source. When seismograms are 

injected back into a numerical model of the Earth, they propagate and 

constructively interfere at the source to retrieve the space-time evolution of 

the rupture. Such a method has been applied to reconstruct the rupture history 

of the great Sumatra earthquake, using teleseimic data at very low frequency  

(T>200s) [80]. However, the time-reversal field does not exactly behave as if 

we rewound the movie of the direct wave propagation. After converging into 

the source, the wave energy does not disappear from the numerical model, 

returning to the rest condition that we had before the rupture started. On the 

contrary, after the focalization of the wavefield at the source, the wave energy 

it spreads out again preventing from a complete reconstruction of the source 

process.  
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Figure 7. On the left, vertical-component acceleration records of the 2009 L’Aquila 

earthquake, recorded at the stations of ISNet (Irpinia Seismic Network), a network 

installed in Southern Italy at about 250 km of distance from the epicenter. The traces 

are aligned along the section by waveform cross correlation of the P wave first arrival. 

On the right, reconstruction of the rupture kinematic associated with L’Aquila 

earthquake, obtained by a back-propagation of the stack function. The figure is 

extracted from [74], Copyright © 2011 by Seismological Society of America. 

 

4. Data 
 

4.1.  Strong motion data 
 

 Accelerometric data recorded in the fault vicinity are suitable for the 

retrieval of the kinematic properties of the rupture up to high frequencies    

(1-2 Hz). Attenuation relationships indicate that peak ground acceleration 

(PGA) does not significantly increase with magnitude, with major changes 

ascribed to the source-station geometry (rupture mechanism and directivity) 

and site effects [81]. It is worth to note that the largest values of PGA ever 

recorded by strong motion stations in the near-source are of the order of 3-4 g 

(2008, M 6.9, Iwate-Miyagi earthquake, station IWTH25, PGA=4.3g; 2011, 

M 6.3,Christchurch earthquake, station HVSC, PGA=1.7g; 2011, M 9.0, 

Tohoku earthquake, station MYG004, PGA = 3g). Hence, accelerometric 

data do not saturate also in the case of very large magnitude events (M>8.5), 

providing an effective picture of waves radiated by the earthquake. Moreover, 

accelerometers have a flat response from DC up to high frequencies, 

http://www.seismosoc.org/
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indicating that we are able in principle to recover the correct ground motion 

in a broad frequency range, at least in the band where the signal to noise ratio 

is significantly larger than one. However, as previously discussed, the ability 

in describing the rupture kinematics strongly depends on the knowledge of 

the propagation model, which becomes more and more imperfect as the 

frequency of seismic waves increases. The upper frequency at which 

kinematic inversions are performed do not generally overpass 0.5 Hz, up to 

which 1D velocity models can be assumed as a reliable description of the 

propagation medium. Displacement data are hence more appropriate to 

represent the low frequency motion associated with the earthquake. Since the 

far-field spectrum of the displacement is flat up to the corner frequency and 

decreases beyond it, the kinematic inversions are expected to well reproduce 

the seismic moment, to locate the high-slip regions on the fault plane and to 

resolve the average properties of the rupture velocity.  

 However, a major limitation occurs when the displacements are obtained 

by double integration of acceleration records. Small steps, offsets and 

perturbations in the acceleration records are amplified by the integration and 

are transformed in long-period baselines which significantly distort the trace, 

providing unrealistic static displacements and incorrect waveforms. Several 

sources could produce baselines in the strong motion data, as the hysteresis of 

the sensor or the tilt of the ground associated with the arrival of the seismic 

waves at the site, which induces a rotation of the inner mass [82,83]. Since 

the physical mechanisms beyond the offsets are not known and the rotations 

are not recorded within the strong motion, a general cure for suppressing the 

baselines is not available and ad-hoc procedures have to be adopted to 

recover correct displacements at low frequencies. The simplest way to reduce 

the effect of the baselines is to high-pass filter the displacement data with cut-

off frequency generally in the range 0.05-0.1 Hz. Such a procedure could not 

affect the correct estimation of the seismic moment and its distribution on the 

fault plane for earthquakes with magnitude M<7.5, because the corner 

frequency is larger than the cutoff frequency due to the filter. It could provide 

an incorrect image of the slip distribution for large magnitude earthquakes 

(M>8) instead. Several procedures have been suggested for the direct 

removal of the baselines, starting from the arrival time of the strong motion. 

[84] suggested to fit the acceleration baseline with polynomials, [85] 

removed the baseline from the velocity record by fitting data portions with 

straight lines, [86] subtracted to the acceleration the derivative of a quadratic 

form that fits the velocity record. It is worth to note here that all of the 

procedures include some subjective choices (the order of the polynomial 

functions, the selection of data portions for the fit, etc.), generally verified   

a-posteriori by inspection of the resulting displacement. At the end of the 
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procedure, hence, the final displacement can look realistic but it is not 

necessary correct. As an example, we show in Figure 8 (from [86]) the 

displacement obtained by double integration of an acceleration record from 

the 1999 Chi-Chi, Taiwan, earthquake, where the effect of the baseline 

dominates the signal at very low-frequency. On the same Figure, the signals 

obtained by applying different baseline correction schemes are superimposed. 

When removing straight lines from velocity data portion, the final displacement 

becomes strongly sensitive to the end point of the straight line. It is hence a 

better choice to constrain, when possible, the static final displacement with 

GPS or INSAR measurements. As a last observation, the displacement records 

are a low-frequency representation of the waves emitted by the rupture. Hence, 

the low frequency hypocenter (centroid) could not   coincide with the      

high-frequency origin point of   the earthquake. This   difference, summed   to  the  

 

 
 
Figure 8. Displacements obtained by double integration of the acceleration record of 

the EW component at TCU129 from the 1999 Chi-Chi, Taiwan, earthquake. The solid 

black line is the result of the integration after removing the pre-event mean level. The 

different traces are obtained by applying several baseline corrections. The figure is 

extracted from [86]. Copyright © 2001 by Seismological Society of America. 

http://www.seismosoc.org/
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incorrect velocity structure, may affect the comparison of data with synthetics 

generated for a rupture propagating from the high-frequency hypocenter. 

Hence, it is better to use cross-correlation measurements instead of direct 

norms to evaluate the misfit or to time-shift the real data before performing 

the comparison.  

 

4.2. Teleseismic data 
 

 The Earth behaves as a natural low-pass filter and the high frequencies 

generated by a seismic rupture are strongly attenuated at regional and 

teleseismic distances. For this reason, source modelers generally investigate 

teleseismic data at very low frequencies (<0.1 Hz). Depending on the 

earthquake magnitude and the recording distance, the useful spectrum of the 

seismic signal ranges between 1 mHz and 0.5 Hz. The choice of the 

frequency band is based on the signal to noise ratio. Moreover, when 

analyzing displacement records, the spectrum should contain both the flat 

part, associated with the seismic moment, and the corner frequency, beyond 

which the phases generated by the different regions of the fault interfere. 

Since at teleseismic distances the seismic phases may appear separated on the 

records, it is convenient to extract the most energetic contributions by 

windowing the trace around the selected phases and separately interpret each 

of them. This is the case of direct P and SH waves, within their first 

reflections at the free surface in the epicentral distance range between 30° 

and 90°. At such distances, direct waves mostly travel in the deeper part of 

the mantle, which is almost homogeneous [87]. At smaller angles the 

heterogeneous structure of the crust and the upper mantle and the lateral 

variations may strongly affect the ray path and hence the shape and the 

amplitude of the direct phases [20]. Also the surface waves can be used for 

the characterization of the rupture kinematics. Because their speed is close to 

the rupture velocity, they are expected to constrain the average speed of the 

rupture [88]. However, synthetic Green’s functions associated with surface 

waves are sensitive to the crust and upper mantle structure and their lateral 

variation. Hence, at periods smaller than 500-800 s, the Green’s functions 

need to be computed in a 3D realistic Earth model, which should contain both 

the crust and topography. At larger periods, the Green’s functions can be 

determined by normal mode summation. Synthetic Green’s functions can also 

be substituted by EGFs, which can be deconvolved from the mainshock 

(phase by phase) to retrieve the relative source time functions [89].    

 Because data are investigated in the low frequency range and the 

amplitude spectrum of the displacement can be easily related to the 
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macroscopic properties of the seismic rupture, it is preferable to invert 

displacement records. These latter are obtained from velocity seismograms, 

by extraction of the single phases and integration [89].  

 

4.3. GPS data 
 

 The Global Positioning System (GPS) is a constellation of satellites that 

enables the receivers on the Earth surface to position themselves. With the 

deployment of a large number GPS sites, allowing for an accurate 

determination of the satellite orbits in a well defined terrestrial reference 

frame [90], the employment of double frequency receivers and the use of 

advanced post-processing software, GPS measurements have reached the 

precision of millimeters to centimeters, becoming suitable for the imaging of 

the earthquake source. Most of GPS data provide static displacements 

associated with the coseismic slip occurred during an earthquake. Static 

displacements decay with the distance faster than seismic waves (as the 

inverse of the square source-receiver distance). Hence static displacements 

recorded very close to the fault have a different resolution and enlighten 

smaller regions of the fault plane as compared to the dynamic waves. 

Moreover, the difficulty in yielding the static displacement from strong 

motion owing to the drifts (see section 4.1), makes GPS data complementary 

to accelerometric data. To accurately determine the displacement offset 

associated with the earthquake, time series are corrected by removing the 

average position of the sensor before and after the seismic event.  

 In the last decade a large number of high rate continuous GPS receivers 

(1 Hz, 5Hz, 10 Hz) have been installed, allowing to record not only the static 

field associated with an earthquake, but also the low frequency spectrum 

produced by seismic waves. To obtain reliable data, it is important to process 

the GPS time series epoch by epoch, correcting its position with respect to a 

network of stations [91]. In such a case, the measurements are strongly 

sensitive to the geometry and the number of the satellites in view and the 

accuracy can be different from one component to another one [92]. If for a 

moderate magnitude earthquake it is difficult to go beyond few oscillations, 

such instruments may provide new insights into the moment release of large 

to mega-thrust earthquakes. Several successful applications have shown the 

potential of the continuous GPS data in reproducing the ground motion and 

retrieving the low-frequency time-space evolution of the slip associated with 

seismic ruptures. As an example we report the cases of Denali [92], San 

Simeon [93], Tokachi-oki [94] and Chile [95] earthquakes.    
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4.4.  Other observations 
 

SAR data 
 

 Differential Interferometry on SAR (DinSAR) is the best satellite remote 

sensing approach to investigate the surface displacement caused by a 

moderate to large earthquake. The main idea of the DinSAR is the 

computation of the phase difference between two images, the former acquired 

before the earthquake and the latter after its occurrence. The differential 

image is an interferogram formed by a series of fringes which can be more or 

less coherently tracked on the ground. The fringes can be unwrapped to 

obtain the surface static displacement in the direction of the satellite. In the 

most favorable cases, the resolution can be as low as few centimeters (and 

even smaller than 1 cm for the X band) when the degree of the phase 

correlation between the two processed scenes is high. Decorrelation may 

occur because of large baselines between the two passages, important 

changes at the surface and atmospheric disturbance. Its application remains 

hence confined to inland earthquakes or offshore events close to the coast. 

Since its first application to the 1992, M 7.1, Landers earthquake [96], remote 

sensing by differential interferometry has been widely used to track the 

surface displacement associated with major earthquakes also in regions which 

are not well monitored by GPS and strong motion sensors. The main 

drawback of SAR is related to the delay of the passage of the satellite since 

the occurrence of the earthquake. The seismic moment retrieved by the 

inversion of SAR data could be therefore higher than the seismological 

moment because the afterslip associated to the post-seismic reassessment 

could have summed up to the coseismic deformation. 

 

Surface data   
 

 Sometimes the rupture reaches the free surface and the local slip can be 

efficiently measured on the field through a geological survey. To reduce the 

effect of the postseismic deformation, however, field measurements should be 

performed soon after the earthquake occurrence. In the characterization of the 

source kinematics we should take particular care in the use of such data. De 

facto, surface observations may not be representative of the large-wavelength 

shallow slip, because the field observations could be influenced by the 

geological structure nearby the surface. However its order of magnitude could 

be used as a constraint for the slip in the shallower regions of the fault. 
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Tsunami data  
 

 Offshore earthquakes rupturing close to the Earth surface cause a 

deformation of the seafloor. Static vertical displacements induce a motion of 

the water column due to the gravity which triggers long-wavelength gravity 

waves propagating away from the source as a tsunami. The rupture 

propagation occurs at a time scale (seconds to hundreds of seconds) which is 

significantly faster than the motion of water waves. The deformation caused 

by an earthquake at the bottom of the ocean can be assumed to occur 

instantaneously and then used as an initial condition for the tsunami 

propagation. Tsunami waves are then recorded by buoys located offshore or 

close to the coast and the water wave amplitudes can be inverted to retrieve 

the macroscopic features of the rupture which generated them. Such data 

could result very precious in constraining the extension and the geometry of 

the rupture and the amount of the slip at long wavelengths associated with 

mega-thrust earthquakes, such as for the 2004, M 9.0, Sumatra [97,98] and 

the 2010, M 8.8, Chile earthquake [99].     

 

5. Examples 
 

5.1. Tottori earthquake 
 

 The 2000 October 6, Western Tottori earthquake (Mw 6.8) originated at 

04:30:18.07 UTC, 35.27N, 133.35E, and propagated through the digital 

networks K-net and Kik-net, with 20 stations located at less than 50 km from 

the epicenter. The depth of the hypocenter was estimated to range between 11 

and 15 km [100,101,102]. According to the aftershock relocation, the rupture 

propagated bilaterally, along an almost vertical plane at about 145N with a 

bending to 165N in the last kilometers northwards [101]. The moment tensor 

(CMT) indicates a pure strike-slip solution. To skip the geometrical 

complexity of the rupture, the fault was simplified to a rectangle with length 

30 km, width 20 km, and hypocenter location at 13.5 km of depth and angular 

parameters defined as follows: strike = 150°, dip = 90° and rake = 0°. Since 

there was no evidence of surface slip observed in the main shock area, the top 

of the fault was set to 1 km [103]. A simplified 1-D model was adopted for 

wave propagation [100]. The specific parameters for all of the layers are 

detailed in Table 1. Some other 1-D models that differ from this one mainly 

in the shallower layering, do not have a significant influence in the 

computation of the Green’s functions. [101] did not observe relevant 

variations for the aftershock relocation, when testing different 1-D 

propagation models. This allows for a robust computation of the traveltime 
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between the stations and the subfaults. The final source-station geometry with 

the accelerometric data is sketched in Figure 9. 

In this example, the inversion of seismic data was performed with a 

back-projection technique of the direct S waves. A non-linear exploration 

was carried out to the search for the best representation of the rupture 

velocity by the use of the genetic algorithm [43].  

 In the selection of the stations, the closest ones having a distance from 

the fault less than 10 km, were discarded to guarantee the far-field condition. 

The set of records used in the inversion consisted of 12 stations, located in 

the epicentral distance range of 20–50 km. As required by the backprojection, 

the displacement records were directly obtained by double integration from 

accelerations, and the low-frequency trend was removed through a baseline 

correction, using a fourth-order polynomial interpolation on the noise before 

and after the signal [86,104,105].  

 This procedure allowed for the retrieval of the displacements with proper 

sign. In the comparison between synthetics and data, we added a band-pass 

filter. The lower frequency was chosen to be 0.1 Hz, in order to have at least 

two to three wavelengths between any subfault and any station (far-field 

condition). The maximum frequency was set to 0.5 Hz as the limit at which 

the S signal remained coherent with time. Beyond that frequency, the 

pollution of additional reflected and diffracted phases from the 3-D 

propagation becomes significant. To infer the upper threshold, we looked at 

the stability of the motion on the S train in the data by polarigrams. The 

selection of the S wave in the seismograms was done by limiting the record 

 

 
 

Figure 9. Station location and acceleration data for the Tottori earthquake. 
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window by the theoretical first arrival S time, as obtained from the 1-D 

propagation model. This time was checked against the direct picking of the S 

wave, when possible. In Figure 10 we compare polarigrams for the data and 

the synthetics, the latter obtained with a constant slip and a constant rupture 

velocity of 2.4 km/s. We show some examples for the stations HRS021, 

TTRH04 and SMN001, which are located southwards, laterally and 

northwards with respect to the fault plane. For all the synthetics, the 

orientation does not change as the rupture moves away from the hypocenter, 

at least in the first part of the record. Hence, the S-wave train is expected on 

average to follow an almost constant direction with time for any station. The 

 

 
 
Figure 10. Comparison between the polarigrams from data (upper trace) and 

synthetics (lower trace) for three selected stations located northwards, laterally and 

southwards with respect to the fault.  
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lateral station TTRH04 shows a good agreement with the expected direction. 

At the station HRS021, the direction of the motion on the horizontal 

component fits the theoretical one everywhere, except at the beginning of the 

signal, where the amplitudes may correspond to a foregoing phase. For the 

inversion, the fault was discretized into squares of size 1 km, providing       

30 × 20 subfaults. The rupture velocity was discretized using nine control 

points that are equally spaced along the strike and the dip directions. A 

bilinear Lagrange interpolation of the rupture velocity was performed for the 

points inside the control nodes. We used a weighted L1 norm as cost function, 

with the weights associated to the maximum amplitude measured on each 

component of the displacement records. For any station, the two horizontal 

components were considered as independent traces to be backprojected. The 

slip map obtained from the inversion (Figure 12) has been compared directly 

with the solution provided by [100]. Two different patches of slip are 

retrieved. The major one starts above the hypocenter, close to the surface and 

goes down southwards until to reach the bottom of the fault. The second one 

is located northwards at a depth between 10 and 18 km. The reliability of the 

images can be analyzed with the help of the spike tests, associated to the final 

solution (Figure 13). As far as we look at the defocusing of the discrete pixels 

in the major patch, the backprojected images are mainly correlated along the 

dip direction, downwards. Hence we can argue that the slip close to the 

surface is real. At depths larger than the hypocenter location, the lack of 

resolution does not allow to infer how deep is the anomaly. Moreover the 

focusing of energy at the bottom of the fault is probably an artifact, because 

the isochrones of both patches intersect in that region. If we raise up the 

bottom of the fault, such a focusing effect is largely reduced. On the other 

hand, the width of the other anomaly is larger and its location is harder to be 

defined. High slip concentration close to the surface is a common feature of 

all the slip maps obtained by inversion of strong motion data. However its 

non symmetric character is not shared by all the models, some of which do 

have a symmetric pattern upward the hypocenter [102,106]. The same 

asymmetry was instead obtained by other authors [57,100]. A southern 

predominance of the slip can be also confirmed by the aftershock location. 

The mean value of the rupture velocity is 2.2 km/s, with almost regular fronts 

(Figure 12). Finally, the comparison between the data and the synthetics 

(Figure 11) shows good agreement at the lateral stations (SMN003, SMN004, 

SMNH02, SMNH12, TTRH04 and TTR006). Larger amplitudes in the 

synthetics for the directive stations OKY004 and OKYH08 could be 

indicative of an artifact, that is, the extension of the slip downwards at        

the bottom of the fault. Some inconsistencies are also present for the northern  
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Figure 11. Comparison between the synthetics (red traces) and real data (black traces) 

for the horizontal components of 12 stations that recorded the 2000, Tottori 

earthquake.  
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Figure 12. On the left slip map obtained by back- propagation of displacement 

amplitudes. With yellow contours, slip map obtained by [100]. Most of the slip is 

located southwards close to the surface. Lack of vertical resolution avoids to define 

the vertical extension of the slip anomaly. A second smaller anomaly is located deeper 

northwards of the hypocenter. On the right, rupture velocity values and rupture times 

contours. The rupture is slightly faster in the upper portion of the fault.     

 

 
 
Figure 13. Resolution kernels for 4 grid points. Since the fault is vertical there is a 

lack of resolution from body waves in the dip direction. Hence slip images are blurred 

along the vertical direction and blurring depends on the smoothness weight as 

compared to the misfit in standard kinematic linearized inversions. 

 

stations SMNH10 and SMN002, but not for SMN001, for which the 

displacement amplitudes are reasonably retrieved. Low-frequency 

amplification could occur at those stations, due to site effects associated with 

the marine sedimentary coverage [102]. 
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5.2.  Loma Prieta earthquake 
 

 The Loma Prieta earthquake (M 6.7) occurred at 00:04:15.2 UTC on 18 

October 1989, at latitude 37.036N, longitude 121.883W, and 17 km depth 

[107], southwest of the southern Santa Cruz Mountains section of the San 

Andreas fault. Aftershocks occurred on both sides of the fault relative to the 

hypocenter for a distance of approximately 50 km, suggesting that the rupture 

propagated bilaterally along the strike and unilaterally up-dip [108]. Focal 

mechanism associated with this earthquake indicates that slip occurred on a 

fault approximately dipping 70°, striking 130°, with rake 140° [109]. Here the 

inversion was performed by a simultaneous search for the slip and the rupture 

velocity in a multiscale approach within a ray theory approximation [41]. A 

non linear exploration was performed by the use of the genetic algorithm. 

 In the modeling the fault extends from 15 km northwest to 20 km 

southeast of the hypocenter. The dipping fault plane intersects the hypocenter 

at a depth of 18 km. The modeled extension of the rupture zone in the up-dip 

direction from the hypocenter is 14 km, corresponding to depths from 18 km 

to slightly less than 5 km. The velocity model (Table 2) used to compute the 

Green’s functions was determined analyzing the Loma Prieta aftershocks 

[107]. A constant quality factor QS = 300 [110,111] was used to parameterize 

the Azimi’s attenuation function. The Loma Prieta earthquake occurred in a 

region densely instrumented with strong motion accelerometers. The 

locations of stations is shown in Figure 14. The instrument-corrected 

acceleration data were integrated to get the ground velocity and bandpass 

filtered with a four-pole zero-phase Butterworth filter with corner frequencies 

at 0.5 and 5.0 Hz. The low-frequency limit was constrained by the 

requirement that the receivers have to be a few wavelengths away from the 

nearest segment of the fault. Receivers located within about 40-km epicentral 

distance have been considered because our modeling is limited to the direct S 

waves. In this distance range complex propagation effects (dominant 

secondary arrivals, multipathing) are minimized [111,112,113]. A window 

delimiting the direct S arrival was selected from the horizontal components of 

the ground velocity by polarization analysis on both filtered velocity and 

displacement records. 

 The representation integral (equation 1) was numerically solved by 

discretizing the fault plane in 50x50 m2 subfaults to avoid undesired spatial 

aliasing effects [114]. The rupture velocity and the final slip distributions on 

the fault were determined at this fine grid by bicubic spline interpolation of 

the values obtained by the data inversion at the control points. The initial run 

of the inversion procedure was performed starting from homogeneous models 
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Table 2. 1D velocity model used for the computation of the Green functions in the 

inversion of strong motion data for the Tottori earthquake. 

 
Layer top (km) cp(km/s) cs(km/s) ρ (g/ cm3) 

0 5.5 3.18 2.6 

1.9 6.0 3.5 2.7 

16 6.6 3.81 2.8 

38 8.0 4.62 2.9 

 

 
 
Figure 14. Source-station geometry for the Loma Prieta earthquake. Superimposed on 

the figure, the comparison between real data (solid black) and synthetics (solid gray) 

for the north-south (left panel) and east-west (right-panel) components. 

 
Table 3. 1D velocity model used for the computation of the Green functions in the 

inversion of strong motion data for the Loma Prieta earthquake. slightly different 

shallow models are used for the two sides of the fault.  

 
Layer top (km) cp(km/s) cs(km/s) ρ (g/cm3) 

Northeast of the fault 

0 3.34 1.93 2.5 

1.1 5.01 2.89 2.7 

9.1 6.26 3.61 2.7 

24.5 6.95 4.01 2.8 

Southeast of the fault 

0 3.42 1.97 2.5 

1.1 4.58 2.64 2.7 

9.1 6.26 3.61 2.7 

24.5 6.95 4.01 2.8 
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both for the rupture velocity (vr=2.0 km/s) and for the final slip (1.7 m, 

according to an average estimate of the scalar seismic moment) with five 

control points in the strike direction and three control points in the dip 

direction. As a consequence, with 5 x 3 control points we had 30 parameters 

to be determined through the data inversion. In this first run the slip was 

allowed to vary between 0 and 10 m, whereas the rupture velocity was 

allowed to vary between 2.3 km/s and 3.3 km/s. Individuals in the initial 

model population were selected randomly around the uniform starting 

models. In the following runs, the starting models were chosen around the 

model obtained in the previous search stage and the inversion was performed 

allowing for smaller and smaller variations around them as the number of 

control points increased. The preferred model parameterization according to 

the Akaike Information Criterium was 15 x 8. This grid corresponds to a 

spatial sampling of the fault of 2.5 km in the strike direction and 2.0 km in 

the dip direction. Top and bottom panels of Figure 15 show, respectively, the 

final slip and rupture-time distributions on the fault plane for this model. The 

mean value of the final slip on the fault for this grid is 1.4 m, which 

corresponds to a scalar seismic moment of 2.1 1019 N m. The distribution of 

the final slip on the fault is characterized by two main asperities located 

southeast and northwest of the hypocenter. Moreover, we found another high-

slip region near the top middle-western edge of the fault which is probably 

driven by the high amplitude associated with the west–east component of the 

seismogram recorded at the COR receiver. The mean rupture velocity value 

for the best-fit model is 2.8 km/s, slightly higher than the mean value 

obtained by [108]. From the distribution of the rupture times on the fault it is 

evident that the rupture advanced faster toward the southeast than in the 

opposite direction. Finally, the total duration of the rupture is about 9 s.  

 In Figure 14 the ground-velocity records in the 0.5- to 5-Hz frequency 

band are compared with the synthetics computed for the best-fit rupture 

model at all the considered stations. The fit between synthetic and real 

seismograms is, in general, quite satisfactory although some discrepancies are 

found in the peak amplitude values. However, synthetic amplitudes are 

within a factor 1.5 of the observed ones. The north–south synthetics (Figure 

14- left panel) reproduce well the observed complex shape and duration of 

ground motion at different azimuths and distances (see, for instance, stations 

SAR, CAP, and GIL4).  

 The overall fit of the west–east components of ground motion (Figure 

14- right panel) is worse than for the north–south components, mainly 

because of the mismatch of stations SJT and COR, whereas for the other 

stations the synthetics match the spatial variation of the low frequency shape  
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Figure 15. Top Panel: slip map as retrieved by the inversion of strong motion data for 

the Loma Prieta earthquake. Bottom Panel: Rupture times for the same earthquake. 

 

and duration of observed records fairly well. In particular, the remarkable fit 

of the west–east component of station GIL4 must be pointed out. 

 

6. Conclusions and perspectives 
 

 Seismic rupture kinematic models describe the space-time evolution of 

the relative motion of the two sides of the fault (the slip function) from the 

inversion of the seismic data recorded at the Earth surface. Although they 
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represent a simplified picture of the seismic rupture which does not account 

neither for the stress state on the fault, nor for the energy balance at the 

rupture front, they provide insights into the understanding of the physical 

processes governing the generation, the propagation and the short wavelength 

radiation associated to the earthquake rupture. Kinematic source models are 

obtained as the solution of an inverse problem, whose associated operator is 

the representation integral (eq. 1-8). The inversion of the seismic 

observations to retrieve the characteristics of the slip function on the fault 

surface is known to be an ill-posed inverse problem, with non-unique 

solutions and, in many cases, a not continuous dependence on the data. As a 

consequence, when analyzing the data from the same earthquake, rather 

inconsistent results arise from the kinematic inversions performed by the 

different groups, due to specific choices in the data selection and processing, 

in the model parametrization, in the definition of the objective function, in 

the inversion procedure itself and in the computation of the Green’s 

functions. As an example, the several slip maps obtained for the Landers 

earthquake [30,36,115,116,117] show important variations in the position, 

shape and amplitude of the slip patches and differences in the average rupture 

velocity as large as 20% (results from inspection of the database of finite 

source rupture models SRCMOD by P.M. Mai, http://www.seismo.ethz.ch/ 

static/srcmod/Homepage.html). Moreover, the earthquake source blind test 

performed during the EU-SPICE project (http://www.spice-rtn.org) showed 

that even when inverting synthetic noise-free strong motion data in a known 

velocity structure, the retrieved slip models do not completely match the true 

model, although that the main low-frequency features in the data appear well 

described by the different models. For this case, when cross-correlating the 

inverted models with the original one, some of the models have a cross-

correlation value which is not better than a random but correlated slip model 

[118]. The results from the blind test hence indicated that subjective choices 

during the inversion procedure strongly affect the solution of the inverse 

problem, calling for a deeper understanding of the link between dynamic and 

kinematic parameters which would help in better constraining the inversion, 

for a proper data selection and processing and for a refined estimation of the 

uncertainties and the resolution on the final model. A further investigation of 

the robustness and limitations of the kinematic inversion could be performed 

by a suite of inversions of synthetic waveforms obtained as output of 

dynamic rupture simulations, as proposed by the SIV project 

(http://eqsource.webfactional. com/wiki/). 

 Uncertainties in the Green’s functions computation can be reduced by the 

massive use of EGF records. The development of specific interpolation 

strategies and the use of hybrid methods to couple the low-frequency 
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numerical simulations with the high-frequency EGFs [119] may help in 

overcoming the present limitations associated to the use of the EGFs, mainly 

related to the non-uniform sampling of the fault plane by the aftershocks and 

to availability of an adequate number of stations for which both mainshock 

and aftershock are recorded with a large signal-to-noise ratio in wide 

frequency band. Another complementary and quite robust approach in case of 

moderate size earthquakes, is the use of the source time functions as input 

waveforms for the inversion of source kinematic parameters. The source time 

functions are obtained by deconvolution of the mainshock record by an EGF 

[e.g.,120,121]. 

 The resolution of kinematic models can be improved by a joint inversion 

of seismic (strong motion, regional/teleseismic recordings), geodetic (GPS, 

InSAR) and eventually tsunami data, with the limitation that the different 

observed quantities have a different wavelength and frequency resolution on 

the physical processes under study. This promising approach has been widely 

applied for the kinematic inversion of moderate and large earthquakes [e.g., 

89,116,122]. However, the relative weight of the different datasets is still 

somewhat arbitrary and it can strongly influence the final kinematic solution. 

Additional constraints on the kinematic models may come from the 

integration of different seismic approaches and observables, such as the use 

of back-projections to map the average behavior of the rupture velocity, and 

of P and S wave polarizations from teleseismic or near-source records to get 

further constraints on source location, propagation and mechanism.  

 As a complementary approach, instead of searching for a single unique 

solution of the kinematic inversion, one could explore the different solutions 

obtained by several Monte-Carlo explorations and extract the common stable 

features to build up the resolved part of a kinematic source model. At one 

extreme, instead of using the data to retrieve one single model, the data could 

be used to falsify admissible models [123]. Following this approach, one 

could test a suite of possible kinematic models and retain the ones which 

explain the observations according to the associated uncertainties in the 

forward theory and data. Very recently several studies have investigated the 

statistical properties of the kinematic models obtained both by the inversion 

of seismic/geodetic data and as a result of the dynamic simulations [124,125]. 

The use of statistically admissible kinematic models coupled with an accurate 

computation of the Green’s functions and the development of the 

computational resources may lead to the application of this approach in the 

near future.  

 Finally, only very recently seismic and geodetic data were inverted to 

directly obtain a dynamic description of the rupture [62,103]. A whole 

dynamic inversion would require the knowledge of the initial stress, the 



Earthquake rupture kinematic modeling  57 

yielding stress and the constitutive law that describes the evolution of the 

traction on the fault as a function of the slip (or the slip velocity). To provide 

reliable simulations, a certain degree of heterogeneity needs to be imposed on 

the fault, to capture the different phases of the dynamic rupture, from the 

nucleation to the propagation, the radiation and the arrest. The large number 

of degrees of freedom and the correlation among parameters, however, lead 

to a strongly ill-posed problem and require a huge amount of simulations, to 

hope to fall in the “minimum” of the selected objective function. The few 

attempts to obtain a dynamic model directly from the observations, used 

strong a-priori constraints on the dynamic parameters and on the shape of the 

constitutive function with the aim of reducing the number of the parameters, 

addressing the correlation among them and providing a (smooth) degree of 

heterogeneity for the stress on the fault. Nevertheless these inversions came 

out with a reasonable estimation of the fracture energy and a picture of the 

stress evolution on the fault plane consistent with the kinematic models.  
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Abstract. Integration of observation, theory and experiment has 

led to significant advances in understanding the earthquake faulting 

process in the past 30 years. Progress has typically been made in an 

iterative fashion whereby a new theory or observation has led to a 

re-assessment of the existing ideas and consequent re-evaluation of 

some concepts. This paper focuses on one such strand of work, 

namely the understanding of supershear ruptures. Early theoretical 

work suggested that supershear ruptures are possible but unlikely 

to occur in the natural environment. This view was essentially 

unchallenged until the start of the 21st Century when observations 

of several earthquakes that had occurred at that time combined to 

suggest that supershear earthquakes could occur. This observation 

led to several carefully constructed lab experiments that aimed to 

produce supershear ruptures similar to those observed by 

seismologists. The majority of seismologists now accept that 

supershear earthquakes can and do occur, and now the focus of 

work is to try to understand the circumstances under which these 

earthquakes occur and the effects that they may produce. The 

improving quality of data recorded by the world‟s seismometers 

combined with novel geodetic methods for investigating static 

displacements and a greater than average number of significant  
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earthquakes in recent years present a unique opportunity to advance the understanding 

of earthquake faulting, and it is likely that progress similar to the development of 

ideas governing supershear earthquakes will happen in the coming years.    

 

1. Introduction 
 

 The ultimate goal of earthquake seismologists is to mitigate the risk 

associated with them. In order to do this, it is essential that the fundamentals 

of earthquake faulting are be understood. While laboratory experiments and 

theory may tell us of the possible modes of rock failure, we cannot be sure 

exactly how these scale to real-world situations unless observations of 

earthquakes are made. Hazard maps can be constructed based on the expected 

repeat times of earthquakes, but any map that relies only on the historical 

record of earthquakes in an area will be fatally flawed as it makes the 

assumption that the historical data records all potential earthquakes on a fault. 

Recent devastating earthquakes have highlighted how earthquakes with very 

long repeat times can strike in areas with low perceived risk [1,2,3]. Thus to 

mitigate risk, seismologists must be in a position to determine the full range 

of possible earthquakes in a given area, even if some types of earthquake are 

not observed in the historical record. 

 With the advent of digital seismometers in the latter part of the 20
th
 

Century, earthquake seismologists have developed a number of methods to 

invert seismograms to determine the rupture history of an earthquake.  The 

methods developed for inverting seismograms will be discussed in more 

detail in a later section, but suffice to say, assumptions regarding the rupture 

process are typically made. These assumptions are primarily made to stabilise 

the inversion process [4], but also have the effect of reducing the number of 

degrees of freedom of the problem investigated; an important consideration 

with limited computing power. Early methods chose a set of assumptions 

based on theoretical considerations [5,6,7]. Although as time has progressed, 

some of these assumptions and conditions have been called into question by 

observations of earthquakes. This consequently leads to a re-evaluation of the 

models of fracture propagation used. The iterative approach used with 

earthquake observation leading to improved models of rupture propagation 

which in turn leads to better models of real earthquakes being constructed is 

one which has seen the field move forward considerably in recent years. This 

coupled with the unusually high number of very large earthquakes producing 

good data in the first decade of the 21
st
 Century (Figure 1) means that the 

most comprehensive models of earthquake rupture ever produced are being 

constructed today. It is likely that considerable further progress will be made  
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Figure 1. Number of great earthquakes (with magnitude ≥8.0) occurring in the 10 

year  period preceding January 1 of each year since 1910 is shown as red bars. The 

average rate of great earthquakes since 1900 (0.67 per year) is indicated with a blue 

line. Magnitudes for earthquakes are the Mw reported by Pacheo & Sykes (1992) [8] 

for earthquakes prior to 1977 and shallower than 50km, and Ms as reported by the 

Internation Seismological Centre (ISC) for deeper earthquakes in this period. The 

magnitude of earthquakes since the start of 1977 are values of Mw reported by the 

Global CMT project (GCMT) [9]. 

 

in the coming years with the hope that the advances made will be used by 

policy makers to reduce the hazard associated with earthquakes. 

 

2. Theory of faulting 
 

 A full description of the theory of faulting encompasses not only 

considerations of earthquake seismologists but also material scientists and is 
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not necessary for the purposes of this paper, however the key points are 

outlined in this section. It is widely acknowledged that earthquakes propagate 

as shear-plane cracks under the influence of a „rate-weakening‟ friction law, 

that is to say that the frictional resistance to slip is greatly reduced while slip 

is occurring [10,11]: 
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Where Τ(D) is the stress within a fault surface, Dc is a characteristic slip 

distance and Τu = σu– σf ; the yield stress minus the residual stress. For an 

earthquake to initiate there must be an initial stress patch that is ready to 

break [12,13]. It must be noted here that there is no constraint that the values 

of sigma should be constant over a fault surface. Indeed, it is highly likely 

that heterogeneity in the fault surface will produce big variations in the 

frictional constants that determine σf and σu. Similarly, the initial stress on a 

fault is a combination of tectonic loading, the residual stress field from 

previous earthquakes on that fault, and the induced stress from earthquakes 

on other nearby faults. Hence it seems highly unlikely that any fault will 

behave as a uniformly loaded surface with constant frictional properties in an 

earthquake, however, this assumption was frequently used as a simplification 

when constructing models of theoretical rupture propagation 

[12,13,14,15,16]. 

 Although the exact details of the slip weakening law can be debated, the 

consequence of the relationship as expressed in equation (1) can be seen in 

Figure 2, namely that there is energy released by a release of stress by the 

propagating crack, this is termed the fracture surface energy. The rupture 

velocity is such that the energy absorbed at the crack tip in creating a new 

fracture surface is equal to the fracture surface energy [17].  This implies that 

there are certain rupture velocities where a propagating crack is stable. The 

question of permitted rupture velocities, in particular in relation to supershear 

ruptures, will be returned to later in this paper. One consequence of equation 

(1) is that a dimensionless value, S, a measure of the material strength of the 

fault relative to the tectonic stress can be calculated [18]: 
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Figure 2. Shows the consequence of the slip weakening law given in equation (1). 

The energy radiated, G is given by the formula: 
cu

D

DTdDDTG
c

2

1
)(

0

   where Dc is 

the slip weakening distance and is shown  shaded in the diagram. Modified from 

Madariaga et al 2000 [11]. 

 

Where σ0 is the initial stress on a fault. Numerical simulations of the 

behaviour of cracks propagating on faults with varying values of S have been 

carried out in 2 and 3 dimensions and the results of these models are 

discussed in more detail later in the text, however, the main conclusion is 

that, under most circumstances, cracks begin at rest and accelerate up to a 

terminal rupture velocity which tends towards the shear wave velocity [18]. 

The addition of “barriers”, can cause the rupture to terminate [19]. Barriers 

can be areas of either low effective stress either as a result of lower than 

normal initial stress, or higher than normal residual stress due to higher than 

normal friction. Relating this to the earth, barriers can either be areas of the 

fault with low coupling and hence a higher proportion of aseismic slip (low 

effective stress) or areas with high coupling (higher normal friction), hence 

act as a locked portion of the fault.  
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3. Methods of observing earthquake rupture 
 

 The combination of theoretical work on rupture propagation and the 

availability of digital records from earthquakes meant that by the late 1970s 

methods could be devised to determine the earthquake properties. This is 

perhaps most famously highlighted by the development of the Harvard CMT 

project [20] which, to this day, produces centroid locations, magnitudes and 

mechanisms under the moniker of the Global CMT (GCMT) [9] project. 

Although this is the most visible example of earthquake „inversion‟, due to 

the frequency of seismic data it uses, it effectively shrinks the earthquake 

under investigation to be a point source, the centroid. By comparing the 

position in space and time of the earthquake hypocentre with that of the 

centroid, it may be possible to draw some broad conclusions about the 

rupture duration and any directivity in the rupture for very large earthquakes 

but, apart from that, there is precious little information about the details of an 

earthquake rupture contained in its GCMT record. The majority of methods 

for determining the rupture process of earthquakes use higher frequency data, 

that allow the earthquake to be treated as a source with finite length, width 

and duration and these are outlined in this section. 

 The 1979 Imperial Valley earthquake provided the first real opportunity 

for seismologists to develop tools for the inversion of earthquake data to find 

the rupture history of an earthquake. Essentially the problem consists of 

attempting to produce synthetic seismograms that resemble as closely as 

possible the real seismograms recorded. The earthquake fault is split into a 

series of discrete cells along strike and dip with cells permitted to slip at 

various points in time. The individual cells are small enough in comparison to 

the frequency of seismic data being investigated to be considered as point 

sources. Consequently, given the crustal structure at the source and, to a 

lesser extent, at the receiver, a Green‟s function response to a point source 

dislocation at any individual cell can be calculated. Thus the recording made 

at any station is the sum of all the Green‟s functions multiplied by the 

appropriate slip at each point in space and time taken over the entire fault, or 

mathematically: 
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xxxx                                    (3) 

 

where i,k=1,2,3, uk(x1,t1) are the components of the displacement vector at 

any point, ai(x,t) are the components of slip on the fault  and Kik(x1,x,t1,t) are 

the components of the impulse response of the medium at (x1,t1) to a point 
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source dislocation at (x,t). The exact version of equation (3) can be 

approximated, following some transformations [5,4] to the form: 
 

 iikk xAb            (4) 
 

where bk is the data recorded at point k, xi is the sliprate at point i and Aik is 

the Green‟s functions relating the sliprate at i to the response at k. It should 

be noted here that k and i are points in space and time, that is to say that the 

time-varying position vectors in (3) have been replaced by a 1-dimensional 

numbering system adopted when approximating the equation. This can be 

rewritten as: 
 

xb A             (5)  

 

which is a matrix equation that is familiar to many readers. For seismic 

studies this equation can be shown in graphical form [6,21] and for 

illustrative purposes such a diagram is shown in figure 3. 

 The forward problem is relatively trivial; if the matrix of Greens 

functions is known along with the slip history of each cell on the fault, then it 

is fairly easy to calculate the synthetic seismograms that should be recorded. 

This can be used to deduce the rupture process by a process of trial and 

educated guess [22]. However the inverse problem, namely what is the 

optimal slip distribution to describe a given data set, is much more difficult. 

In the inverse problem, equation (5) is rewritten: 
 

rbx A                          (6) 

 

And the vector, r, is minimised. Usually the ℓ1, ℓ2 or ℓ∞ norm is minimised, 

all 3 being equivalent in the sense that they tend to zero simultaneously. 

Additionally there are further complications when the physical properties of 

the problem under study are considered:  
 

1. What is the mechanism of the slip in each cell? The mechanism of 

faulting at a point source has a profound effect on the radiation pattern, 

hence if the direction of slip varies along the fault, then the matrix of 

Green‟s functions in equations (5) and (6) will also vary. Without 

accurate knowledge of how the mechanism of faulting varies over the 

length of an earthquake, an accurate model of the earthquake rupture 

history cannot be deduced.  

2. Are there physical rules which the cells must obey? There are many 

examples that have been suggested by theoretical studies, such as slip 
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must always be non-negative (the „no backslip‟ constraint) or slip is 

terminated by the passage of a healing front.  

3. Are there constraints that apply to the rupture front? Theoretical studies 

have suggested that there are stable velocities that ruptures should 

proceed at. It may be appropriate to add this as a constraint to the 

problem in the same way that a healing front may be applied. A similar 

result can be obtained by specifying a given rise-time for each cell once 

it has begun to slip.  

4. Are there distributions of slip that are physically more realistic? For 

example it may be unrealistic for there to be cells that have zero or very 

low slip immediately neighbouring cells with very high slip, it may be 

more appropriate to minimise the difference in slip between 

neighbouring cells.  

5. Are there any other constraints to how much slip has taken place or 

where it has occurred? There may be information from ground or 

geodetic observations, which equally raise the question of how well does 

surface deformation translate to deformation at depth. Equally, it may be 

thought that the total moment of an earthquake is sufficiently well known 

from other studies (such as the GCMT solution) to add that as a 

constraint. 
 

 The choice of which assumptions to apply to a given earthquake 

inversion may have profound effects on the model produced. The fact is that 

in dicretizing the problem in moving from equation (3) to equation (4) in 

order to solve problems using computers means that there is intrinsically an 

error introduced, represented by the approximately equals sign in equations 

(4) and (5). This means that any method derived from this approach will only 

produce a solution which cannot explain all features observed in the data. 

There is no guarantee that the best solution mathematically closely resembles 

what occurred in reality. Indeed it has been shown that when inverting 

realistic synthetic data, unless constraints are imposed, the solutions obtained 

are not necessarily physically meaningful [23]. It may be correct that adding 

certain assumptions to models of various earthquake mean that the solutions 

produced are more likely to accurately model reality, however, due to the 

intrinsic „approximate‟ nature of the problem there is a danger of a 

„satisfactory‟ model of an earthquake being produced including  a false 

assumption when a superior model might exist where that assumption is not 

applied. 

 The previous discussion is deliberately vague in that the principles 

outlined can be applied to data at any frequencies and can then be solved 

using an appropriate inverse method. Equally, similar  equations lead to a  
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Figure 3. Simple visual representation of equation (4), for the case of an earthquake 

modelled by 3 cells and 3 time-steps recorded at 3 station. Slip initiates in cell A, 

propagates through cells B and C and is recorded at 3 seismic stations, U, V and W in 

the approximate directions shown at the top of the diagram. Greens functions relating 

the impulse response of each of the stations to slip in each of the cells is calculated 

and shifted by an appropriate time depending on the position of the cell in relation to 

the recording station and the timing of slip, and are colour coded relative to the cell 

diagram at the top of the figure. The sliprate vector, x is similarly colour coded with 

the subscript denoting the cell and time-step that slip occurs on. Due to causality, the 

sliprate at time 1 is zero in all cells apart from that containing the hypocentre (i.e. 

xB1=xC1=0).   
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similar problem, without the time dimension, in determining the final or static 

displacement caused slip on a finite fault that can be modelled using 

Synthetic Interferometic Apature Radar (InSAR), GPS or other similar data 

(e.g. Massonnet and Feigl (1998) [24]). Early seismological models initially 

focussed on locally recorded strong motion data using minimisation either of 

a least squared [5] or a cross-correlation error function between synthetics 

and data [25] each with their own inherent assumptions. Extensions were 

made to show that teleseismic data could equally be used [6]. Once it had 

been shown that teleseismic body wave could be used to produce models the 

door was open to potentially study any sufficiently large earthquake. This 

period in seismology was characterised by a low number of very large 

earthquakes (see figure 1) as anomalous as the current very high rate of very 

large earthquakes. Indeed there were no great earthquakes in the first half of 

the 1980s. The Andreanof Islands earthquake of 1986 presented a significant 

opportunity to test and further develop methods. 

 The 1986 Andreanof islands earthquake was studied by many authors 

using a variety of different methods [26,27,28,29,4]. Although the number of 

digital stations recording the earthquake was low, intermediate and long 

period body waves were successfully used to find a rupture history [26] along 

with higher frequency (up to 5Hz) body wave data [28] and broadband body 

wave data [29,4]. Despite the success at producing models for this earthquake 

that can explain the recorded data for this earthquake, there are significant 

differences between models produced by different authors. This highlights 

the point made previously that the exact method for inverting earthquake data 

and the inherent assumptions involved in the inversion method are of vital 

importance. Potentially extending the portion of the earthquake record under 

investigation could help resolve these discrepancies. Surface waves 

potentially extend the usable portion of the seismic record that can be 

modelled and have also been used to determine rupture histories of 

earthquakes. Surface waves recorded at local strong motion stations were 

used to analyse the Imperial Valley earthquake [5]. However, the use of 

teleseismic surface waves is complicated by the fact that the waves have 

travelled large distances through the highly heterogeneous crust as opposed 

to body waves that have the vast majority of their ray paths within the 

relatively homogenous mantle. Additionally attenuation of the high frequency 

portion of the surface wave means that teleseismic surface waves are 

dominated by relatively long-period (20 seconds and upwards [30]) energy 

consequently their ability to resolve fine details of a rupture history is 

severely curtailed. Nevertheless, surface waves have proved useful in 

imaging the ruptures of very long earthquakes [30,2]. 
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 As already mentioned, early attempts at modelling earthquakes resulted 

in earthquake models being produced by different authors that were very 

different to each other. Attempts to improve the inversion technique included 

the replacement of calculated Greens functions in equations (4)-(6) with 

Empirical Greens Functions (EGFs) from the recordings of relatively small 

fore- or after-shocks [31]. This approach failed to radically improve the 

disparity between models proposed by different authors. Consequently the 

approach frequently adopted today is to examine a suite of models that satisfy 

the available data and identify features that are common across all solutions. 

This approach was hinted at in Olsen and Apsel‟s 1982 [5] paper when they 

discuss the conditions for a model to be acceptable: 
 

“…3. If more than one solution fits the data equally well, additional 

information must be supplied to uniquely define which solution is being 

obtained.” 
 

 Today the corollary is used, namely that in the absence of additional data, 

all solutions are acceptable, and only features common across solutions are 

considered robust. A method for perturbing a model and investigating the 

robustness of features within it was described more than 15 years ago [32]. 

  

4. Observations of ‘ordinary’ earthquakes 
 

 As previously mentioned, many of the techniques for investigating 

earthquakes were developed in the early 1980s, a period where there were 

relatively few very large earthquakes. Figure 1 shows how the frequency of 

great (Mw ≥ 8.0) earthquakes has varied with time since the start of the 20
th

 

Century and has two major striking features; the high number of great 

earthquakes since the start of the 21
st
 century and the low number of great 

earthquakes through the 1980s and 1990s. Great earthquakes are important as 

their large size means that a greater degree of resolution of details is possible 

with seismic records of a given frequency range, whereas their potential for 

widespread destruction means they are of interest to society and policy 

makers in general. The rupture area of an earthquake is related to its moment 

by the relationship: 
 

sAM 0            (7) 

 

Where M0 is moment, μ is the modulus of rigidity of the material breaking, A 

is the rupture area and s  is the average slip [33]. Great earthquakes have M0 

≥ 1.25x10
21

 Nm which implies a minimum rupture area of ~10,000 km
2
 when 
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sensible values of μ and s  are substituted into equation (7). Teleseismic body 

wave data is essentially devoid of frequencies higher than ~0.5 Hz due to 

attenuation along the ray path hence the smallest feature that can be 

accurately modelled in a rupture inversion is of the order 10 km in size. 

Teleseismic surface wave data contains even less high frequency data hence 

can only model at a correspondingly coarser degree. Very large earthquakes 

consequently provide the best opportunity to model the earthquake rupture 

process; it can be guaranteed that there will be digital high quality data 

available in a range of azimuthal directions with sufficient resolution to allow 

splitting the rupture area into a series of smaller sub-faults. There are several 

places worldwide where there is a sufficiently dense network of seismic 

stations to allow the investigation of smaller earthquakes using local high 

frequency data, comparing the models presented for great earthquakes to 

those produced for smaller earthquakes allows the testing of various 

hypotheses of earthquake scaling relations. 

 As previously discussed, researchers have now been modelling the 

rupture process of real earthquakes for some 30 years, and much has been 

learnt in that time. The greatest progress is usually made in the immediate 

aftermath of significant earthquakes. The term „significant‟ is used here to 

mean one of two things; (i) the earthquake in question is unusual in terms of 

its size or human impact which results in a disproportionate amount of 

scientific interest being shown in it, (ii) the earthquake cannot be adequately 

modelled using existing techniques. The paucity of large earthquakes during 

the 1980s and 90s meant that any great earthquake during that period 

attracted a great deal of scientific interest, and techniques were developed and 

honed as they were applied to successive earthquakes. For example the 

methods applied to the 1986 Andreanof Islands earthquake [4] were 

improved and expanded on following the 1989 MacQuarie Ridge earthquake 

[32].  

 An example of an earthquake not being adequately modelled using 

existing techniques is the 2004 Sumatra-Andaman Islands earthquake. 

Existing body-wave methods for determining the rupture history for this 

earthquake could not image the latter portions of the earthquake rupture 

because of the earthquake‟s very long rupture duration [2]. Body wave 

solutions rely on the accurate production of Green‟s functions to be input into 

the matrix A in equation (6). These can be produced if the crustal structure is 

known to sufficiently high resolution. However, the Green‟s functions 

calculated typically rely on the assumption that the mantle is an infinite half-

space. This assumption is clearly not true but is unimportant if the duration of 

the data being modelled is sufficiently short to ensure core-reflection phases 
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do not arrive in the wave train of the data being modelled. Frequently data is 

clipped prior to the arrival of core reflections to ensure that such unmodelled 

„noise‟ does not interfere with the inversion process. When the rupture 

duration is of the order of 10 minutes as was the case for the Sumatra-

Andaman Islands earthquake [34] core reflections from the early part of the 

rupture arrive at stations at the same time as the direct waves from latter 

portions of the rupture making it impossible to accurately model the body 

waves. A novel approach termed „back-projection‟ used a Japanese array to 

map the position of the portion of the fault that was slipping at any time to 

image the rupture front as the earthquake progressed [35]. The method stacks 

data from a large number of stations close to each other in an array. By 

comparing time-shifts required to stack the arrivals correctly across the array 

to the theoretical travel times between points on the earthquake fault and 

stations in the array, it is possible to determine the origin of the direct wave at 

any time in the earthquake history. Although this method does not give a slip 

distribution directly it can be used to as a constraint in other methods and as a 

method of determining the rupture speed of an earthquake and has been used 

to determine the rupture velocity of several subsequent earthquakes 

[36,37,38]. 

   

5. Theory of supershear earthquakes 
 

 One of the assumptions that is fed into many of the earthquake inversions 

is that earthquakes rupture at a certain velocity. This assumption stems from 

theoretical work on the mechanics of fractures. The accepted wisdom for a 

long time was that ruptures accelerate from rest to a terminal velocity close to 

the Rayleigh speed [39]. Theoretical work on fracture dynamics actually 

showed that there were two possible stable rupture velocities, either close to 

the Rayleigh wave speed or in excess of the shear wave velocity [40]. Owing 

to the fact that ruptures at the shear wave velocity are not stable, it was 

widely assumed that this acted as a „barrier‟ to the velocity of the accelerating 

crack tip hence no earthquake could propagate in the supershear rupture 

regime. It has, however, been shown that in-plane faults modelled in 2 

dimensions can propagate at supershear velocities courtesy of an interesting 

phenomenom whereby the rupture front literally jumps from the Rayleigh 

wave velocity to the supershear regime [39]. In this case two rupture fronts 

co-exist for a short period of time before the initial Rayleigh wave rupture 

dies out to leave a single rupture propagating in the supershear regime. There 

is currently no known analytical approach to determination of the rupture 

propagation in 3 dimensions hence all studies to date have utilised numerical 

simulation. The question of supershear rupture in 3 dimensions has been 
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addressed [11] and it has been shown that supershear rupture can occur under 

certain conditions. The process in moving from Rayleigh to supershear 

velocities in 3 dimensions is different from 2 dimensions; instead of the 

rupture front „jumping‟ ahead, the rupture becomes initially unstable in the 

in-plane direction before this instability propagates laterally along the rupture 

front. This means that an initially circular rupture becomes elongated along 

the in-plane direction eventually forming „ears‟ on the edge of the rupture. 

This results in no discontinuity in the rupture front with consequently no 

region where slip is temporarily arrested between the passing of the 

supershear and Rayleigh rupture fronts in contrast to the two dimensional 

studies undertaken. Figure 4 reproduces figures 3 of Madariaga et al (2000) 

[11] which illustrates this. 

 Further work in three dimensions has shown that for this transition 

between Rayleigh and supershear rupture velocities occurs when S (as 

defined in eqn (2)) ≤ 1.19 [41], much lower than the 1.77 as determined for 

the two-dimensional case [42].  

 

6. Laboratory studies 
 

 There has been considerable work in attempting to verify the theory of 

rupture velocity and the possibility of supershear ruptures taking place, as 

studies into both earthquakes and the fundamental processes involved in the 

fracture of materials. Real material studies have crack tip speeds that seldom 

exceed 40-50% of the Rayleigh velocity [43,44] as opposed to the theoretical 

crack velocities approaching the Rayleigh wave velocity. To explain this 

discrepancy between theory and laboratory studies a variety of explanations 

have been invoked such as high strain and micro-damage zones around the 

crack tip [44,45] or non-linear crack paths [45]. In plane shear intersonic 

crack growth was initially reported in homalite with a pre-existing fault plane 

[47]. This experimental set-up was designed to resemble the case where an 

earthquake ruptures a pre-existing fault plane in a rock unit, with the use of 

homalite serving to allow a high-speed camera to photograph the rupture as it 

progresses. Measurements of the position of the crack tip with time and the 

angle of the shear shock waves visible in the stress field allowed a 

determination of the rupture velocity, both independently confirming a 

steady-state velocity of ~ 2 vs where vs is the shear wave velocity of the 

homalite. This work was then extended to show the transition between the 

sub-Rayleigh and supershear rupture regimes [48]. Variation in the angle and 

magnitude of the far-field pressure exerted on a pre-existing fault in homalite 

allowed investigation of the sub- to supershear transition. For lower pressures 
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Figure 4. Rupture growth on a flat uniform fault embedded in a homogeneous elastic 

medium reproduced with permission from Madariaga et al (2000) [11]. Rupture starts 

from a finite initial asperity and then grows at subsonic speed in all directions. After a 

while, rupture along the inplane direction (horizontal) jumps at a speed that is faster 

than the shear wave velocity. Snapshots show the sliprate (left) and associated stress 

change (right) at four successive instants during rupture. Slightly after time =100, 

rupture jumps from the subshear to supershear regime in the inplane direction. 
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and angles, the rupture progresses at a velocity close to the Rayleigh wave 

whereas for higher values of pressure rupture nucleated and progressed at 

supershear velocities. At intermediate values, a transition was observed 

whereby the rupture initiated at Rayleigh wave velocities and then „jumped‟ 

to a supershear regime. This has been likened to the theoretical Burridge-

Andrews mechanism [39]. Most recently this work has been further extended 

by considering the effect of having material with different bulk properties on 

either side of the fault [49]. By using homalite and polycarbonate plates on 

either side of a fault orientated at a given angle to far-field pressure it is 

possible to see ruptures progress in different manners in each direction. 

Depending on the pressure and angle used (see figure 5), three distinct 

rupture characteristics were observed: 

 

1. Bilateral rupture progressing at velocities below the shear wave velocity 

of the slower material: The rupture velocity was higher in the direction 

where the fault was angled such that the direction of slip of the lower 

wave speed material is positive (rupture propagating to the left in figure 5 

is faster). The faster rupture propagates at a velocity close to the 

generalised Rayleigh wave speed of the system, the slower rupture 

progresses at a speed lower than the Rayleigh wave speed in the slower 

material. 

2. Bilateral rupture with one rupture progressing at the generalised 

Rayleigh wave velocity, the other rupture progressing at a velocity in 

excess of the shear wave velocity of both materials, close to, but below,  

the longitudinal wave velocity of the slower material: The velocity of the 

rupture progressing in the direction of positive slip of the slower material 

is close to the generalised Rayleigh wave velocity as in case (1). 

However, the supershear rupture occurs in the direction that exhibited 

slower rupture velocities in case (1) (rupture propagating to the right in 

figure 5 is supershear). 

3. The mode of rupture transitions from case (1) to case (2): That is to say 

the rupture in the direction of positive slip of the slow material stays at a 

constant velocity close to the generalised Rayleigh wave velocity 

whereas the rupture in the direction of negative slip of the slow material 

is initially less than the Rayleigh wave speed of the slower material but 

then jumps to a velocity in excess of both shear wave velocities and 

slightly less than the longitudinal wave velocity of the slower material. 

This behaviour is similar to that observed for faults in a single material 

with intermediate pressure and angle discussed previously [48]. 
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Figure 5. Experimental set-up used to image different rupture speeds in different 

directions along a fault between two materials with differing properties. The crack is 

triggered at the hypocenter using an exploding wire. 

 

 The experiments show that a wide range of possible rupture processes 

can occur depending on the magnitude and angle of the far-field pressure. By 

careful observation of earthquakes it may be possible to determine whether 

supershear ruptures have occurred. The combination of theoretical work with 

laboratory experiment has highlighted the conditions that supershear rupture 

can occur under, by observing if and where supershear earthquakes occur it 

may be possible to quantify some of the boundary forces at play. 

 

7. Observation of supershear earthquakes 
 

 Much of the work discussed in the previous section was carried out as a 

result of observations of supershear earthquakes. The initial theoretical work 

suggested that although ruptures might be stable at supershear velocities, the 

fact that they were not stable at the shear wave velocity meant that many 

perceived this barrier would prevent ruptures from reaching supershear 

velocities. Observation of earthquake where models with only subshear 

rupture did not fully explain all the observations led to original theoretical 

work being revisited and to experiments being carried out to investigate the 

sub- to supershear transition. It is this iterative approach to understanding 

where an observation leads to previous work being re-examined with a 
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different emphasis placed on the original research that has characterised 

earthquake seismology in the past decade. This paper focuses mostly on the 

debate surrounding supershear earthquakes as this has been one of the most 

interesting developments in the field recently, although with the great 

quantity of high quality data that is now available relating to recent 

earthquakes, it is likely that other major advances will be made in the near 

future. 

 Although supershear earthquake ruptures had been predicted during the 

early days of fracture modeling [40,18,13] there were very few early 

observations of supershear earthquakes. The only observation of supershear 

rupture in the literature in the 20
th

 Century was associated with the Imperial 

valley earthquake of 1979 [5,50]. However, even for this earthquake, there 

was not a consensus that rupture was supershear, with many solutions 

proposed that did not require a supershear portion of rupture [22,51,6]. This 

highlights the problems associated with using observations of earthquake 

ruptures to determine which set of assumptions is the most suitable to apply 

to an earthquake. The question of whether the Imperial Valley earthquake 

ruptured at supershear velocities for some portion of its rupture history is not 

unambiguously determined by the investigations of the time. Consequently, 

using the shear wave velocity as a maximum rupture velocity was still seen as 

a reasonable constraint on earthquake inversions by many researchers. The 

occurrence of several large strike-slip earthquakes in 1999 and the early years 

of the 21
st
 Century (Figure 6) has subsequently challenged this. 

 

 
 

Figure 6. Map of the world showing locations of earthquakes with inferred supershear 

ruptures to have occurred around the turn of the Century discussed in the text. 
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 The first of the large strike-slip earthquakes in this sequence is the 17
th

 

August 1999 Izmit earthquake. This Mw 7.6 event was the latest earthquake 

in the sequence of the „unzipping‟ of the North Anatolian Fault [52]. Two 

strong motion recordings were made near the earthquake fault, one to the 

East of the earthquake epicentre, the other to its West [53]. These two 

recording were very different; the recording to the West had a „typical‟ 

character with well separated P and S wave arrivals and a peak ground 

acceleration of 0.21g. To the East, the recording had no clear separation of P 

and S waves and a much higher peak ground acceleration of 0.41g. The 

conclusion drawn is that rupture to the East was supershear velocity while 

rupture westwards was a more „usual‟ sub-shear rupture. This behaviour is 

the same as that seen in experiments with rupture along a fault between 

materials with different properties [49]. To be completely analogous with the 

experimental data, the seismic velocity of material to the North of the North 

Anatolian fault in this area must be higher than to the south of the fault. This 

hypothesis has yet to be fully tested. 

 This observation, along with the more uncertain observation of 

supershear rupture for the Imperial Valley earthquake [5,50] led to a re-

assessment of the assumptions present in many of the inversions carried out. 

Strike-slip earthquakes could no longer be assumed to rupture at sub-shear 

velocities. Further weight was added to this argument by the 3
rd

 November 

2002, Denali, earthquake. The Denali earthquake was Mw 7.8 and initiated on 

the previously unrecognised Susitna Glacier thrust fault and propagated west 

for close to 50 km. Rupture then proceeded on the McKinley strand of the 

Denali fault for ~70 km before reaching the main strand of the Denali fault on 

which it propagated for a further 156 km before stepping across a ~20 km 

transition zone and propagating for a further ~70 km  on the Totschunda fault 

[54]. The total mapped surface rupture length is 341 km [54,55]. Despite the 

Denali fault‟s remote location, earthquakes on it have the potential to have 

significant economic impact as the trans-Alaskan oil pipeline runs across it. 

Consequently, there were a number of local strong-motion local instruments 

recording events as the earthquake occurred. Although some early inversions 

produced models with sub-shear ruptures [56,57], inversions using local 

strong-motion data [58,59] and more sophistcated subsequent techniques [37] 

have shown supershear rupture occurred, transitioning from a sub- to 

supershear rupture regime about 120 km after earthquake initiation. 

 Twelve months previously the Kokoxili earthquake occurred. This 

earthquake broke the Kunlun fault and was to be the first earthquake with 

supershear rupture observed in teleseismic data. In contrast to the Denali 

earthquake, in this remote area there were no local strong-motion 

seismometers deployed. The Kokoxili earthquake (also termed the Kunlun or 
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Kunlunshan earthquake) occurred on November 14, 2001 rupturing with    

Mw 7.8, breaking a ~400 km long section of the Kunlun fault in Tibet [60]. 

Rupture initiated on an extensional step-over before transferring to the left-

lateral Kunlun fault, rupturing the fault unilaterally eastwards [56]. This 

earthquake has the largest measured epicentre-centroid location shift of any 

strike-slip earthquake in the global CMT catalogue [56]. The first inference 

of supershear rupture for this earthquake came from teleseismic surface wave 

data [30]. As previously discussed, teleseismic surface waves can only 

resolve details on a broad scale due to their dominant frequencies. 

Nevertheless, due to the Kokoxili earthquake‟s very long rupture length, it 

was possible to split the fault into 4, 100 km long sections and show that 

rupture occurred at an average velocity in excess of the local supershear 

speed in all but the first section of the fault although the rupture velocity is 

not well resolved in the final section [30]. Early studies of body wave data 

settled on a rupture with an average velocity very close to that of the local 

shear wave velocity of 3.5 km/s with studies reporting 3.4 km/s [61,56] and 

3.6 km/s [62]. All the early body-wave studies only reported average rupture 

velocity and used either predominantly [61,62] or exclusively [56] P wave 

records. P wave records are less sensitive to variation in rupture velocity due 

to their higher speed relative to S waves. A study looking at only S wave 

body waves was carried out and found that although the early portions of 

rupture were sub-shear, after approximately 120 km of rupture, the rupture 

velocity jumped abruptly to supershear velocities [63]. The supershear 

rupture continued for at least 150 km at which point the rupture front became 

poorly resolved. This observation was verified [37] using the method of P 

wave back-projection [35]. Further observations of the origin of the high 

frequency components of Rayleigh waves due to the earthquake using an 

array at regional distances show that they originated from regions of the fault 

where rapid transitions between sub- and supershear ruptures occurred [64]. 

This is expected from theoretical and numerical work on the transition 

[65,66,67]. Field observations reveal unusual off-fault cracking [68] in 

precisely the region of the high rupture velocity imaged in other studies 

[63,64,37]. Investigation of the theoretical stress field induced by a passing 

supershear rupture front indicates that the area in which the cracks are 

observed would have been subjected to considerable transient tensional stress 

if supershear rupture occurred as proposed [68]. The Denali and Kokoxili 

earthquakes have remarkable similarities in their geographical expression and 

the style in which they ruptured. Another, less obvious, similarity is that 

although the crustal thickness is very different in Alaska to the double 

thickness crust observed in Tibet, the seismogenic zone thickness is similar in 

both meaning that the earthquakes had similar fault widths of ~15-20 km.  
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 The debate surrounding the rupture velocity of the Kokoxili earthquake 

highlights the major problem that exists is earthquake modelling mentioned 

in section (3); namely how good does a solution have to be to be considered 

„good enough‟. If the work on the Izmit earthquake had not been combined 

with more uncertain models from other earthquakes such as the Imperial 

Valley earthquake and experimental work to create a more convincing set of 

evidence, then the models that have fast, but critically sub-shear, rupture 

velocities might be considered sufficient. The growing consensus that 

supershear ruptures can and do occur is down to a combination of increased 

data quantity and quality, theoretical work on fracture mechanics and 

experimental work combined with several earthquakes. 

 

8. Discussion 
 

 The spate of large supershear earthquake reported in the scientific 

literature of the early years of the 21
st
 Century is intriguing. The first question 

that arises is whether these earthquakes are unusual, or whether supershear 

earthquakes occur regularly and only recently have advances in data and 

techniques allowed their observation. The problem with the classical rupture 

inversion techniques used since the pioneering work of the early 1980s [5,6] 

is that the seismic radiation is a function of not only the slip on the fault but 

also the rise-time and rupture velocity. Many inversions attempt to deduce 

the slip as this can then be compared to observations on the ground via 

surface measured slips or at depth via GPS or InSAR with the necessary 

caveats on timing of slip and how measurements on the free surface reflect 

the nature of the fault at depth. The argument that the majority of earthquakes 

have a rupture velocity of approximately 80% of the local shear wave 

velocity [69] has been used as justification in many studies constraining or 

fixing the value of rupture velocity. It has been argued that, where possible, 

the rupture velocity should be separately inverted for [64] prior to 

determination of the slip distribution. There are methods available for the 

direct determination of rupture velocity that use the presence of both local 

[70] and teleseismic [35] arrays. The recent earthquakes that exhibit 

supershear ruptures were only identified following very careful analysis. 

Frequently early analyses produced models with no supershear rupture 

portion, and it was only once all the available data was analysed that 

supershear rupture became evident. The concern is that more minor 

earthquakes are not generally subjected to the raft of modelling techniques 

and hence models might have been produced that would not stand up to a 

high degree of scrutiny. 
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 The advances made in earthquake modelling over the past 30 years have 

been as a result of two major events. Firstly, there was the technological 

breakthrough of digital seismometers and the development of computing to 

allow the discretisation and investigation of the inverse problem. This led to 

the raft of inversion techniques developed in the early 1980s and refined in 

the following years. The second major advance is occurring at the present 

time. The unusually large number of large earthquakes coupled with the 

increase in number and quality of seismic stations means that there in an 

unprecedented degree of seismic data available to investigate. This combined 

with improvements in measuring the static displacements due to earthquakes 

and in the interseismic period has led to the development of new techniques 

and the questioning of many previously produced seismic models. This paper 

has focussed on supershear earthquakes; the story which surrounds the 

evolution of thinking on the subject has mirrored the general progress in the 

field of seismology, an evolution which looks set to continue in the coming 

years.     

 

9. Future work 
 

 Although it is inherently impossible to predict what advances will be 

made in any field of research, it is possible to predict what method is likely to 

give the best route to proceed down. Theoretical work on supershear ruptures 

is progressing and it is likely that the next step will be to incorporate the 

possibility of supershear ruptures into existing earthquake hazard 

assessments. This will require considerable work to accurately determine the 

likely ground response to the passage of a supershear rupture as well as an 

accurate assessment of the necessary conditions to allow supershear rupture 

to occur. It has already been noted that all of the supershear ruptures that 

have so far been observed occurred on remarkably straight sections of fault 

[71]. Experimental lab work has suggested that the angle and magnitude of 

the controlling stress field plays an important role in the sub- to supershear 

rupture transition [47,48] and further work scaling this observation up to 

earthquakes is required. Once the probability of a supershear rupture 

occurring on a given fault is estimated and this information incorporated into 

likely ground acceleration models, it may be that building codes in some 

regions of the world will require updating.   

 Early work by seismologists focussed on explaining short segments of 

the earthquake record, be it direct P, S, or surface waves. Modern techniques 

frequently utilise much more of the spectrum. The problem in doing this is 

that Greens‟ functions that form the basis of the matrix equation (equation 

(6)) become increasingly complex the more phases are considered. 
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Inaccuracies in the Greens‟ function will lead to errors in any inversion 

produced in a non-linear fashion. The use of small earthquakes as „Empirical 

Greens Functions‟ (EGFs) of larger earthquakes has long been discussed. By 

definition, a small earthquake in the same location with the same mechanism 

as a larger earthquake will contain all of the same phases as the trace relating 

to the larger earthquake, hence errors in the Greens function matrix can 

theoretically be reduced to near zero. This idea has been around for some 

time [72], and applied to some of the early seismic source analysis [73]. The 

approach has been developed by a number of authors 

[74,75,76,77,31,78,79,80,81] in the intervening years but has mainly been 

restricted to investigations of surface waves. Body wave recordings are 

sufficiently complex that several EGF are required at different depths on the 

subduction interface to model a typical great subduction zone earthquake. 

The chances of a subduction zone earthquake having sufficient aftershocks 

with the correct mechanism and distribution over the earthquake fault plane is 

low, however, with the improving standard of data recording and as the total 

number of earthquakes recorded increases with time, the chances of finding 

suitable EGFs in the historical catalogue increases. It is likely that EGFs will 

soon be used to model the full trace of a large earthquake including body and 

surface waves although how much more this will tell us about the earthquake 

rupture process than traditional techniques remains to be seen. 

 Historically there have been several examples of earthquakes with 

mapped surface ruptures that indicate rupture on multiple fault planes, the 

1927 Tango, Japan, earthquake being one famous example [82] and the 

Landers earthquake of 1992 being a more recent example [83]. When 

mapping of the surface rupture is possible it is easy to use this as a constraint 

when inverting for the seismic history of the earthquake and allow slip to 

occur on multiple appropriate faults. However, the majority of earthquakes 

do not have mapped surface ruptures. Much progress has been made in recent 

years on using different techniques to determine the fault geometry by one 

method (for example Interferometric Synthetic Appature Radar, InSAR) and 

then use that geometry in the inversion of seismic data. Equally it has been 

demonstrated that careful analysis of high quality seismic data can resolve 

simultaneous rupture on multiple faults in certain circumstances in the 

absence of other geodetic data [84,85,38]. It is in the combination of multiple 

data sets to produce a composite solution [38] that the immediate future lies. 

The technique of back projection of P waves [35] dovetails nicely with 

traditional kinematic inversion techniques, in that it provides a constraint to 

the earthquake rupture front, and it is expected that more studies combining 

back-projection with inversion of body and surface waves are likely in the 

coming years. Recent work has also focussed on combining geodetic 
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measurements with seismic data in a simultaneous inversion [86,87],  

building on earlier work [88]. The problem with this is that many geodetic 

measurements may include movement on a fault or faults that occurred after 

the seismic slip. For example, InSAR data may include a portion of afterslip 

on a fault in the immediate aftermath of an earthquake. It is likely that the 

magnitude of this afterslip can be significant. It may be that the slip 

determined due to geodetic inversions acts as an upper bound to a subsequent 

seismic inversion (i.e. seismic slip in any cell can be 0-100% of the geodetic 

slip in that cell), exactly how to paramaterise this appropriately while 

simultaneously inverting for geodetic and seismic slip is a question that is yet 

to be answered. If these questions can be fully answered and then the answers 

applied to the datasets that currently exist and are continually being created 

as more earthquakes occur then they will doubtless shed great light on the 

fundamental mechanisms by which earthquakes occur.  
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4. Numerical algorithms for earthquake 

rupture dynamic modeling 
 

Luis A. Dalguer 

Swiss Seismological Service, ETH Zurich, CH-8092, Switzerland 
 

 

Abstract. Numerical models of dynamic fault rupture provide a 

convenient framework to investigate the physical processes 

involved in the fault rupture during earthquake and the 

corresponding ground motion. This kind of model usually idealizes 

the earthquake rupture as a dynamically running shear crack on a 

frictional interface embedded in a linearly elastic continuum. This 

idealization has proven to be a useful foundation for analyzing 

natural earthquakes. The problem basically incorporates conservation 

laws of continuum mechanics, constitutive behavior of rocks under 

interface sliding, and state of stress in the crust. The fault kinematics 

(slip), is determined dynamically as part of the solution itself, by 

solving the elastodynamic equation coupled to frictional siding. Here 

we describe the numerical implementation of this problem in finite 

difference solvers, but easily can be adapted to the different classes 

of finite element methods. Two approaches of fault representation 

are formulated, first the so called traction at split-node (TSN) scheme 

in which explicitly incorporates the fault discontinuity at velocity 

(and/or displacement) nodes, and second the inelastic-zone scheme, 

so called stress glut (SG) method, in which approximate the fault-

rupture conditions through inelastic increments to the stress 

components. Finally we develop numerical tests to shortly evaluate 

the numerical models as well as to analyze some rupture phenomena.    
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Introduction 
 

 The study of earthquake rupture using dynamic models has the potential 

for important contributions to understanding different aspects related to the 

earthquake mechanism and near source ground motion. The idealization that 

earthquake ruptures in a shear crack embedded in a linearly elastic 

continuum, propagating spontaneously under pre-defined conditions of initial 

stresses, and sliding under a constitutive friction law, is a useful model for 

analyzing natural earthquake (e.g., [1,2,3,4,5,67,8,9,10,11,12,13]). This 

model leads to nonlinear, mixed boundary value problems. The nonlinearity 

occurs because the respective domains of the kinematic and dynamic 

boundary conditions are time dependent, and these domains have to be 

determined dynamically as part of the solution itself. The theoretical study of 

this problem class is usually possible only with computationally intensive 

numerical methods that solve the elastodynamic equations of motion in the 

continuum, coupling them to additional equations governing frictional sliding 

on the boundary representing the fault surface.  

 Suitable numerical solution techniques for the spontaneous rupture 

problem can be built into elastodynamic methods based upon, for example, 

finite difference (FD), finite element (FE), spectral element (SE), 

Discontinuous Galerking (DG) or boundary integral (BI) methods. Each of 

these numerical methods can be implemented on any of several different grid 

types, and the elastodynamic equations solved to any specified order of 

accuracy. However, recent work by [14,15,16] has shown, at least in the case 

of the most widely used FD-based methods, that solution accuracy is 

controlled principally by the numerical formulation of the jump conditions on 

the fault discontinuity. In that study, as stated in [16], neither grid type nor 

order of spatial differencing in the grid is found to have a significant effect on 

spontaneous-rupture solution accuracy, but the method of approximation of 

the jump conditions has a very large effect. It is likely that a similar 

conclusion will hold for other solution methods such as the different classes 

of FE [16].  

 Here we compile some parts of our series of papers [14,15,16] to 

describe and evaluate the applications of two of the well know fault 

representation methods: 1) the so called traction-at-split-node (TSN) 

methods, and 2) the „„inelastic-zone‟‟ stress glut (SG) method. 

 The TSN Methods represent the fault discontinuity by explicitly 

incorporating discontinuity terms at velocity and/or displacement nodes in the 

grid. It is the most widely used in different type of volumetric numerical 

methods, such as in the different classes of FD (e.g: [1,17,4, 

14,15,16,17,18,19]), In FE methods (e.g. [20,21,22,23,24,25,26]) in SE 
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methods (e.g. 27,28,29]). In the TSN method, interactions between the halves 

of the „„split nodes‟‟ occur exclusively through the tractions (frictional 

resistance and normal traction) acting between them, and they in turn are 

controlled by the jump conditions and a friction law. This method permits a 

partition of the equations of motion into separate parts governing each side of 

the fault surface [14,16]. 

 The SG method, a class of „„inelastic-zone‟‟ models [15], introduced by 

[1,17], represents the fault discontinuity through inelastic increments to stress 

components at a set of stress grid points taken to lie on the fault plane. With 

this type of scheme, the fault surface is indistinguishable from an inelastic 

zone with a thickness given by the spatial step x (or an integral multiple of 

x). The SG methods are very easy to implement in FD codes, as no 

modification to the difference equations is required, only modifications to the 

way stress is calculated from strain rate. However, from the study of [15], in 

which the different classes of fault representation methods in FD schemes 

have been evaluated, the SG method is less accurate than the TSN 

formulation. In a 3D test, as shown by [15], the SG inelastic-zone method 

achieved solutions that are qualitatively meaningful and quantitatively 

reliable to within a few percent, but full convergence is uncertain, and SG 

proved to be less efficient computationally, relative to the TSN approach.  

 For academic purpose, in appendix, we provide a matlab script attached 

to a formulation of the TSN method implemented in a FD 1D elastodynamic 

equation. This matlab script is intended to introduce the reader to a 

conceptual implementation of the TSN in a numerical code. 

 

Theoretical formulation of the problem 
 

 The problem is formulated assuming an isotropic, linearly elastic infinite 

space containing a fault surface ∑ across which the displacement vector may 

have a discontinuity (Figure 1). 

 Assuming that surface ∑ is parallel to the x-y plane, that is, perpendicular 

to the z axis, the linearized elastodynamics equations of the continuous media 

surrounding the fault surface ∑ is represented, in its velocity-stress form, as: 

 

                                                                    (1a) 

 

                                                                     (1b) 
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Figure 1. Schematic representation of an space of volume V containing a fault surface 

∑ with normal unit vector n directed from negative side toward positive side of the 

fault. 

 

         

(1c)

 
 

and the constitutive law (Hooke‟s law) as: 
 

                                                     (2a) 
 

                                                         (2b) 
 

                                                         (2c) 
 

                                                                                (2d) 
 

                                                                              (2e) 
 

                                                                                  (2f) 
 

Parameters  and  are the Lame constants,  is density,  is the 

particle velocity formulated as the time derivative of the displacement u,  is 
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the normal stress and  is the shear stress. The fault surface ∑ has a 

(continuous) unit normal vector n. In our simple problem statement, in which 

no geometrical fault complexities are considered, this unit normal vector is 

always parallel to the axis z and directed toward the positive axis of z. A 

discontinuity in the displacement is permitted across the interface ∑. On ∑ 

we define negative and positive sides of the fault surface such that n (z axis) 

is directed from the former toward the latter. Taken ∑ to be the plane z=0, the 

limiting values of the displacement vector, uv  and uv , is 
 

uv (v,z 0,t) lim
0

uv (v,z ,t),     0                                                       (3) 

 

The superscripts (+) and (-) denote, respectively, the plus-side and minus-side 

of the fault plane (Figure 1); v indicates the vector components x, y tangential 

to the fault or z normal to the fault. Then the slip vector, defined as the 

discontinuity of the vector of tangential displacement of the positive side 

relative to the negative side, is given by (v=x,y) 
 

sv(t) uv (t) uv (t)                                                                                       (4) 
 

and its time derivative (slip rate) is denoted by . The magnitude of the slip 

and slip rate are denoted, respectively, by |s| and . The open fault 

displacement (v=z) is formulated later. 

 The total shear traction vector (T) acting on the fault (z=0) that is 

continuous across ∑ with components Tx xz
0

xz   and Ty yz
0

yz
 

has its magnitude 
 

 T Tx
2 Ty

2                                                                                                (5) 

 

where  and 0  are, respectively, the shear stress change during rupture and 

initial shear stress. 

 As formulated in [14, 15, 16], the jump (rupture) conditions at the 

interface is given by  
 

c T 0                                                                                                     (6a) 
 

                                                                                                           (6b) 
 

Equation (6a) stipulates that the total shear traction T is bounded by a 

nonnegative frictional strength c, and equation (6b) stipulates that any 
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nonzero velocity discontinuity be opposed by an antiparallel traction (i.e., the 

negative side exerts traction -T on the positive side) with magnitude equal to 

the frictional strength c. The frictional strength evolves according to some 

specified friction law  
 

          (7) 
 

that may depends on normal stress ( n), slip (s), slip rate ( ), and other 

mechanical or thermal variables ( 1, 2…). 

 Jump conditions (6a)–(6b), combined with the friction law (7) and 

appropriate initial stress conditions on ∑, provide a model of fault behavior. 

Under these conditions alone can model initial rupture, arrest of sliding and 

reactivation of slip.  

 When normal stress fluctuations are presents, the fault interface may 

undergo separation (fault opening) over portions of the contact surface ∑ if 

there is a transient reduction of the compressive normal stress to zero [30,31]. 

For the sake of completeness, as formulated by [14], we describe an 

extension of the set of jump conditions appropriate to also incorporate fault 

opening due to normal stress fluctuations. We denote the normal component 

of the displacement discontinuity on ∑ by Un (fault opening displacement). 

From Equation 3, for v=z, the fault opening is given by 
 

Un (t) uz (t) uz (t)                                                                                      (8) 

 

The opening conditions, assuming negative normal stress in compression are 
 

n 0,                                                                                      (9a) 
 

Un 0 ,                                                                           (9b) 
 

nUn 0                                                                (9c) 
 

n is the total normal stress acting on the fault that is given by 

n zz
0

zz  where  and 0 are, respectively, the normal stress change 

during rupture and initial normal stress. 

 Equation (9a) bounds the total normal stress by the condition that tensile 

normal stress is not permitted; equation (9b) guarantees no interpenetration; 

and equation (9c) stipulate that loss of contact is permitted only if 

accompanied by zero normal stress. Again, these jump conditions are 

adequate to cover multiple episodes of tensile rupture and crack closure. 

 



Rupture dynamic modeling 99 

Traction-at-split-node (TSN) fault representation formulation 
 

 The TSN boundary formulation treats the fault rupture as a true contact 

problem between two surfaces in which the kinematic shear discontinuity 

(slip) as well as the open discontinuity (fault opening) are explicitly modeled.  

This method (for shear discontinuity) was reviewed by [17] and described the 

formulation in detail by [14,15,16] for implementation in finite difference 

schemes. Dalguer and Day [16] adapted it for a fourth-order velocity-stress 

staggered finite difference code.  Here we give a general description of the 

method following [14,15].  

 We position the fault on the x-y plane. As shown in Figure 2, a given 

fault-plane node is split into plus-side and minus-side parts, with respective 

lumped nodal masses M+ and M-. The separate contributions from each side  

 

 
 
Figure 2. Traction at split node (TSN) fault representation method in a partially 

staggered cubic elements. Mass (M±) is split, and separate elastic restoring forces 

( Rv ) act on the two halves. The two halves of a split node interact only through shear 

and normal tractions (Tv) at the interface. 
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of the fault due to deformation of neighboring elements produce elastic 

restoring forces (nodal forces), R+ and R-. At a particular time (t), D‟Alembert‟s 

principle leads to a nodal equilibrium equation of motion for each split node. 

At each step of integration the equation is solved by the central FD scheme to 

estimate the vector components of velocity ( ) and displacement ( uv ) at a 

given node, 
 

   
(10a)

 
 

     (10b) 
 

where v indicates the vector components x, y tangential to the fault or z 

normal to the fault, t is the time step, a is the area of the fault surface 

associated with each split node, Tv is the nodal value of the traction-vector 

components, and Tv
0 is the corresponding initial equilibrium value. The slip 

and slip velocity vectors (for v = x or y) are then 
 

sv(t) uv (t) uv (t)                                                  (11a) 
 

                                                    (11b) 
 

and fault opening displacement and velocity (making v = z) 
 

Un (t) uz (t) uz (t)                                                 (12a) 

 

            

(12b) 
 

To find the slip, slip velocity and fault opening displacement we need to 

solve equation 10 by evaluating Tv as follow. 

 

Evaluation of Tv for shear traction (kinematic fault tangential discontinuity) 
 

 An appropriate methodology is defining a trial traction vector ˜ T v  that 

would be required to enforce continuity of tangential velocity (  

for v equal to x and y) in equation (10a). The expression for ˜ T v  is then 

estimated after few operations in equations 10-11 [14,15,16] 
 

            

(13) 
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where the velocities are evaluated at t- t/2, and the nodal tractions, restoring 

forces, and displacements are evaluated at t. The fault-rupture conditions 

stated in equations (6a,b) are satisfied if the fault-plane traction Tv of equation 

(10a) is 
 

Tv

˜ T v            for ˜ T x
2 ˜ T y

2 1 / 2

c

c

˜ T v

˜ T x
2 ˜ T y

2 1 / 2
for ˜ T x

2 ˜ T y
2 1 / 2

c

                               (14) 

 

for v = x,y. 

 

Evaluation of Tv for normal traction (kinematic fault normal 

discontinuity) 
 

 The same way as before, a trial fault normal traction ˜ T z  (making v=z) 

that would be required to enforce continuity of normal displacement 

( uz uz 0) in (10b) is estimated. After some operations in equations 10 

and 12 the expression of ˜ T z  is given by 

 

     

(15)

 
 

where  is the fault opening velocity estimated at t- t/2 and Un
t  is 

the fault opening displacement estimated at t calculated using eq. (12).  

Assuming negative normal stress in compression and satisfying fault open 

conditions stated in equations (9), the fault normal traction Tz of equation 10a is 
 

Tz

˜ T z for ˜ T z 0

0    for ˜ T z 0

                                                     (16) 

 

The conditions in (16) guarantee no interpenetration and nontensile normal 

stress (i.e. the fault resistant to tensile is zero), consequently loss of contact 

between the two surface of the fault (opening) occurs only if accompanied by 

zero normal stress. This open fault boundary condition is rather simplified 

approximation, since the fault opening may follow a pre- process in which a 

certain amount of tensile stress may be admitted to break the contact between 

the two surfaces of the fault, but this pre-process is ignored here. 
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Stress glut (SG) ‘‘inelastic-zone’’ fault representation formulation 
 

 The SG method has been documented by [1,17] and adapted it to a fourth-

order velocity-stress staggered finite difference scheme by [15].  Considering 

the same grid element features in which the TSN formulation has been 

implemented above (Figure 2), the principal difference between the TSN 

method and the SG formulation is that the latter does not split the nodes neither 

place velocity nodes on the fault, but instead positions the fault to coincide with 

the standard grid points already containing the fault plane traction components 

(Figure 3). The fault discontinuity is not explicitly incorporated, rather it is 

represented through inelastic increments to those traction components. As  

 

 
 
Figure 3. Inelastic-zone Stress glut (SG) fault representation method in a partially 

staggered cubic elements. The shear and normal tractions (Tv) acting on the fault are 

approximated by modifying the shearstress components located along the plane 

coinciding with the fault (labeled “stress plane”). This is equivalent to an inelastic 

zone of one grid-step ( x) thickness. 
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shown in Figure 3, this formulation makes the fault indistinguishable from an 

inelastic zone of thickness x, where x is the dimension of the unit cell 

(assumed equal in all three coordinate directions for simplicity) of the grid. Due 

to this fault configuration, the fault normal discontinuity (fault opening) is also 

not explicit. So for this case, here we do not formulate fault opening boundary 

condition, and we limit our formulation to shear faulting boundary condition. 

 Here we reproduce the formulation stated in [15]. We again take the x-y 

plane as the fault surface. In the split-node method, we introduced extra grid 

variables Tx and Ty on the fault to represent the traction-vector components at 

the split nodes. In the SG method, no extra tractions have to be introduced to 

accommodate the fault; the faultplane traction components are located at the 

standard grid points for the tensor components xz and yz, respectively. 

However, we continue to use Tx and Ty to denote these two shear-traction 

components when they are located on the fault, for notational consistency 

with the split-node discussion. 

 Using the velocity-stress formulation of the equation of motion (Eq. 1 

and 2), lets update nodal stresses assuming central differencing in time by 

using strain rates calculated from nodal velocities at t- t/2. Then, the shear 

stress components at a particular point acting on the fault plane take the form 
 

                                  (17) 
 

where v indicates the vector components x, y tangential to the fault, 

 is  the strain rate and  is the shear modulus. To implement the 

SG method, we modify this stress update scheme when calculating fault-

plane traction components Tv(t) by the addition of an inelastic component 

( ) to the total strain rate: 
 

                                      

(18)
 

 

Then, as proceeded for the TSN method, lets calculate a trial traction, ˜ T v (t) , 

that would be required to enforce zero inelastic strain rate, i.e, 

 

                                                         (19) 
 

Then the fault-plane traction Tv(t)  that satisfy fault-rupture conditions stated 

in equations (6) is calculated using eq. (14). The inelastic strain rate  is 

estimated after some operations between equation (14), (18) and (19) 
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        (20)

 
 

Fault slip is estimated through inelastic increments distributed in an inelastic 

zone of thickness x. Then the total slip rate on the fault is calculated by 

integrating the inelastic strain rate over the spatial step x in the direction 

normal to the fault, which gives 
 

        (21) 
 

from which the slip is then updated by central differencing, 
 

       (22) 

 

Frictional shear strength: Slip weakening friction model 
 

 As described in Eq. (7), the frictional shear strength c in its general form 

evolves according to some specified friction law, and may depend upon 

normal stress, slip, slip velocity, and other mechanical or thermal variables. 

For simplicity, here we use the simple slip-weakening friction model in the 

form given by [1,2]. This friction law, first proposed by [32,33] by analogy to 

cohesive zone models of tensile fracture, is extensively used for shear 

dynamic rupture simulations (e.g.[1,2,4,6,34,35,36,37,8]. 

 The frictional strength c is assumed to be proportional to normal stress 

n (taken negative in compression) 
 

c f n                                                             (23) 

 

The coefficient of friction f depends on the slip path length through the 

linear slip-weakening relationship [2] 
 

f
s ( s d ) s / d0 for s d0

d                        for s d0

                                (24) 

 

where s  and d  are coefficients of static and dynamic friction, respectively, 

d0 is the critical slip-weakening distance, and s  is the magnitude of the slip 

vector. 

 Despite its limitations of the slip weakening model as a model for natural 

earthquakes (as noted in, e.g., [14], this friction law provides a suitable 

starting point for testing numerical methods. Other friction models are out of 

the scope of this chapter, in which interface frictional properties may be 
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better represented by more complicated relationships that account for rate and 

state effects (e.g. [38,39]) and thermal phenomena such as flash heating and 

pore pressure evolution (e.g., [40,41,42,43]).  

 

Cohesive zone 
 

 The cohesive zone (Figure 4a) is the portion of the fault plane behind the 

crack tip where the shear stress decreases from its static value to its dynamic 

value and slip s  satisfies 0 < s < d0 (e.g. [32]). The cohesive model was first 

introduced by [44] in which constant cohesive zone was considered. 

Subsequently [32,33] proposed a cohesive zone model linearly dependent on 

distance to the crack tip; and Andrews [2] proposed a model linearly 

dependent on slip. Basically the models of [2,32,33] are equivalent and well 

know as slip-weakening model as formulated above. In this friction model, 

the cohesive zone, as shown in Figure 4a, examines the crack tip phenomena 

at a level of observation, in which the fracture energy Gc, (Figure 4b) is a 

mesoscopic parameter which contains all the dissipative processes in the 

volume around the crack tip, such as off-fault yielding, damage, micro-

cracking etc. In the event that the normal stress and frictional parameters are 

constant over the entire fault, as will be the case in the test problem 

considered later, this idealized model results in constant fracture energy Gc with  
 

Gc ( s d )d0 / 2                                                        (25)  
 

where s and d are, respectively, the peak shear stress (static yielding stress) 

and dynamic yielding stress, given by 
 

s s n                                                                                                     (26)  

 

 
 
Figure 4. (a) Schematic representation of stress and slip along a shear crack and 

cohesive zone for a slip-weakening crack; (b) Stress-slip relationship of a slip-

weakening model [2] and fracture energy Gc representation. 
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d d n                                                                            (27)  

 

 Note that in this context, the fracture energy Gc is not the surface energy 

defined by Griffith [45] in linear elastic fracture mechanics. 

 In the cohesive zone, shear stress and slip rate vary significantly, and 

proper numerical resolution of those changes is crucial for capturing the 

maximum slip rates and the rupture propagation time and speeds. Therefore 

an estimate of the cohesive zone width to calibrate numerical resolution 

would be useful. A review of some concepts of linear fracture mechanics and 

simple estimates for the cohesive zone size in two-dimensional cases of mode 

II and mode III was presented by [14]. These authors provide two ways to 

estimate the cohesive zone size and calibrate numerical resolution: the zero- 

speed cohesive zone width 0 given by 
 

0
9

32

md0

( s d )
                                                                                        (28) 

 

for m = II, III, respectively mode II and mode III rupture; where II = ;      

III = /(1- ), with  as the Poisson‟s ratio. [14] also approximate solution for 

 at large propagation distances (for mode III crack problems) given by  
 

9

16

d0
2

L 1 for L L0
                                    (29) 

 

where =( 0- d) is the stress drop, 0 the initial stress, L propagation 

distance, and L0 is half of the critical crack length for a 2D crack given by 
 

L0
d0( s d )

2
                                                     (30) 

 

 As pointed out by [14], the two estimates of the cohesive width are 

complementary. The 0 estimate shows that regardless of the background 

stress or rupture propagation distances, the numerical resolution is already 

constrained by the choice of the frictional parameters and elastic bulk 

properties; and it provides a convenient upper bound for the cohesive zone 

size (it is an upper bound in the sense that any nonzero rupture speed would 

shrink this zone even further due to Lorentz contraction [14]). 

 As stated in [14] the  estimate attempts to incorporate the background 

stress level (through the stress drop ) and the reduction of the cohesive 

zone (Lorentz contraction) due to the increasing rupture speed for large 

propagation distances L.  
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 To relate numerical accuracy to the degree to which the cohesive zone is 

resolved, the authors in [14] have expressed the grid-size dependence of the 

solution in terms of the dimensionless ratio Nc. Where Nc is the ratio of the 

width of the cohesive zone, , to the grid interval x.  
 

Nc / x                                                                                    (31) 
 

This ratio provides a non-dimensional characterization of the resolution of a 

given numerical solution. As discussed in [14], even thought Nc  is a local 

measure of resolution, because  varies as the rupture propagates, both the 0 

estimate from (28) and the  estimate (29) should give good initial guidance 

as to what kind of spatial resolution will be needed in dynamic rupture 

propagation problems. However, as pointed out by [14], one should not 

expect a perfect quantitative agreement, as the estimates are derived with a 

number of simplifying assumptions. 

 

Numerical test 
 

SCEC benchmark problem version 3 
 

 Here we present some results collected from the series of papers 

[14,15,16], in which we have solved a three-dimensional (3D) problem of 

spontaneous rupture propagation for a planar fault embedded in a uniform 

infinite elastic isotropic space, using different numerical methods of Finite 

Difference and Boundary Integral (BI). The formulation and parameters of the 

test case correspond to Version 3 of the Southern California Earthquake Center 

(SCEC) benchmark problem [46]. The problem geometry is shown in Figure 5.  

 

 
 
Figure 5. Fault geometry to test dynamic rupture simulation. The square in the center 

is the nucleation area where rupture initiates. 
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Table 1. Stress parameters for the numerical test of spontaneous dynamic rupture 

simulation. 

 

Parameters 
Within Fault Area of 30 km x 15km Outside  

Fault Area Nucleation Outside nucleation 

Initial shear stress ( 0), MPa  

Initial normal stress ( n), MPa  

Static friction coefficient ( s)  

Dynamic friction coefficient ( d)  

Static yielding stress ( s = s n), MPa  

Dynamic yielding stress ( d = d n), MPa 

Dynamic stress drop ( = 0- d), MPa  

Strength excess ( s - 0), MPa  

Critical slip distance, d0 , m 

81.6  

120.0  

0.677 

0.525 

81.24 

63.0  

18.6  

-0.36 

0.40 

70.0  

120.0  

0.677 

0.525 

81.24 

63.0 

7.0  

11.24 

0.40 

70.0 

120.0 

infinite 

0.525 

infinite 

63.0 

7.0 

infinite 

0.40 

 

We take the fault plane to be the x-y plane. The shear pre-stress is aligned with 

the x axis, and the origin of the coordinate system is located in the middle of the 

fault, as shown in Figure 5. The fault and pre-stress geometries are such that the 

x and y axes are axes of symmetry (or antisymmetry) for the fault slip and 

traction components. As a result, the xz plane undergoes purely in-plane 

motion, and the yz plane purely anti-plane motion. 

 Rupture is allowed within a fault area that extends 30 km in the x 

direction and 15 km in the y direction. A homogeneous medium is assumed, 

with a P wave velocity of 6000 m/s, S wave velocity of 3464 m/s, and density 

of 2670 kg/m3. The distributions of the initial stresses and frictional 

parameters on the fault are specified in Table 1.  

 
Rupture nucleation 
 

 The rupture initiation of this kind of dynamic rupture problems is 

artificial and nucleation procedure can affect the rupture propagation (e.g. 

[47]). Here we adopt the criterion of overloading the initial stress at the 

nucleation patch, so rupture can initiates because the initial shear stress in the 

nucleation is set to be slightly (0.44%) higher than the initial static yield 

stress in that patch. Then the rupture propagates spontaneously through the 

fault area, following the linear slip-weakening fracture criterion (25). The 

nucleation size for the problem can be roughly estimated using equation (30) 

that give a value of L0= 1.516km, which is half of the nucleation size. We 

assume that the nucleation shape is a square, so it will give a 3 km x 3 km 

square area centered on the fault, as shown in Figure 5. 
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Estimate of spatial resolution of the numerical model 
 

 As mentioned before, the cohesive zone developed during rupture 

propagation need to be accurately solved to obtain reliable solution of the 

problem. Then before simulation it is convenient to have some estimates of 

the degree of the numerical accuracy by calculating the spatial resolution to 

which the cohesive zone is resolved. For this purpose the approximate 

analytical cohesive zone 0 from (28) and the  of (29) are calculated to 

estimate dimensionless ratio Nc of equation (31) as good initial guidance to 

define the spatial resolution needed for the test problem. Using the data of the 

test problem, we obtain zero-speed cohesive zone 0 = 620m for mode III, 

and 0 = 827m for mode II.  They can be considered as the upper bound of 

our problem. The cohesive zone, , at the maximum propagation distance 

L=7.5km along the mode III is =251m. Notice that the estimate of  for 

mode II cannot be derived analytically, it needs some numerical procedure 

not included in this work [14]. 

 Assuming a grid size x=100m, the Nc value, from Eq. (31), is 6 to 8 for 

the upper bound, and 2.5 for the propagation distance. Those estimates 

indicate that a good spatial resolution for our problem requires x ≤100m. 

The accuracy reached by this resolution will depend on the numerical method 

used to model the fault as well as the numerical technique used, as evaluated 

in [14,15,16]. 

 

Numerical techniques 
 

 The test problem is solved by two numerical techniques:  

 

1) The so-called 3D dynamic fault model (DFM) code in which the TSN 

fault representation method is implemented [4,5,14, 48]. In the DFM the 

spatial difference operators are constructed by specializing trilinear 

elastic finite elements to the Cartesian mesh, approximating integrals by 

one-point quadrature, and diagonalizing the mass matrix (see more 

details of it in [14]). The method approximates temporal derivatives by 

explicit, central differencing in time. On a uniform mesh, the method is 

second-order accurate in space and time. In that case, the differencing 

scheme that results from this procedure is equivalent (away from the 

fault surface) to the second-order partly staggered grid method, which 

has been reviewed by [49] (see also in [50], p. 884, formula 25.3.22]. 

2) The 3D, four-order velocity-stress staggered (VSSG) wave propagation 

code of [51]. In this code we have implemented the SG and TSN fault 

representation method described earlier.  The TSN formulation for the 
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VSSG FD scheme has been proposed by [16], as called by these authors, 

this implementation is referred to as the SGSN (staggered-grid split-

node) method. 
 

Numerical results 
 

 Numerical solutions for the DFM, SGSN and SG fault representations 

methods are briefly qualitatively discussed here. A complete quantitative and 

qualitative assessment of these methods and the solutions for this problem 

has been extensively discussed in our series of papers [14,15,16].  

 The highest grid resolution used for DFM, SGSN and SG methods are 

respectively 50m, 100m and 50m and referred respectively as DFM50, 

SGSN100 and SG50. The rupture arrival time (referred to as „„rupture time‟‟ 

in the following) is a sensitive indicator of numerical precision, because this 

sensitivity reflects the nonlinearity of the problem. Relatively small 

inaccuracies in the calculated stress field can be expected to very 

significantly and affect the timing of rupture breakout from the nucleation 

zone as well as the subsequent rupture velocity. Therefore we have used 

rupture time differences as a primary means to show differences between our 

solutions. Figure 6 shows contours of rupture time for the three methods. The 

computed evolution of the rupture time is virtually identical for the DFM and 

SGSN solutions (Figure 6a), so that the contours for these two cases overlay 

and are nearly indistinguishable. The SG and DFM models (Figure 6b) have 

rupture contours that are very close together right after the initiation of the 

rupture, with differences increasing with the rupture propagation. As 

discussed in [15], rupture-time differences between SG and DFM cannot     

be accounted for by a simple time delay due to differences in  nucleation, but  

  

 
 
Figure 6. Contour plot of the rupture front for the dynamic rupture test problem: (a) 

comparison between DFM50 (grid size x = 50m) and SGSN100 ( x = 100m) 

solutions; (b) comparison between DFM50 and SG50 ( x = 50m) solutions. 
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represent systematic differences in rupture velocity over the entire rupture. 

Cohesive zone development for these methods along both x (inplane) and y 

(antiplane) axes are shown in Figure 7. DFM and SGSN are practically 

identical, the SG solutions produce a rupture with a cohesive-zone width that 

varies with propagation distance in a manner similar to the DFM and SGSN, 

but it is systematically narrower, but the cohesive-zone-width curves for the 

three methods have roughly the same shape. Qualitatively the three solutions 

provide comparable results. A relevant feature of the cohesive development is 

that as the crack velocity increases, the cohesive zone shrink in the direction 

of rupture propagation. This feature involves small-scale processes that need 

to be accurately solved, consequently it leads to numerical challenges in 

which calculations of such numerical simulations pose high demands in terms 

of required memory and processor power (e.g., [14]). 

 A quantitative estimation of the rupture time misfit as a function of grid 

interval for the three methods is shown in Figure 8. The rms misfits estimated 

in our papers [14,15,16] for the SG, DFM and SGSN methods use as 

reference solution the one calculated by the boundary integral (BI)          

method with grid size 100m presented in [14]. The BI     method might    provides 
 

 
 
Figure 7. Cohesive zone evolution during rupture, along both inplane (x axis) and 

antiplane  (y axis) directions for DFM50, SGSN100 and SG50. 
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semianalytical solutions for this problem, therefore it gives a suitable reference 

solution. The misfits of the DFM, SGSN and SG solutions as functions of x, 

or equivalently, as functions of resolution number Nc (Eq. 31) are shown in 

Figure 8. For reference, we also plot the results of the BI from [14].  

 As noted by [14], the DFM solutions follow a remarkably well-defined 

power law in the grid size, with exponent, or convergence rate, of 

approximately 3.  DFM and BI methods share a nearly identical convergence 

rate and that both achieve misfits comparable. As presented by [16] the 

rupture-time differences for SGSN show a bilinear scaling with the grid size. 

The first scaling line corresponds to solutions with x ≤ 0.3 and the second 

line for x > 0.3. The transition between these two scaling lines occurs 

between x = 0.3 and x = 0.4, corresponding to a grid   interval  slightly less  

 

 
 
Figure 8. Misfit in time of rupture, relative to reference solution, shown as a function 

of grid interval x. Misfits are RMS averages over the fault plane for DFM, SGSN 

and SG solutions. All the solutions are relative to BI100m ( x=100m) calculated by 

Day et al 2005. The dashed line shows the (approximate) dependence of time step t 

on x. The upper axis characterizes the calculations by their characteristic Nc values, 

where Nc is median cohesive zone width in the in-plane direction divided by x     

(Eq. 31). 
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than the median cohesive-zone width (L = 0.44 km) (see [16]). In the second 

line, for x > 0.3, the RMS time differences exceed 1.5% and the dependence 

upon x appears to follow a power law of exponent ~3 similar to the DFM 

and BI (see further discussion on it in [14,15,16]). But the SGSN has an 

exceptional performance. Very low misfit of order of ~1% is already 

achieved for x = 0.3, corresponding to Nc ~1.5. In contrast, the SG misfits 

follow a convergence rate with low power law of exponent ~ 1.4, suggesting 

that this method is computational less efficient than the others. 

 A very insightful nature of this kind of dynamic rupture models is the 

rupture evolution that involves: initiation, evolution and stopping of the slip, 

and the evolution of the stress after the slipping ceases. So we reproduce the 

evaluation discussed in [14] of the slip rate and shear stress time history 

profiles along the x axis (in-plane direction) (Figure 9a) and the y axis 

(antiplane direction) (Figure 9b). We show results for the DFM50 only 

presented in [14]. For other solutions, SGSN100 and SG50, the feature 

discussed here are identical. As shown in these figures the pulses associated 

with the P and S waves returning from the borders of the fault are observed in 

the time histories of slip rate and stress. In Figures 9a and 9b we annotate 

these fault-edge-generated pulses. The P waves from the left and right 

borders of the fault traveling along the in-plane direction are denoted by „„P‟‟ 

in Figure 9a. The pulses associated with the edge-generated S wave are 

indicated by „„Si‟‟ and „„Sa,‟‟ with Si corresponding to the pulses coming 

back from the left and right borders of the fault, traveling predominantly 

along the in-plane direction, and Sa corresponding to the pulses coming back 

from the top and bottom borders, traveling predominantly along the antiplane 

direction. In addition to these stopping phases, a late reactivation of slip, after 

its initial arrest, can also be seen in these figures. This feature is associated 

with the Si pulse, and its behavior is explained as follows. The P wave 

coming back from the boundary reduces the shear stress on the fault, causing 

slip to stop, leaving the shear stress somewhat below the dynamic friction 

value (dynamic overshoot). The subsequent Si fault edge pulse has to 

overcome that stress deficit in order to reinitiate slip. As it approaches the 

center of the fault, this pulse becomes weak. This wave experiences 

constructive interference at the center of the fault in which there is an 

encounter between the Si waves coming from the left and right side of the 

fault. As can be seen in the figures of shear stress, the Si pulse crosses the 

center and continues traveling to the other side of the fault, but always below 

the dynamic friction level, and therefore unable to produce further slipping. 

 Note that our solution procedure assumes, for simplicity, that once the 

dynamic frictional strength d is reached at a point on the fault, the     strength will  
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Figure 9. Time history of (top) slip rate and (bottom) shear stress for points along the 

axis of in-plane motion (x axis) (left) and antiplane motion (y axis) (right) for the 

DFM50 solution. The labels P and Si correspond to the P and S waves, respectively, 

generated at the left and right edges of the fault (i.e., propagating predominantly along 

the axis of in-plane motion). The label Sa identifies the S waves generated at the top 

and bottom of the fault (propagating predominantly along the antiplane axis). 

 

not increase to larger values on the timescale of the computation, even if the 

point reaches zero slip velocity. That is, it is assumed that there is no healing 

for times of order of seconds. However, rock interfaces in the lab do exhibit 

healing at rest or small sliding velocities, and a more complete constitutive 

description would include that effect, but it is out of the scope of this work. 

 

Large aspect-ratio fault (L>>W) 
 

 One interesting application of dynamic rupture models is to study 

earthquake rupture in large aspect-ratio strike-slip faults with L>>W, in 

which L and W are respectively the length and width of the fault. It is 
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expected that large earthquakes, such as the 2002 Mw 7.9 Denali and the 

2008 Mw 8.0 Wenchuan earthquake in China, both with fault length about 

300km, rupture the entire seismogenic thickness and are originated in large 

aspect-ratio faults. Therefore, the understanding of the rupture mechanism of 

this kind of fault is very important to address questions such as on why 

rupture extends so long, and what are the conditions to rupture stops before it 

becomes a large event.  

 Strike-slip faulting in a large aspect-ratio fault is dominated by the 

inplane rupture mode (mode II in fracture mechanics). Previous studies, such 

as from [4, 31] shows that in this kind of fault, the rupture is highly affected 

by the width (W). The main mechanism dominated in this kind of fault has 

been already explained in [4], that is, the fault initially ruptures as a crack-

like (a simply-connected patch) around the hypocenter, but subsequently, at a 

time greater than that required for the rupture to cross the fault width, the 

rupture bifurcates into two separate pulses traveling in opposite directions 

due to the stopping phases coming from the top and bottom of the fault (see 

Figure 9 of the evolution of this stopping phases). When this process occurs 

in the bi-material case [31], it evolves interacting with the normal stress 

perturbation (characteristics of bimaterial fault rupture) and under very 

limited conditions it can lead to unilateral rupture (see details of this 

mechanism in [31]). 

 As complementary to the studies described above, here we model this 

kind of rupture problem to investigate the W effect on spontaneous rupture 

propagation in homogeneous strike slip faults. We fix the frictional 

parameters and nucleation rupture to be those of the SCEC benchmark 

problem, version 3, described in the previous section. Then we explore the 

sensitivity of rupture to variability of the fault width (W) in a fault with 

rupture propagation distance along strike of up to 400km. The grid size for 

these calculations is 50m. 

 Our results show that W takes an important role on rupture arresting and 

the generation of steady-state pulse-like rupture due to the arrival of the 

stopping phases (described in Figure 9) at the rupture front. Figures 10a,b,c 

shows respectively the rupture time, final slip and peak-slip rate along the 

inplane axis direction for different fault widths. Rupture is arrested for model 

with W <=5.9. For models larger than this width, the rupture propagation 

becomes self-sustained, increasing the rupture speed with increasing W.  

 Notice that rupture initiation for all the models is identical. All models 

reach the rupture speed limit (Rayleigh waves speeds) early, but then, when 

the rupture reaches the top and bottom of the fault, the ruptures speed, final  
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Figure 10. Rupture time (a), final slip (b) and peak slip rate (c) along the inplane axis 

of a strike slip fault with rupture propagation length of 400km, for different fault 

width (W). The number next to the line specifies the fault width. Figure (d) shows 

slip-rate vs time at each 8km interval along the inplane axis for the model with fault 

width W=8.5km. 

 

slip and peak slip rate are affected. Interesting, at rupture distance L>>W 

when the rupture is self-sustained, rupture propagates with a steady-state velocity 

pulse, i.e., the slip-rate pulse travels without altering its shape and amplitude, 

as shown in Figure 10d. This steady-state mechanism suggests that the 

cohesive zone length in the rupture front remains constant. 

 It is clear that the main mechanism dominating this kind of fault is due to 

the effect of stopping phases, as explained above. When this process occurs 

in a very narrow fault, the S-wave stopping phase reaches the rupture front 

early, and they are loaded with enough energy to arrest the rupture. But when  

the stopping phase reaches the rupture front late, the rupture front is already 

self-sustained, producing a complicated interaction between the stopping 

phase and the pulse dominated in the rupture front; consequently, the pulse 

becomes steady state. 

 From an energetic point of view, initially the fault is loaded with elastic 

energy that is dissipated during rupture propagation. The energy dissipated 
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during rupture increases with L, whereas the available elastic energy is 

proportional to W. For L>>W, the dissipated energy becomes larger than the 

available elastic energy, leading to an eventual arresting of the rupture. 

 

Remarks 
 

 Here we have described the numerical algorithms of two well known 

methods to represent fault discontinuity for spontaneous rupture dynamic 

calculation: the so-called traction at split-node (TSN) scheme and the inelastic-

zone stress glut (SG) method. The main goal of this work is to introduce to the 

reader the conceptual implementation of these methods and its application in a 

simple test problem. For academic purpose, in appendix we provide the TSN 

implementation in a 1D wave equation that includes a matlab script, so the 

reader can follow the formulation and build his/her own code.  

 Advanced papers referred in Introduction are recommended to read for 

applications of these methods for different type of problems. There are recent 

development of fault representation and wave propagation technique not cited 

before, such us those used in Finite Volumes (FV) methods (e.g. [52,53]) and 

high order discontinues Galerkin (DG) methods (e.g. [54,55]). The nature of 

the fault representation in these methods is different than the TSN and SG 

method described here. The VF and DG incorporate formulations of fluxes to 

exchange information between the two surfaces of contact by solving the 

Riemann problem (e.g. [56]). These methods appear to be elegantly powerful 

and suitable to solve problems in extreme complex media and fault 

geometries. Another new generation algorithms emerging recently are the so-

called adaptive mesh refinement formulations (e.g. [57]). Since rupture 

dynamic problems require to solve small scale in space and time during 

rupture propagation, these adaptive mesh algorithms appear to be the future 

application for this kind of problems. 
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Appendix 
 

Numerical implementation of the traction at split-node (TSN) 

fault representation in a 1D Elastodynamic equation for rupture 

dynamic problems 
 

 Let assume the fault plane is perpendicular to the z axis and located at 

z=0. To simplify the problem, we will implement the mixed boundary 

condition in a 1D wave equation, so all the fields depend only on z. This 

reduces to the condition that exactly the same thing is happening at every 

points along an infinitely fault plane. 

 Let use the velocity-stress form of the elastodynamic equations, in which 

the velocity v(z,t) and shear stress (z,t) are the dependent variables:  
 

]1[
1
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zt

v         [A1] 
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z
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t
        [A2] 

 

Where  is the shear module and  the density. 

 Let use the standard staggered grid finite difference for the              

spatial discretization of the equation (Figure A1). The fault normal is in the z 

direction and located at z=0. For simplicity, even un-realistic, we assume the 

existence of free-surface on the plus and minus domain of the discretization 

(see Fig. A1). 

 

 
 
Figure A1. Staggered-grid discretization of the 1D elastodynamic equation with grid 

cells (split nodes) adjacent to the fault plane. 
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Approximation of spatial derivatives of equations A1 at the split nodes  
 

 Write separate equations for each side of the fault, taking into account 

the shear traction T acting at the interface, and its initial static equilibrium 

value T0.  Introduce the following one-sided difference approximations for , 

applicable to the plus and minus sides of the fault, respectively. 
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The time derivatives of equation (A1) at time t approximates by second-order 

central differences 
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where t is the time step. 

 

Approximation of spatial derivatives of equations A1 and A2 at interior 

grid points  
 

 Approximate the derivatives with a second-order spatial difference 
 

]5[2/12/1 A
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where  represents an arbitrary stress  or velocity component v  

 

Approximation of free-surface boundary condition 
 

 Positioning the free-surface at the stress node (see figure A1), we satisfy 

the free-surface condition setting stress at this node to be zero 
 

]6[0

0

2/1

2/1

Anz

nz        [A6] 

 

Matlab script 
 

 Combining these equations (A1-A6) and the equations (5), (6), (11)-(15) 

on the fault described in the main text, we have wrote a matlab scripts at the 

end of this appendix. The matlab script is self explanatory. The example test 
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uses data assuming the fault is in the interface of two materials, plus side and 

minus side of the fault. The main feature modeled in this test are: 1) The test 

show evolution in time of slip velocity, slip and stress on the fault; 2) wave 

radiated from the fault toward the free-surface. Due to different material 

properties the test shows wave propagating at different speeds; 3) The effect 

of the free-surface on the radiated wave. 

 

Data used in the matlab script test 
 

Model geometry 
 

L = 5000m; domain size (m) on each side of the fault 
 

z = 25m; grid size  

  

Material properties 

 

c+ = 4000.0 m/s; wave speed plus side of the fault 
 

+ = 2670.0kg/m3; density plus side of the fault 
 

(Pa)fault   theof side plus moduleshear     )( 2c  

 

c- = 2000.0 m/s; wave speed minus side of the fault 
 

- = 2670.0kg/m3; density minus side of the fault 
 

(Pa)fault   theof side minus moduleshear     )( 2c  

 

Friction and initial stress 
 

n= 120e6 Pa; initial normal stress on the fault 
 

s =0.677; static friction coefficient 
 

d =0.525; dynamic friction coefficient 
 

0 =82.0e6 Pa; initial shear stress 
 

d0=0.4 m; critical slip distance (m) 
   
Simulation time 
 

tmax = 1.5*L/c+; 
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Time discretization (CFL=0.5)   

 

dt = 0.5* z/c+; time step 
 

nt = integer(tmax/dt)+1; Number of time steps 

 

Spatial discretization 

 

nz = ingeger(L/ z)+1; Number of grid points   

 

Suggestions for other tests 
  

 You can play with the grid size to evaluate convergence and numerical 

oscillations. Use the s Use the same data above, but for z =10m, 50m, 100m 

200m 400m. 
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Abstract. The propagation of seismic ruptures along a fault subject 

to an initial stress distribution and a set of frictional parameters has 

been studied extensively over the years. When prestress is 

independent of time, rupture is relatively simple: it accelerates 

steadily to the terminal velocity and, under certain circumstances it 

can become supershear for mode II. For mode III, on the other 

hand, the terminal velocity is the shear wave speed. In this paper 

we review the most important results obtained in fracture 

mechanics and seismology for antiplane cracks in the first years of 

earthquake dynamics. First, we study a model of a rupture front 

that moves at constant speed with the load following it, as in 

rupture pulses. Then we study a model of a rupture front that 

appears spontaneously and propagates afterwards at variable speed. 

We show that these two types of rupture behave differently as 

speed increases. Steady propagating rupture pulses, like 

dislocations, can not approach the terminal speed. On the other 

hand spontaneous ruptures moving at variable speed under time 

independent load increase their speed steadily until they reach the 

shear wave speed. We then discuss seismic radiation, the 

generation of high frequency waves by seismic ruptures. We show  

 
Correspondence/Reprint request: Dr. Raúl Madariaga, Laboratoire de Géologie UMR CNRS 8538, Ecole Normale 

Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France, E-mail: madariag@geologie.ens.fr 



Raúl Madariaga 126 

that radiation can only occur when rupture speed changes. Cracks moving at constant 

speed simply “pull” their static elastic field behind the rupture front without emitting 

seismic waves. We obtain a complete solution for radiation from an arbitrarily moving 

crack in 2D. We finally introduce friction following the original work by Ida who 

studied different slip weakening friction models. We show that the cohesive zone 

follows a simple scaling relation with a numerical coefficient that depends on the 

details of the slip weakening law.    

 

1. Introduction 
 

 Earthquake are due to the fast propagation of shear ruptures along pre-
existing seismic faults. Several studies in the late 60s, 70s and early 80s 
pioneered our understanding of seismic rupture and introduced simple models 
of faulting in two dimensions, typically using homogeneous distributions of 
stress and friction parameters. Classical examples of such models are the self-
similar circular rupture model introduced by Kostrov (1966) and the circular 
crack solved numerically by Madariaga (1976). Extensive research then 
followed in order to properly pose the problem of propagation and radiation 
by a seismic rupture starting from the classical work by Kostrov (1964, 1966) 
and Eshelby (1969). Very soon it became clear that friction also played a 
fundamental role in the initiation, development of rupture and the healing of 
faults. The classical Coulomb model of a sudden drop in friction from a static 
to a kinematic coefficient led to an impasse, with infinite stress singularities 
and many other physical problems. The reason is that this model lacks an 
essential length scale needed to define a finite energy release rate near the 
rupture front. Slip weakening friction laws were introduced in dynamic 
rupture modelling by Ida (1972) and Andrews (1976a,b) for plane (2D) 
ruptures and by Day (1982b) for 3D fault models. A closely related friction 
law that is very amenable to computation was introduced by Palmer and Rice 
(1973) who found a complete analytical solution for the rupture front. These 
authors showed that slip weakening regularizes the numerical model of the 
rupture front, distributing stress and slip concentrations over a distance 
controlled by the length scale in the friction law. Other models of friction at 
low slip rates were studied in the laboratory by Dieterich (1978, 1979) and 
Ruina (1983), who proposed the model of rate- and state-dependent friction. 
Ohnaka and Kuwahara (1990), Ohnaka (1996) concluded that their 
experiments could be explained with a simple slip-weakening friction law. In 
fact, for many practical purposes, the rate-and-state and slip weakening 
friction laws can be reconciled remarking that both models contain a finite 
length scale that controls the behaviour of the rupture front. Extensive 
reviews on rupture dynamics until 1990 were published by Kostrov and Das 
(1989), Scholz (1989) and Freund (1990). 
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 Recent studies of rupture processes for selected earthquakes have shed 

new light on our understanding of earthquake ruptures. These models suggest 

a complexity of the rupture process that the early models of rupture in a 

uniformly loaded medium were unable to explain. Although in the late 

seventies, Das and Aki (1977b), Mikumo and Miyatake (1978, 1979), 

Madariaga (1979) and Andrews (1980, 1981) pointed out the deficiencies of 

the classical crack models, it was not until the late 80s that good quality near-

field strong motion data became available. By that time numerical methods 

had become mature and 3D dynamic models became common. 

 In this chapter we review what we believe are the most important results 

obtained in the field of earthquake rupture in the early stages of development 

of a fracture model of earthquakes. In order to keep the exposition simple we 

will restrict our study to antiplane cracks, but in-plane models can be studied 

with the same methods as long as rupture is sub-shear (see, Kostrov, 1975, 

Madariaga, 1977). In section 1 we review the early models of earthquake 

rupture and discuss the generation of seismic waves by an elastic shear fault 

model. The most important result is that cracks moving at constant speed do 

not radiate, only changes in the rupture front dynamics produce seismic 

waves. Then we introduce some of the most fundamental friction laws used 

in modelling earthquakes. Unfortunately, very few friction models can be 

solved analytically so that earthquake models have to resort to numerical 

methods even for the simplest models. 

 

2. The shear crack model 
 

 From the mid sixties to the mid-eighties earthquake models were developed 

at a fast path, from dislocation to crack models without friction and, finally, 

fault models including friction. In this section we will briey review the simpler 

crack model before we delve into the problem of the interaction between 

rupture propagation and friction. We will deliberately keep the exposition at the 

level of basic results; details will be provided in the following section where we 

will discuss in greater detail a complete model of fracture and radiation. 

 Let us consider now a properly posed source model embedded in a 

homogeneous elastic model of the earth. Extension to more complex elastic 

media, including realistic wave propagation media poses no major technical 

difficulties except, of course, that in general media only numerical solutions 

are possible. 

 Consider the 2D elastic wave equation: 
 

            
(1)
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where u(x, t) is the displacement vector field, a function of both position x 

and time t, and   (x) is the density of the elastic medium. Associated with the 

displacement field u the stress tensor  (x; t) is defined by 
 

         
(2)

 
 

where (x) and  (x) are Lamé’s elastic constants, I is the identity matrix and 

superscript T indicates matrix transpose. 

 

2.1. Boundary conditions on the fault 
 

 Assume that the earthquake occurs on a fault surface perpendicular to the 

axis z. Due to frictional instability a rupture zone propagates along the fault. 

At time t the rupture front is assumed to be located at position l(t). At a point 

inside the fault, x <= l(t), displacement and particle velocities are 

discontinuous so that 

 

                                                          
(3) 

 

is the slip across the fault. x
±
 denote points immediately above or below the 

fault, and are the corresponding displacement components. 

 When slip D occurs there is a concomitant change in the traction iz 

across the fault. This can be computed solving the wave equation (1): 
 

        (4) 
 

where ∆Σ [D] is a short hand notation for a functional of D and its temporal 

and spatial derivatives. 

 The problem posed above can be split into two simpler problems: an 

inplane or model II problem where the x component of displacement is 

discontinuous on the fault so that slip is parallel to the fault axis; and an 

antiplane problem (mode III) where the y component of displacement is 

discontinuous. The antiplane problem is simpler and does not require the use 

of complex variables. In the following we will use the antiplane fault as a 

simple model of an earthquake. For subshear inplane cracks, the antiplane 

solutions can be used to develop mode II solutions by a technique proposed 

by Kostrov (1975) and used by Madariaga (1977). Their method relies on the 

use of fixed coordinates. An alternative method for in-plane problems was 

proposed by Fossum and Freund (1975) who solved the inplane crack 

problem in coordinates moving with the rupture front. In the following we 
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will follow Kostrov's approach because it can be used to compute the full 

radiated field from a moving crack. A completely different method was 

proposed by Eshelby (1969) based on the use of certain properties of 

potential fields. 

 

3. Study of a 2D antiplane rupture moving along a flat fault 
 

 The simplest possible model of a shear fault is that of the antiplane crack 

moving along a plane fault in an elastic medium (see Fig 1). This problem is 

sufficiently simple that it can be completely solved for general loads. The 

elastic field of an antiplane crack was first solved for a rupture moving at 

constant speed by Craggs (1960) and Yoffe (1951) for particular loads. 

Kostrov (1966) and Eshelby (1969) later showed that it had an exact solution 

for any load. The solution for plane shear cracks moving at constant speed 

was obtained by Fossum and Freund (1975). The super-shear in plane crack 

moving at constant speed was solved by Burridge et al (1979). The crack 

running at constant speed has however a number of limitations as an 

earthquake model. The most obvious one is that the load (stress drop inside 

the crack) has to follow the rupture front at the same speed as the front, the 

other is that cracks moving at constant speed produce no seismic radiation. 

 

 
 
Figure 1. Geometry of the problem. A crack is running at constant or non-uniform 

speed along the x-axis. The interior of the crack x < l slips due to stress drop. 
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3.1. The mode III antiplane crack model running at constant speed 
 

 Let us consider a simple crack moving at constant speed along a flat 2D 

fault as shown in Figure 1. The only component of displacement and stress 

that are relevant in this problem are uy, yz and yx. 

 In coordinates fixed in the elastic medium with uniform properties ( and 

), the seismic waves generated by this crack satisfy the equation 
 

                      
(5)

 
 

where the shear wave speed . 

 If the crack moves at constant speed vr in the direction of positive x and 

the load follows the crack at the same speed we can simplify the solution of 

the problem using moving coordinates. Following Ida (1972) and Burridge 

and Halliday (1971) this problem can be solved using the following 

transformation to steady state variables: 

 

                        

(6)

 
 

 In this coordinate system the equation of motion (5) can be rewritten as  

 

                        
(7)

 
 

 In order to obtain 7 we used the property Thus, the solution 

of the steady state crack reduces to the solution of Laplace equation for a 

static antiplane crack, for which there are many solutions. We solve this 

equation with crack boundary conditions on Z = 0: 

 

        
(8)

 
 

 These boundary conditions define a mixed boundary value problem that 

can be solved by a number of methods using complex potentials or integral 

equations. We adopt here the latter approach. For any slip distribution in the 

crack X < 0 we can write the following boundary integral that expresses the 

stress field on the fault in terms of the slip distribution: 
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(9)

 
 

where is the slip discontinuity inside the 

crack zone X  0. P indicates the principal value of the integral (see Ida, 1972 

eq. 1). This expression can be derived from the representation theorem of 

Burridge and Knopoff (1964). The discrete version of (9) is usually known as 

the displacement discontinuity method and is widely used to solve crack 

problems in many areas, including mining, fracture, etc. 

 Equation (9) can be inverted in order to express the slip distribution as a 

function of the stress drop inside the crack. This solution is attributed to 

many of the creators of fracture dynamics. It is based on a theorem shown by 

Muskhelishvili (1953). The result (see Ida, 1972, eq 10) is 
 

         
(10)

 
 

that expresses the sliprate  as a function of the stress drop inside the 

crack. This equation is rarely discussed in the seismological literature but it 

does not converge unless the integral on the RHS converges. We remark that 

for Dy to be finite, the integral over the stress has to have a finite value. 

 A companion expression useful to study friction relates the stress field 

outside the crack (for X > 0) to stress inside the crack: 
 

    
(11)

 
 

(see Ida 172, eq. 13). We notice the remarkable similarity between the two 

expressions (10 and 11). We have now the complete solution for the antiplane 

shear crack propagating along a flat fault at constant speed. Similar 

expressions can be found for in-plane cracks (e.g. Fossum and Freund, 1975; 

Kostrov, 1975). 

 

3.2. Stress intensity factor and energy release rate 
 

 Near the crack tip, close to X = 0, it is possible to simplify equations    

(10 and 11) under the condition that yz is sufficiently well behaved. We find 

on Z = 0: 
 

       
(12) 
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(13)

 
 

in (12) the stress intensity factor KIII is defined as follows 
 

         
(14) 

 

and the velocity intensity factor in (13) 
 

         
(15)

 
 

The stress and velocity fields present inverse square root singularities in 

stress and velocity on opposite sides of the crack tip. These singularities 

constitute a natural property of a running crack, they appear because of the 

mixed boundary conditions on the two sides of the crack tip. 

 Slip near the tip of the crack can be computed integrating (13): 
 

                                                                   

(16)

 
 

For a running crack we can now compute the energy release rate, that is, the 

amount of energy absorbed by unit advance of the crack tip, that we will call 

Gc. Using an argument by Kostrov and Nikitin (1966) and Palmer and Rice 

(1973) we find that 
 

         
(17)

 
 

and a similar expression for mode II. These expressions lead to a paradox. 

When the rupture speed approaches the shear wave speed, velocity intensity 

VIII, slip amplitude and energy release rate Gc tend to infinity unless the stress 

intensity factor KIII tends to zero as the crack speed reaches the terminal 

speed. 

 

4. A transient antiplane shear crack propagating at variable 

speed 
 

 The steady state solution discussed in the previous subsection explains 

some of the most general features of antiplane shear faults. The previous 

results can be generalized to a fault propagating at variable subsonic 
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(subshear) speeds. We will prove that the steady state solution remains valid 

in the case of an arbitrary stress drop, provided that the stress field varies 

smoothly near the rupture front. The solution for an antiplane shear crack 

propagating at variable speed was found by Kostrov (1966) using a very 

general procedure that he later extended to the solution for the propagation of 

an inplane shear crack (Kostrov, 1975). Actually the results of the previous 

section can be completely derived from the solution for a crack propagating 

at variable speed. 

 

4.1. Exact solution for a semi-infinite shear fault 
 

 Let a semi-infinite shear fault as shown in Figure 1 extend from   to 

the current rupture front position . We study the stress and velocity field 

around this fault. We assume a homogeneous elastic body loaded internally 

by a stress field in the shear crack. The boundary conditions are 
  

                                                             
(18)

 
 

where ∆(x, t) is the traction change (usually called stress-drop) between the 

two-sides of the fault. As will be discussed later this stress drop has to be 

determined from a non-linear friction law. Here we will assume the simplest 

friction and consider a constant kinematic friction. In this case ∆(x, t) 

measures the difference between the initial static stress field and the 

kinematic friction. In order to set up the integral equation and its solution for 

some simple models of loading we assume initially that stress drop is a 

known function of space and time.  

 Because of the symmetry of the problem about the x axis, we can write 

the solution as a linear boundary integral equation relating stress outside the 

crack, on  < x < , to the known stress change in x < . For the 

applications we have in mind we assume that at time t = 0 the semi-infinite 

crack appears instantaneously along x < 0, so that (0) = 0. The solution to 

this problem was found by Kostrov (1966) who proposed the following 

expression for stress outside the crack as a function of stress inside it: 
 

      

(19)

 
 

for  < x t and yz(x, t) = 0 for x > t. 
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 The integral in (19) is calculated along the backward characteristic drawn 

from the point (x, t) where the stress field is calculated. The geometry is 

shown in 2. Characteristics of the wave equation (5) in the plane (, ) are 

lines slope ±1/. As can be also seen from this figure, for a subsonic rupture 

front the stress field calculated from (19) is zero for all the points x > t, 

located ahead of the shear wave front. 

 The intersection of the backward characteristic with the rupture front   

(x , t ) can be found solving the implicit equations 
 

        (20) 
 

Given a rupture history , this system may be solved analytically or 

numerically for x , t . 

 As shown by Ida (1973) and Madariaga (1983) it is also possible to solve 

exactly for the slip on the crack x  . The relation is 
 

                       
(21) 

 

where the upper limit of the integral over  is  These are 

the characteristics through the current point (x, t) as shown in Figure 3. The 
 

 
 
Figure 2. Computation of the stress field autside a non-uniformly moving crack. The 

stress at point x at time t is computed along the backward characteristic from (x, t). 
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Figure 3. Computation of slip inside the crack at point (x, t) for an antiplane shear 

crack moving at non-uniform speed. The grey area is the region of integration for 21. 

 

intersection (x , t ) of the backward characteristic through (x, t) with the 

rupture front is calculated by 
 

                                                               (22) 
 

The lower limit tm = max(0, t0) of the integral over   in (21) is defined by the 

inter-section of the characteristic through x , t  with the x-axis as shown also 

on Figure 3. The equation of the characteristic can be calculated using (20) in 

order to determine (x , t ) so that 
 

         
(23)

 
 

Finally the point of intersection of this characteristic with the x axis is given 

by t0(x, t,0) = 0, from which we get 

 

         (24) 
 

 In the following applications we will need the slip velocity inside the 

crack instead of the slip. Taking the derivative of (21) we find (see 

appendix): 
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(25)
 

 

This expression gives the slip velocity inside the fault for any distribution of 

traction change ∆ (,). It contains three terms: (1) the first is radiation from 

changes in stress rate. Generally, the contribution of stress rate to radiation is 

neglected in most seismological studies, although it is an important term in 

the energy balance for seismic faults. (2) The second term in (25) is due to 

instantaneous rupture of the fault along the negative semi-infinite axis at time 

t = 0. For faults starting from a small initial region, this term can be neglected 

or replaced by another one. (3) The last term represents the radiation by the 

propagating rupture front, the most important term for the following 

discussion. 

 

4.2. Stress and slip velocity for a time independent stress drop 
 

 These expressions for a general stress drop can be further simplified 

when stress drop is constant with time. This is one of the most common 

assumptions in earthquake simulations. For time-independent stress drop the 

first term in (25) is zero so that the slip velocity  reduces to the from the 

simpler expression: 
 

      
(26)

 
 

This is a simplification of (25) where we only consider the radiation emitted 

by the rupture front as it propagates. 

 

4.3. Stress and velocity intensity factors and energy flow rate 
 

 A fundamental property of shear cracks is that near the rupture front 

stresses and slip velocities have universal features that can be derived for 

general loading. Let us first compute stress near the rupture front. We start 

from the expression (19) for the stress ahead of the crack tip. We assume here 

that stress is time independent. 
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(27)

 
 

for x  , where x
 
(x, t) is the retarded position of the crack tip shown in 

Fig 2. In order to compute the stress intensity factor we have to replace x  by 

the current position of the rupture front t . For that purpose we use the 

following approximation valid when x  : 
 

       
(28)

 
 

where we used the property  

 We can now rewrite (27) in the simple universal form: 
 

                     

(29)

 
 

where the dynamic stress intensity factor is 
 

       
(30) 

 

K0 is the stress concentration of an equivalent static crack of the same length 

as the moving one. This separation into a velocity dependent factor and an 

intrinsic stress intensity factor is one of the most important characteristics of 

dynamic fracture mechanics. K0 depends only on the stress drop inside the 

crack and it has no information about rupture history for subshear cracks. It is 

instructive to compare our expression (30) with that derived for a steady state 

crack (12). For a steady state crack the stress intensity factor does not include 

the universal velocity dependent term. For this reason we use the notation KIII 

for the stress intensity factor of cracks propagating at constant speed, and Kd 

for cracks with constant stress load. 

 Let us now turn to the slip velocity field in the vicinity of the crack tip. In 

the case of a time independent stress drop, the slip velocity is given by the 

last term in (26). Taking the limit of this term we find 
 

       

(31)
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where   () is the retarded position of the rupture front. Thus the slip rate has 

an inverse square root singularity inside the crack that is the counterpart of 

the singularity in shear stress. Changing to the current position  using (28) 

we get asymptotically for x  . 
 

         
(32)

 
 

we can now define the velocity intensity factor 
 

         
(33)

 
 

which, just as Kd, separates into a term that depends on the instantaneous 

rupture speed and another that depends only on the stress drop inside the 

crack. 

 Finally we compute the energy release rate as for steady state cracks: 
 

        
(34)

 
 

This expression shows the well-known fact that for a transient crack with 

static load, the energy release rate decreases to zero as the crack approaches 

the terminal speed  for antiplane cracks. It is important to realize that this is 

not a universal property of cracks, only of those that grow under static load. 

For a steady crack, on the other hand, Gc does not approach zero as the speed 

increases, it actually increases without limit as vr  . 

 

4.4. Why is steady state intensity factor different from Kostrov's 
 

 Steady state propagating cracks assume that the rupture front moves at 

constant speed and that the stress field moves at constant speed behind it. 

That is stress drop in a steady state crack is 
 

                                                                               
(35)

 
 

using the expressions for constant rupture speed  = vrt we find 
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(36)

 
 

And t  (x, t) = x (x, t)/vr. Thus when x  vrt, x
 
 x. 

 Inserting these expression in (27) we get 
 

          
(37)

 
 

for x  (t) where  = (x
 
t)/vr. 

  

 We can now integrate (37) using the change of variables 
 

         (38) 
 

so that 
 

    
(39)

 
 

 Thus, steady state cracks behave differently from transient cracks in 

which the load (stress drop) is only a function of position. An example of 

steady state crack is a pulse-like crack that propagates at constant speed. 

Stress intensity for such a crack is invariant with rupture speed, so that in 

contrast with classical crack solutions it can not approach the terminal speed. 

In general then, crack-like solutions approach the terminal speed, pulses do 

not. 

 

5. Radiation from an antiplane shear crack propagating at 

variable speed 
  

 The steady state solution discussed earlier in this paper has a 

fundamental defect: it does not produce seismic waves, so that in fact it can 

not be used directly to model earthquakes. A crack moving at constant speed 

does not radiate, just like an electric charge moving at constant speed does 

not produce electromagnetic waves. In order to produce seismic waves the 

rupture front of the crack must change. Let us recall (34); this expression can 

be considered as an equation of motion for the rupture front. It determines 
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rupture speed (vr) as a function of the load represented by K0 and the energy 

release rate Gc required by the rupture front to grow. If stress intensity and 

energy release rate are constant, the crack moves at constant speed and it does 

not radiate seismic waves.  

 Seismic waves are emitted when rupture velocity changes rapidly as a 

consequence of changes in either Gc or K0. As discussed by Madariaga (1983) 

these two changes correspond to the usual concept of barrier and asperities 

used in seismology to explain rupture heterogeneity. Let us consider a simple 

example of seismic radiation studied initially by Eshelby (1969) for antiplane 

cracks and by Madariaga (1977) for inplane and antiplane cracks. We assume 

that a crack is running at constant rupture velocity vr and that at a certain 

point xstop, at time tstop it suddenly stops because it meets an unbreakable 

barrier; a place on the fault where Gc is effectively infinite. When the crack 

stops, the stress intensity factor Kd suddenly increases from 

 to K0, where K0 defined in (30) is the so-called zero-

speed rupture velocity. In other words when the crack is running at high 

speed its stress intensity factor is reduced by the Lorenz contraction term 

, but when it stops the Lorenz term no longer reduces the stress 

intensity. The radiation from the sudden arrest of the crack, or stopping 

phase, may be easily computed by subtracting to a steadily propagating crack 

another one that suddenly starts from (xstop, tstop) with a stress intensity that 

has the opposite sign. The stopping phase can be computed in a number of 

ways, as shown by Eshelby (1969) using potential methods and Madariaga 

(1977) using complex analysis. 

 The wave emitted by the sudden arrest of the crack is 
 

                           
(40)

 
 

where, see figure 4, R and   are cylindrical coordinates centred on the point 

where the crack stopped (xstop, 0), time is measured from the time of arrest. 

The left hand side is the velocity produced by the passage of the stopping 

phase. Across the stopping phase wave front, velocity suddenly jumps from 

the value given by (40) to zero. The different terms in (40) are easy to 

understand. The amplitude of the stopping phase is proportional to the zero-

speed stress intensity factor K0. The third term is the directivity due to the 

motion of the crack front. The following term is the radiation pattern divided 

by the inverse square root typical of two dimensional waves. Finally the time 

dependence is the Heaviside function moving with the shear wave speed. The 

radiation pattern may seem surprising because it is different from that of a 

simple double couple. The reason it has this peculiar form is that the crack 
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Figure 4. Emission of an stopping phase by a rupture front that suddenly stops at the 

arrest point (t). 

 

front separates a forward domain ( = 0) where velocity is zero from the 

interior of the crack where slip velocity has an inverse square root singularity. 

The sine function has opposite sign on the two sides of the fault ( = ±/2). 

 In the frequency domain a sudden jump in velocity means that the 

Fourier spectrum of ground velocity has an 1
 behaviour at high 

frequencies. We can easily integrate (40) to obtain ground displacement. In 

this case the stopping phase is associated with a slope discontinuity in 

displacement. The spectral amplitude of a change in slope is characterized by 

a high frequency spectral decay of the 2 
type. This is the classical high 

frequency decay of seismic waves emitted by seismic sources (Aki, 1967, 

Brune, 1970). This is of course not the only way to produce an 2 
decay at 

high frequencies but it is a very good candidate for it. Madariaga (1977) 

associated the 2
 asymptote as the origin of Brune's model of high frequency 

spectral decay. He showed that when a circular crack that was growing at 

high subsonic speed suddenly stops, it will produce 2
-like stopping phases 

emitted from the border of the circular crack. Andrews (1980) proposed an 

alternative model in which high frequency waves are controlled by a rupture 

front moving at constant speed on a fault that contains heterogeneities that 

have a particular power spectrum. Andrews and later work did not consider 

the stopping phases that would be radiated if rupture were to stop. 

 

5.1. Seismic radiation by a crack moving at variable speeds 
 

 Madariaga (1983) showed that the high frequency radiation produced by 

crack moving at variable speed can be computed exactly as long as stress 
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does not change with time. When stress changes with time there are 

additional terms that can be computed, but they are not as easy to interpret. 

As the rupture front advances at constant or smoothly varying speed it 

produces a local stress field near rupture front. Away from the plane of the 

fault, however, the stress field is very smooth when the crack moves with 

slowly varying speed. The rupture front only produces high frequencies when 

the rupture velocity changes. We can find a complete solution for the seismic 

waves radiated from this crack using the similar approach to that used by 

Kostrov (1966) to solve for the slip rate on the plane of a crack that moves at 

variable speed (25). 

 The seismic waves emitted by the rupture front can be written in the very 

simple form: 
 

      

(41)

 
 

In this expression the velocity field observed at a point (x, z, t) comes from 

the intersection of the backward influence cone drawn from the current 

observation point with the rupture front (see Figure 5). The point of 

intersection can be computed by solving the simultaneous equation 

 

 
 

Figure 5. Computation of the velocity field emitted by a moving crack. Radiation 

reaching the point (x, z) at time t comes from the rupture front situated at point A. The 

stress intensity factor is computed along the backward characteristic issued from A. 



The birth of forward models 143 

                                               
(42) 

 

for  and (). This is a very non-linear equation but it is not difficult to 

solve. Once  is known we can compute K0( ), the distance R and radiation 

angle . 

 Expression (41) is a simplification of a more general expression derived 

by Madariaga (1983). Here we only consider the radiation (41) emitted by the 

rupture front as it propagates. There are other terms that take into account 

radiation by the initial stress on the fault, but in general those terms produce 

weaker seismic waves. In the following we consider that the dominant term is 

produced by the motion of the rupture front.  

 We notice first that when rupture is moving at constant speed  = vr is 

constant. So that the velocity field of a crack moving at constant speed is just 

the static field of the crack that is dragged by the rupture front multiplied by a 

factor proportional to rupture speed and inversely proportional to directivity. 

As we already explained earlier, no high frequency waves are emitted by a 

crack moving at constant speed. Seismic waves are generated only when the 

crack front speed  changes rapidly. 

 

6. Slip weakening friction 
 

 In the previous sections we reviewed the basic properties of a simple 

antiplane crack moving at variable speed in an almost arbitrary time and 

space variable stress field. The radiation emitted by the crack is simply 

related to the stress concentration at the crack tip. It is unlikely that such a 

simple result can be extended to cracks with friction because friction is 

intrinsically non-linear. There is however one situation in which simple 

results can be obtained. If the region where "slip-weakening" occurs is small 

compared to any other dimensions of the fault, the end zone can be studied 

independently of the rest of the crack. This is the case we will study in the 

following. 

 A crucial assumption in seismic source dynamics is that traction across 

the fault is related to slip at the same point through a friction law that can be 

expressed in the general form 
 

         (43) 
 

so that friction T is a function of at slip, slip rate  and several state variables 

denoted by i. For more details on state variables see Dieterich (1978, 1979), 
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Ruina (1983), but see also Ohnaka (1996) for an alternative point of view. 

The traction that appears in the friction law is the total traction Ttotal on the 

fault which can be expressed as the sum of pre-existing stress T
0
(x) and the 

stress change ∆T due to slip on the fault. The pre-stress is caused by tectonic 

load of the fault and will usually be a combination of purely tectonic loads 

due to internal plate deformation, plate motion etc., plus the stress field left 

over from previous seismic events on the fault and its vicinity. 

 In the early days of dynamic earthquake modelling the most frequently 

used friction law were the simple slip weakening laws proposed by Ida 

(1972). It is an adaptation to shear faulting of the Barenblatt-Dugdale friction 

laws used in hydro-fracturing and tensional (mode I) cracks. In this friction 

law, slip is zero until the total stress reaches a peak value (yield stress) that 

we denote by Tu. Once this stress has been reached, slip D starts to increase 

from zero and T(D) decreases linearly to Tf as slip increases: 

 

     (44) 
 

where Dc is a characteristic slip distance and Tf  is the residual friction at high 

slip rate, sometimes called the “kinematic” friction. There is considerable 

discussion in the literature about how large this residual friction is. Many 

authors following the observation that there is a very broad heat flow 

anomaly across the San Andreas fault in California have proposed that faults 

are “weak”, meaning that Tf is close to zero. Other authors propose that 

kinematic friction is high and faults are strong. We can not go into any details 

about this discussion here, interested readers may consult the papers by 

Scholz (2000) and Townend and Zoback (2000). For most applications of 

earthquake dynamics, only stress change is important so that without loss of 

generality we can assume that Tf  = 0 in much of the following. 

 The slip weakening friction law (44) was used in numerical simulations 

of rupture starting with Andrews (1976a,b), Day (1982b) and many others. In 

many earlier studies of earthquake dynamics, a simpler version of (44) was 

used in which Dc was effectively zero. This numerical version of slip-

weakening was called the Irwin criterion by Das and Aki (1977a) and was 

widely used by many authors although it is obviously grid-dependent (see, 

e.g. Virieux and Madariaga, 1982). 

 Once slip is larger than the slip weakening distance Dc, friction becomes 

a function of slip rate  and one or more state variables that represent the 

memory of the interface to previous slip. A very simple rate dependent 
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friction law was proposed by Knopoff and Burridge (1968) and has been used 

in simulations by Cochard and Madariaga (1986): 
 

         
(45)

 
 

where V0 is a characteristic slip velocity and Ts  Tu is the limit of friction 

when slip rate decreases to zero. The applicability of rate weakening to 

seismic ruptures is much more controversial than slip weakening, although 

there is plenty of indirect evidence for its presence in seismic faulting. 

Heaton (1990) proposed that it was the cause of short rise times; rate-

dependence at steady slip velocities is also an intrinsic part of the rate and 

state friction laws proposed by Dieterich (1978) and Ruina (1983). Those 

friction laws are very important at low slip rate, but at high rates they are 

very similar to slip weakening. 

 

6.1. Steady propagation of a seismic rupture under friction 
 

 Ida (1972) and Palmer and Rice (1973) assumed that the state of stress 

near the crack tip is controlled by a far field state of stress and that friction 

acts locally to reduce stress and velocity intensity near the crack tip to zero. 

The idea is to separate the study of large scale slip-rate on the fault from the 

study of the effect of friction inside so-called process zone. The dimensions 

of the process zone are assumed to be small compared to other length scales 

in the crack problem. This is a boundary layer approach that separates the 

external field from the local process zone. A more general approach is 

possible but it requires the use of numerical methods because the problem is 

very non-linear. This is the approach used by Andrews (1976a,b) and later 

authors to study the growth of a plane crack. 

 We adopt as external field away from the crack tip the simple steady 

state crack solution presented in equations (12) and (13). The slip rate behind 

the process zone is 

 

     
(46)

 
 

We use the notation KIII for the stress intensity factor in order to indicate that 

this is the stress intensity factor for a steady running crack. 

 Inside the process zone a cohesive stress field appears due to the friction 

law. Let this stress be zy(X). This stress field moves behind the rupture front 
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at constant speed vr. The slip rate distribution produced by the cohesive stress 

can be computed with equation (10) so that the total slip rate is: 

 

    

(47)

 
 

from which we can derive a first condition for the cohesive zone noting that 

the total velocity intensity will disappear if and only if y(0) = 0, that is if 
 

        
(48)

 
 

thus the stress field inside the cohesive zone must exactly balance the stress 

concentration that would prevail near the crack tip if there was no friction. 

 Since the intensity factor due to friction eliminates the stress intensity 

due to the external load it is evident that the energy release rate into the crack 

tip must be equal to the rate of work of the cohesive forces. 
 

         
(49)

 
 

and Gc = ∫(Tu Tf )dD for simple slip weakening models. This is the same as 

equation (17), derived for a crack propagating at constant speed, but here Gc 

has a well defined form for each slip weakening model. (49) can also be 

shown using the energy flow method proposed by Kostrov and Nikitin (1970) 

or by the Rice’s J-integral (see Rice, 1980 for more details). 

 Equation (47) together with the friction law (43) define a well-posed 

non-linear eigen-value problem that can be solved by the iterative method 

proposed by Ida (1972). His method is however very involved because he did 

not introduce the requirement (48) from the beginning. He used several 

expressions that are equivalent to the energy release rate Gc in his derivation. 

The problem leads to a non-linear eigenvalue problem that can only be solved 

numerically. Ida (1972) presented solutions for a number of models for the 

friction law. 

 There is one example of friction law that can be solved exactly without 

resorting to numerical methods. This is a model in which friction is assumed 

to be constant inside the process zone as shown by the broken line in Figure 6. 

For this model friction is 
 

yz               (50) 
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Figure 6. Slip weakening friction laws. On the left friction as a function of slip, on the 

right friction as a function of distance from the tip. Friction is normalized by Tu  Tr, 

slip by the slip weakening distance Dc and distance by Lc. 

 

and 0 otherwise. Here Dc is the slip weakening distance and (Tu  Tf) is the 

excess stress in the process zone. 

 The energy release rate for this friction model is Gc = (Tu  Tf) Dc. Since 

friction in constant in the process zone, we only need to determine the length 

Lc of the process zone using (48). Integrating we find 
 

         
(51) 

 

We can now use (49) to express Lc in terms of the slip weakening distance 
 

        
(52)

 
 

so that the size of the process zone scales linearly with Dc. Thus, Dc provides 

a length scale to the rupture process that was absent in the simple crack 

models. 

 For the linear slip weakening model there is no simple analytical 

approximation, but it is not difficult to compute numerically. The numerical 

solution in shown by the continuous line in Figure 6. In this figure slip is 

measured by Dc and stress by (Tu  Tf). The figure on the right plots the 

friction inside the process zone where distance is measured by Lc for the 

constant stress model. From the figure on the right we get 
 

         (53) 
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 Inserting into (49) we get 
 

        
(54)

 
 

again, the ratio between Lc and Dc depends only on the state of stress near the 

crack tip. 

 Palmer and Rice (1973) proposed a different approximation to the 

friction of the end-zone. Instead of solving the non-linear eigenvalue problem 

for a particular friction law T(D), they assumed a particular form of the 

variation of xz with distance from the crack tip: 

 

        (55) 
 

where again Lc is the size of the cohesive zone. Inserting this expression into 

the expression for the stress intensity factor (48) we get  
 

          
(56) 

 

 Finally inserting this expression into (49), we get 
 

        
(57)

 
 

where  is an equivalent slip weakening distance defined by Palmer and 

Rice (1973).  is about one half the value of Dc as defined in (44) so that 

Palmer and Rice’s model is very similar to that of linear slip weakening. 

 Since most recent models are computed numerically, the important result 

is that (52, 54 and 57) have the form of a scaling relation 
 

        
(58)

 
 

where Cc is a numerical coefficient of order 1. Lc to Dc ratios vary very little 

for different models of the friction law studied by Ida (1973). 

 We conclude that the length of the process zone Lc is roughly /(Tu  Tf ) 

times the size of the slip weakening zone, reduced by the Lorenz contraction 

term. Since the ratio between  and the peak stress drop (Tu  Tf) is generally 

of the order of 10
3
10

4
, the ratio Lc / Dc will be of the same order of 

magnitude. Another important consequence of (58), noted by Andrews 
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(1976), is that as the rupture velocity approaches the shear wave speed, Lc 

tends to zero if Dc has a fixed value independent of rupture speed. It must be 

noticed, though, that when the rupture velocity approaches the terminal 

speed, the description of the end-zone as an inverse squared-root singularity 

is no longer correct. Thus at the terminal speed numerical computations are 

required. 

 

7. Conclusions  
 

 We have reviewed some of the most fundamental results on earthquake 

fracture dynamics derived from 1965 to 1985. Some of these results were 

derived adapting to shear faults results previously obtained for mode I cracks. 

Friction, however, did not play a significant role in mode I cracks, so that a 

number of original methods were developed very rapidly in the early 70s to 

deal with this problem. An interesting property of mode II shear cracks that 

we did not review here is supershear rupture velocities that will be reviewed 

in another chapter of this book. We put emphasis on the propagation of shear 

cracks at variable speed because cracks propagating at constant speed will not 

produce seismic waves, except in the very unlikely situation that the stress 

concentration near the crack tip changes without a concomitant change in 

rupture speed. 

 Thanks to improvements in speed and memory capacity of parallel 

computers it is no longer a problem to model the propagation of seismic 

ruptures along a fault, or a fault system, embedded in an elastic 3D medium. 

The enhanced computational power can be used to improve classical models 

in order to study 3D effects, It is nowadays possible to do dynamic forward 

models of earthquakes of any magnitude. 

 

8. Appendix 
 

 Proof of expression (25): 

 Let us take the derivative of (21) 
 

               
(59)

 
 

where the dot indicates a time derivative. Let us remark that the time 

derivatives with respect to the limits of the integrals over  do not contribute 

to the derivative because the integrals over  for  = x  and  = x t are zero. 
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The derivative of the integral over  in (59) has to be computed very carefully 

in order to take into account the variation of its limits. We get 

 

 

(60)

 
 

 The derivative at the upper point tM does not contribute, because           

d(t  tM)/dt = 0. 

 As seen from Figure 3, tm = 0 for  < 0 where 0 was defined in (24). 

Thus d(t tm)/dt = 1 for  < 0. For  > 0, on the other hand, tm = t0 defined in 

(23). In this case we get dtm/dt =  and 

 

     
(61)

 
 

with this simplification we can finally derive (25). 
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Abstract. Faults accommodate slow tectonic loading through both 

earthquakes and slow slip. Here, we discuss fault models capable 

of reproducing the entire range of fault slip behaviors, fueled by 

the increasing stream of high-quality laboratory experiments, 

observational data, and computational resources. The success of 

the laboratory-based models opens a possibility of predictive 

physics-based modeling, in which a range of potential fault 

behaviors is uncovered. However, much remains to be done toward 

that goal.    

 

1. Introduction 
 

 Fault processes involve both dynamic events – seismic slip perceived as 

earthquakes – and complex patterns of quasi-static (aseismic) slip. 

Understanding physics and mechanics of this behavior in its entirety is a 

fascinating scientific problem. However, even for the more pragmatic goal of 

understanding only the behavior of destructive large dynamic events, it is  

still important to consider the entire earthquake cycle, since aseismic slip and  
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smaller events may determine where large earthquakes would nucleate as 

well as modify stress and other initial conditions before dynamic rupture. 

Moreover, large events are relatively rare; hence improving our 

understanding of earthquake physics has to be based in part on observations 

of smaller events and aseismic slip phenomena. 

 Many fundamental questions in earthquake science require understanding 

of both seismic and aseismic slip, and their interaction. What controls the 

spatio-temporal distribution of slip on faults? How do earthquakes nucleate 

and arrest? What can we tell about large destructive rare events from smaller 

ones? What is the stress state on the faults? What causes aftershock 

sequences? Which aspects of fault physics are relevant to ground motions and 

estimates of earthquake hazard?  

 One approach to addressing this set of interconnected questions is to (i) 

formulate fault models with constitutive relations that are based on laboratory 

experiments and theories of how fault materials deform under the wide range 

of conditions during the earthquake cycle, (ii) simulate the response of those 

models in terms of fault slip, and (iii) find the relevant models by comparing 

the simulated features with observations over a range of temporal scales, in 

terms of individual seismic events, event sequences, and aseismic slip. 

 Here, we discuss the progress on implementing this approach, fueled by 

the increasing stream of high-quality laboratory experiments, observational 

data, and computational resources, with the focus on rate-and-state fault 

models. 

 

2. Rate-and-state friction laws as laboratory-based 

description of fault behavior 
 

 The rate-and-state friction framework incorporates the current “state-of-

the-art” understanding of macroscopic frictional properties. This section 

summarizes the laboratory-based inferences about frictional resistance of 

nominally planar shear zones which can be either interfaces between two 

contacting surfaces or narrow layers of fault gouge. Discussing frictional 

resistance implies that the shear zone is compressed by the normal stress  

(positive in compression) and there is no opening. If the shear zone is 

permeated by fluids, the typical assumption is that the effect of fluids on 

frictional resistance can be represented by the effective normal stress [1]: 
 

            
(1)

 
 

where p is the fluid pore pressure. The relative shear motion of the two 

surfaces is called slip, and the time derivative of that is called slip velocity or 
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slip rate. In the following, the terms “slip velocity” and “slip rate” are used 

interchangeably. 

 

2.1. Standard formulations based on low-velocity experiments 
 

 The standard, so-called Dieterich-Ruina, rate-and-state friction laws were 

developed to incorporate experimental observations [2–5] of frictional 

resistance of shear zones at slip rates of the order of 0.01-1000 μm/s. Such 

range is typically called “low-velocity”, since the velocities are small 

compared to the seismic ones of the order of 1 m/s. The laws model 

variations of frictional shear strength due to its dependence on slip rate and 

evolving properties of the contact population or shearing layer; these 

evolving properties are described by a state variable, or variables [4–10]. 

 The rate-and-state friction laws contain features of simpler friction laws. 

The first systematic study of friction was done by Leonardo da Vinci in the 

fifteenth century, and then his findings were rediscovered 200 years later by 

Amontons [11]. Amontons found that the frictional force is independent of 

the size of the surfaces in contact and that friction is proportional to the 

normal load, relating, in modern terms, the frictional shear stress  and the 

effective normal stress  as 
 

                        (2) 
 

where f is the friction coefficient thought to be a constant independent of the 

sliding velocity or the accumulated slip. Coulomb, nearly 100 years later, was 

one of the researchers who tried to explain the properties of friction [11], as 

well as the observation that static friction is (often) higher than the kinetic 

friction, and the law (2), which is still widely used, became known as the 

Coulomb friction law. First explanations of the independence of the frictional 

force on the contact area were given by Bowden and Tabor [12, 13] in their 

work on friction of metals. They noted that, because of the surface roughness, 

the surfaces touch only in certain places, called “asperities”, so that the real 

area of contact is much smaller than the apparent one. Bowden and Tabor 

then derived the friction law (2) for ductile metals. This explanation was 

extended to materials with largely elastic asperity contact first by Archard 

[14], who represented surface roughness by hierarchical structure of elastic 

spheres, and then, in a more realistic model of a rough surface with a random 

distribution of asperity heights, by Greenwood and Williamson [15]. 

 While the Coulomb law (2) gives a sufficient description of friction for 

many elementary applications, it is not suitable for studies of unstable 

frictional phenomena (stick-slip), including sequences of earthquakes, even if 
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one agrees to neglect finer features of frictional behavior discovered by 

experiments [2–5] and discussed below. The problem is that the simple 

Coulomb law does not allow for unstable slip between identical materials 

(unless in a configuration for which normal stress is altered by slip). That is 

why other formulations have been used to study unstable slip. They have the 

general form (2), but the coefficient of friction is no longer considered to be 

constant. 

 In purely velocity-dependent (also called rate-dependent) laws, the 

coefficient of friction depends on the slip velocity V, so that one writes: 
 

           (3) 
 

Often, the function f (V) is decreasing with increasing slip velocity V for 

rocks, as experiments suggest for steady sliding at different slip velocities V 

(e.g., [16, 17]) and consistently with the well-known concept of static-kinetic 

friction. Such dependence is called velocity weakening - the faster the slip is, 

the easier it is to slip. If function f (V) is increasing, then the law describes 

velocity strengthening. Another set of friction laws in use is slip-dependent 

laws, in which the coefficient of friction f depends on slip. The simplest law 

of such type allows f to degrade linearly with slip until a certain amount of 

slip (called the slip-weakening distance and denoted by Dc or dc) is reached; 

during the subsequent slip, the friction coefficient stays constant (e.g., [18]). 

Such laws were motivated by cohesive zone models of tensile fracture       

[19, 20]. They can also be viewed as a generalization of the static-kinetic 

concept of friction, but contain no account of rate dependence. Such laws 

cannot model gradual regain of strength without additional ingredients. 

 The purely velocity-dependent or slip-dependent laws were introduced as 

plausible descriptions that allowed simulations of spontaneous slip events. 

When the growing interest in the subject and advances in experimental 

techniques made it possible to study the frictional response in more detail, it 

turned out that the response possesses remarkable features that have 

intrinsically mixed velocity-dependent and slip-dependent aspects. These 

features were first documented in the works by Rabinowicz [21,22], and then 

they were rediscovered and quantified in the so-called velocity-jump 

experiments by Dieterich [2, 3], Ruina [4, 5], and others [23–29]. 

 In the velocity-jump experiments (Figure 1), frictional resistance settles 

down to a constant value as sliding occurs at a constant velocity. Then, as a 

sudden jump in slip velocity is imposed, friction also instantaneously jumps, 

with the same sign of the change. This is called the positive instantaneous 

velocity dependence, or positive direct dependence, or positive direct effect. 

After the direct effect, the frictional response evolves, through a certain amount 
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Figure 1. Schematic depiction of three types of friction laws. (a) In purely rate-

dependent laws, the coefficient of friction f depends on the slip velocity V. Rate-

weakening friction is illustrated, in which the resistance is weaker for higher slip 

rates. Rate-strengthening and non-monotonic responses have also been observed in 

experiments. (b) In slip-dependent laws, f depends on slip. The oftenused linear slip-

weakening law is illustrated. Non-monotonic laws have also been proposed. (c-d) 

Rate-and-state laws simplify to a rate-dependent response (c) when resistance is 

reported for steady sliding at a given rate. However, jumps in slip rate bring about 

additional features, such as the positive direct effect and then evolution to the new 

steady-state friction level. The evolution occurs with slip and it is described through a 

state variable. Note that these features add up to the effective slip dependence at the 

crack front that resembles slip-dependent laws (b), as discussed in section 4.1. 

 

of slip, to a new value appropriate for the new value of the slip velocity. The 

amount of slip necessary for the evolution is called the characteristic slip 

distance and is often denoted by L (also sometimes denoted by dc or Dc). 

Hence the frictional resistance has an instantaneous and “eventual” velocity-

dependent behavior, but exhibits transient slip-dependent behavior as well. 

(Over slip scales much larger than L, which is typically of the order of 1-100 

μm in experiments, longer-term evolution of strength can also occur, due to 

wear effects and, in rapid slip, shear heating; see section 2.2 for the 

discussion of some of the additional effects). 

 How can such features be explained and quantified? The prevailing 

consensus is that they are caused by the combined dependence of friction 

strength on slip velocity and the “state” (principally, the maturity) of           

the asperity contact population. To describe the latter, a state variable               
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(or variables) is introduced. For constant in time effective normal stress , 

shear resistance  obeying rate-and-state friction laws is typically written as: 

 

         (4) 
 

where V is slip velocity,  is the state variable, L is the characteristic slip 

distance, a > 0 and b are rate-and-state parameters of the order of 0.01, and f0 

is the reference friction coefficient at the reference slip velocity V0. Several 

forms of the state evolution equation have been proposed based on laboratory 

experiments (e.g., [2–5, 30]), including the aging form: 
 

          
(5) 

 

the slip form: 
 

          
(6)

 
 

and the composite form 
 

        
(7) 

 

 The rate-and-state laws were originally formulated purely empirically, to 

match the experiments. Currently, there is no full physical explanation of all 

the features and dependencies uncovered in the past 30+ years, but progress 

has been made toward such an explanation. In particular, the positive direct 

velocity effect (a > 0), which is generally found to involve a positive 

proportionality to ln(V), was plausibly attributed to a thermally activated 

creep process at stressed asperity contacts (e.g., [9, 31–36]). (Note that 

parameter b has also been found positive in all cases in which it was 

quantified, but currently there is no theoretical explanation for the sign of b.) 

Based on this insight, the rate-and-state law (4) is typically regularized 

around V = 0 for use in fault modeling (e.g., [34]) 
 

        
(8)

 
 

 The characteristic slip distance L, which governs the evolution of 

frictional response under a constant velocity (and hence governs the 
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evolution of the state variable), can be interpreted as the slip required to 

renew the population of contacts. In this case, the state variable is interpreted 

as the lifetime of the asperity population. Dieterich and Kilgore [37, 38] 

made direct optical observations of the contact population and its change with 

slip (and also with time) in various transparent materials, including quartz; 

they linked the characteristic slip distance L (which they called dc) to changes 

in the asperity population. 

 The evolution equation for the state variable is also used to incorporate 

the observed healing of frictional interfaces during slide-hold-slide 

experiments [2–5, 10, 27, 39, 40], which is consistent with its interpretation 

as the lifetime of the asperity population. Intuitively, the shear strength of 

two surfaces in contact under compression should increase, and this is exactly 

what is observed. In the aging form of the state variable evolution (5), the 

state variable  increases linearly with time when the interface is locked      

(V = 0), and hence the friction coefficient increases with the logarithm of 

time, incorporating the experimentally observed healing. The name aging 

reflects this feature of the increasing contact lifetime during the locked stage. 

In the slip form (6), the state variable can evolve only at non-zero slip rate V 

(hence the name “slip” law), and no healing occurs during stationary contact 

as a result; this is a potential deficiency of this form [27]. However, the slip 

form is a better match to the velocity-jump experiments [27, 41]. That is why 

other state evolution laws have been proposed, with additional parameters, 

e.g. the composite form (7) [30].  

 At a constant velocity V, the state variable and hence friction evolve 

toward constant values (called steady-state values) ss and ss. The steady-

state values of friction at different sliding velocities are different in general, 

and often faster sliding velocity corresponds to lower steady-state friction 

(steady-state velocity-weakening behavior). Steady-state velocity-

strengthening behavior is promoted by lower confining stresses, higher 

temperatures, and presence of some minerals [10, 24, 25, 28, 42–44]. From 

the formulation (4-6), one gets: 
 

       (9) 
 

showing that the sign of (a − b) encapsulates the velocity-weakening (a − b < 0) 

and velocity strengthening (a − b > 0) response. Shear zones with a − b = 0 

are called velocity-neutral. 

 Despite the fact that the rate-and-state effects are usually small (of the 

order of 1-10%) compared to the baseline frictional strength, these effects are 

fundamentally important for the physically and mathematically meaningful 
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stability properties of frictional sliding. In studies of 2D linearized 

elastodynamic stability of frictional sliding for a general class of rate-and- 

state laws with the properties discussed above and steady-state velocity, it has 

been established [36] that (i) the perturbations with the largest wavenumbers 

(the shortest wavelengths) are always stable, which guarantees the well-

posedness of the problem in response to a generic perturbation, and (ii) the 

dynamic response converges to the quasi-static one for sufficiently small 

sliding velocities, i.e., the problem has a quasistatic range, as one would 

intuitively expect. However, compromises from the full rate-and-state 

constitutive framework, in the direction of the classical friction laws like 

purely velocity-dependent friction of velocity-weakening type, do not allow a 

quasi-static range of sliding velocities and, in fact, lead to paradoxical 

predictions (supersonic propagation of all perturbations) or ill-posedness 

[36]. 

 

2.2. Formulations with additional features 
 

 The rate-and-state laws (4-7) encapsulate the most commonly observed 

experimental features and have been quite successfully used to interpret a 

range of earthquake source phenomena, as discussed in section 4. However, a 

number of important extensions have been proposed and used based on 

experimental and theoretical studies. 

 Evolution of shear stress in response to normal stress changes: In (4), 

frictional resistance is directly proportional to normal stress, as has been 

established in numerous experiments dating back to Leonardo da Vinci. 

However, experiments have shown that, for fast enough variations in normal 

stress, the frictional resistance does not immediately assume the proportional 

values but rather evolves with slip [45, 46], over slip scales comparable to 

those of the state variable evolution. This evolution effect has been 

incorporated into rate-and-state friction formulations by modifying the state 

evolution equation [45]. It is important to include this modification whenever 

the normal stress variations occur on slip scales smaller than or comparable 

to the characteristic slip distance L. For example, this gradual evolution is 

critically important in proper formulations of problems that involve slip 

between elastically dissimilar materials (e.g., [36, 47, 48]) where the normal 

stress change is coupled with slip and can occur quite rapidly at the rupture 

tip. However, the effect appears to be unimportant for a range of models 

where the effective normal stress varies due to pore pressure evolution (e.g., 

[49,50]), because, for the parameters assumed in those studies, normal stress 

changes occur over slip scales large compared to L. 
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 Dilatancy: Inelastic shear dilatancy results when the pore space in the 

shearing gouge varies during the shear deformation due to particle motion or 

breakage; both positive and negative dilatancy (or compaction) occurs with 

shear. It has been observed in lab experiments and shown to correlate with 

the frictional resistance (e.g., [24, 29]); its effect may be at least partially 

responsible for the state-evolution effects discussed in section 2.1. The 

dilatancy also affects frictional resistance by modifying pore pressure p in the 

effective stress expression (1) and this effect has been shown to be important 

for earthquake nucleation and balance of seismic and aseismic slip [51–54]. 

Evolution of dilatancy with deformation and its effect on friction is an active 

area of research in geomechanics (e.g., [55, 56]). Based on the velocity-jump 

experiments in which variations in dilatancy were also measured [24], the 

work of Segall and Rice [51] linked inelastic shear dilatancy to the state 

variable of the formulation (4-5): 
 

         
(10)

 
 

where dpl/dt is the inelastic dilatancy (or the rate of change of the pore space 

volume) and  is a constant which is of the order of 10
−4

 based on matching 

experimental measurements [24].  

 Enhanced coseismic weakening: The standard rate-and-state formulations 

have been proposed based on friction experiments at relatively slow slip 

velocities (10
−9

 to 10
−3

 m/s) in comparison to seismic values of the order of 1 

m/s. There is mounting experimental and theoretical evidence that, at larger 

slip velocities and slips, fault behavior is affected by additional processes, as 

reviewed by Tullis [57]. Several of the processes are due to shear heating 

(inevitable during fast sliding that accumulates significant slip) such as flash 

heating of contacting asperities [58–62], pore pressure evolution [49, 50, 59, 

63–71], and melting [72, 73]. These additional processes are likely to 

dominate rate-and-state effects during dynamic slip, potentially causing 

significant additional weakening of fault surfaces. The effect of enhanced 

coseismic weakening on the long-term fault behavior is briefly discussed in 

section 5. 

 Let us give an example of how coseismic effects of shear heating can be 

added to the rate-and-state formulation. One shear-heating weakening 

mechanism that has laboratory support is flash heating, in which tips of 

contacting asperities heat up and weaken. Such weakening may be activated 

even for very small slips and could be important even for microseismicity. To 

include flash heating, one can modify the rate-and-state formulation (4) to: 
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(11)

 
 

where Vw is the characteristic slip velocity at which flash heating starts to 

operate, fw is the residual friction coefficient, and pore pressure p could be 

evolving due to dilatancy and shear heating as discussed below. Based on 

laboratory experiments and flash heating theories, Vw is of the order of 

0.1m/s. 

 Evolution of pore pressure: Pore pressure p in the shearing layer would 

clearly affect the frictional resistance, and this is encapsulated in the friction 

law (4) that includes effective normal stress. 

 Several processes can affect the pore pressure, including shear heating of 

the pore fluid and dilatancy that changes the pore volume. If pore pressure in 

the shearing layer is different from that in the surrounding medium, diffusion 

processes should start taking place, governed in part by permeability of the 

surrounding materials. The permeability can vary by orders of magnitude 

both in space (e.g., [74]) and presumably in time (e.g., due to coseismic 

damage or interseismic healing).  

 A formulation to compute the coupled temperature and pore pressure 

evolution is given by [49, 50, 59] 

 

      
(12)

 
 

where y is the space coordinate normal to the fault, T is the temperature, th 

and hy are the thermal and hydraulic diffusivities, (y) is the heat generation 

rate, the integral of which over y equals to V, c is the specific heat,  is 

pore pressure change per unit temperature change under undrained condition, 

c is the specific storage, and F(y) is a function representing the distribution 

of the inelastic porosity change. Both the heat source, (y), and inelastic pore 

space generation factor, F(y), are distributed within the width of the shearing 

layer. One typical assumption is to take these terms to represent the effect of 

uniform sliding in the fault zone of thickness w, which would result in  (y) = 

fV/ wH(y − w/2)H(−y − w/2) and F(y) = H(y − w/2)H(−y − w/2), where H(y) 

is the Heaviside step function. Note that several studies on the effect of 
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dilatancy (e.g., [51, 52]) used a simplified model for the pore pressure 

diffusion: 
 

       
(13)

 
 

where  is the time scale for the diffusion and p

 is the background pore 

pressure.  

 Other effects: The rate-and-state formulations discussed are capable of 

capturing a number of effects observed in the experiments, but they have 

limitations. The laws for the state variable evolution remain empirical and fit 

various experimental responses to a different degree (e.g., [10, 27, 29, 41, 

53]). In fact, formulations with more than one state variable were considered 

at some point [4,75,76]. Variations in temperature appear to have effects on 

low-velocity frictional resistance similar to those in slip rate [31] but these 

effects are not included in the standard descriptions. The characteristic slip 

distance L may not be a constant material property but vary with a number of 

shear characteristics including the width of the shearing layer [26]. Dilatancy 

in the presence of fluids may affect rate-and-state parameters [77]. More 

discussion on some of these and other effects is given in the reviews on rate-

and-state friction by Marone [10] and Dieterich [78]. 

 

3. Stability of slipping on rate-and-state interfaces 
 

 In applying rate-and-state laws to earthquake source processes, one is 

most interested in how faults governed by such laws would respond to slow 

loading provided by the motion of tectonic plates. Significant insight into this 

problem has been obtained from targeted stability studies that consider 

specialized scenarios. Most of such studies have employed one or more of the 

following strategies: (i) analyzing the response of spring-slider models and 

interpreting the results in terms of continuum models, (ii) considering 

linearized stability of steady sliding of an interface between two infinite 

elastic half-spaces, and (iii) constructing estimates using theoretical 

developments with assumptions based on numerical simulations. 

 All such studies with the standard Dieterich-Ruina formulation (4-6) 

have resulted in the same basic conclusions. Velocity-strengthening fault 

zones (a − b > 0) respond to slow loading with similarly slow slip and cannot 

produce spontaneously accelerating slip. Of course, slip there can be 

perturbed, e.g. by applying external stress changes, but the stability properties 

of velocity-strengthening regions are such that the perturbations would tend 

to die out. In the velocity-weakening regions (a − b < 0), small enough 
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regions slip slowly under slow loading, but once the slipping region is large 

enough, it spontaneously accelerates toward inertially driven rupture. 

 The estimates of the critical length scale for seismic, wave-producing slip 

in velocity-weakening regions, often called the nucleation size, have been 

obtained in several ways. Linearized stability studies of steady motion with a 

constant slip rate [7,36] show that the motion is stable to perturbations of 

small enough wavelengths and unstable to perturbations of large enough 

wavelengths, with the critical wavelength in quasi-static two-dimensional 

(2D) problems given by: 
 

                      
(14)

 
 

where μ
*
 = μ for antiplane (mode III) problems, μ

*
 = μ/(1 − ) for inplane 

(mode II) problems, μ is the shear modulus, and  is the Poisson‟s ratio. This 

result is valid for both aging and slip formulations (5-6) since they have the 

same linearized expression about steady-state sliding. Note that the critical 

wavelength for the velocity-neutral interfaces (a − b = 0) is infinite based on 

(14), which is consistent with velocity-strengthening regions being always 

stable. The critical wavelength (14) can be regarded as an estimate of the 

nucleation size. Another estimate for the aging laws has been obtained [79] 

by considering acceleration to instability of a one-degree-of-freedom spring-

slider system which approximates a fixed patch: 
 

        
(15) 

 

where C is a model-dependent constant that enters the relation between the 

patch size h and its effective stiffness keff through keff = Cμ
*
/h. Numerical 

simulations of slip in the velocity-weakening regions governed by the aging 

formulation with a/b > 0.5 have shown that the stable slip there tends to take 

the form of a quasi-statically extending crack [80]; the energy balance for that 

scenario leads to the following estimate: 

 

       
(16)

 
 

The regime of a/b > 0.5 includes typical experimentally measured values for 

a and b that have been widely used in simulations (e.g., [34, 81–83]). In the 

regime a/b < 0.4, the same study [80] found that a fixed-patch estimate of the 
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type (15) works well. Formulations with the slip law tend to produce smaller 

nucleation sizes [53, 84]. 

 The estimates can be written in the form 
 

        
(17)

 
 

where C is a model-dependent constant of order 1 and F(a, b) is a 

combination of parameters a and b. 3D estimates would be larger than 2D 

estimates by a factor of two to three;  needs to be increased by a factor of   

 
2
/4 (A. Rubin, private communication). The resulting estimate 

 

        
(18)

 
 

matches well nucleation sizes in 3D long-term simulations of earthquake 

sequences [82, 83] and this is the estimate mentioned in sections 4.1-4.3. 

 The typical nucleation sizes h
* 

expected from such estimates can be 

obtained using representative values of μ = 30000 MPa, L = 1 to 100 microns, 

 − p = 200 MPa (which is representative of over-burden minus hydrostatic 

pore pressure at 10 km depth), b = 0.015, and a = 0.01, resulting in h
*
 of the 

order of 0.1 to 10 meters. This consideration predicts that all earthquakes due 

to instability of frictional interfaces should have sizes comparable to or larger 

than 0.1 to 10 meters. This is consistent with the observational study of 

microseismicity in mines [85] which estimated the size of the smallest 

“friction-dominated” earthquakes to be about 20 m; smaller events had a 

different power spectrum and were classified as “fracture-dominated”. 

 To estimate the moment magnitudes of the smallest allowable events 

according to the nucleation size estimates, let us assume a simple model of a 

circular patch with radius r and a constant stress drop , for which the 

seismic moment is given by (e.g., [86]): 
 

          
(19)

 
 

and the moment magnitude is given by ([87]): 
 

Mw 
                      

(20) 

 

where M0 is in Nm. Taking the nucleation estimates of 0.1 to 10 m as the 

patch size and considering typical stress drops of 1 to 10 MPa, we get a range 
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of the minimum moment estimates from Mw = − 3.8 to Mw = 0.8, with the 

former value corresponding to the radius of 0.1 m and stress drop of 1 MPa, 

and the latter value corresponding to the radius of 10 m and stress drop of 

10MPa. Note that the lower estimate of Mw = −3.8 can be further decreased 

somewhat by assuming a smaller stress drop or a smaller nucleation size 

(e.g., because of locally elevated normal stress). Such low moment 

magnitude estimates mean that, due to observational limitations, it is not easy 

to confirm or deny the existence of such cut-offs on real faults. However, the 

estimates are consistent with observations, in the sense that they allow 

seismic events down to Mw of -4. 

 In the nucleation size estimates (17), two parameters can vary in a broad 

range: the effective normal stress ( − p) and the characteristic slip distance L. 

Since pore pressure p can reach near-lithostatic values [88,89], the nucleation 

size estimates can become arbitrarily large for p arbitrarily close to . This 

implies that some segments may have velocity-weakening properties but slip 

stably, due to sufficiently low effective normal stresses that would make their 

nucleation sizes larger than the segments themselves. Moreover, the estimates 

predict that as p changes, e.g. due to fluid flow, so does the nucleation size that 

determines the stability of a fault segment. This has been explored to model 

slow slip events [88, 90]. Similarly, values of L may vary more broadly on real 

faults than in laboratory experiments and may be process-dependent [26]. 

 The already rich fault behavior predicted by the stability analysis of the 

standard rate-and-state formulations (4-6) becomes even more complex when 

additional factors (section 2.2) are included (e.g., [51, 75, 91]). 

 Let us focus here on inelastic dilatancy (10) and the associated pore 
pressure effects [51]. Clearly, the permeability of the materials that surround 
the fault zone is quite important for processes that involve pore pressure: if the 
materials are sufficiently permeable, then any change in pore pressure in the 
shear zone would be immediately counteracted by the fluid flow and the pore 
pressure would not change. In this regime, called “drained”, pore pressure does 
not change due to dilatancy. On the other hand, if the materials are effectively 
impermeable on the relevant time scales, then the fluid flow in and out of the 
shearing layer is negligible and the effect of dilatancy on pore pressure p and 
hence fault stability is maximized. Such a regime is called “undrained”.  
 The ratio u = tdiffV/L, where tdiff is the characteristic diffusion time that 

depends on the permeability and L/V is the characteristic time for the state 

variable evolution, measures how drained or undrained the deformation is;    

u 1 and u 1 correspond to effectively drained and undrained conditions, 

respectively. For drained conditions, the nucleation size estimates (17) hold, 

with p equal to the background pore pressure p

. For undrained conditions, 

the behavior depends on the dilatancy parameter  from (10): 
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(21) 

 

and 
 

                 

(22) 
 

where 
 

                        

(23)
 

 

Hence, in the undrained limit, the nucleation size is increased by dilatancy for 

small enough values of  and becomes infinite for large enough values of . 

Note that, as the fault slip accelerates and slip rate V increases, parameter u 

increases as well and the character of the deformation changes in the 

direction of being more undrained, assuming that tdiff and L stay constant. 

This suggests that the nucleation size that the slipping zone needs to achieve 

to accelerate to seismic slip rates increases as the fault accelerates, from the 

undrained estimates (17) to the values in (21). These characteristics have also 

been exploited for modeling slow slip events [53, 54].  

 To summarize, velocity-weakening segments can produce both rapid and 

slow slip under tectonic loading even in the standard rate-and-state 

formulations. If their properties and effective normal stress correspond to the 

nucleation sizes larger than the segment in question, they can be completely 

aseismic. Such effects are even more pronounced if dilatancy is taken into 

account. Note that the consideration above ignores shear heating which 

would tend to increase pore pressure and counteract the effects of dilatancy, a 

possibility even for relatively slow slips during nucleation processes [92]. 

Shear-heating weakening mechanisms may also act in the regions that are 

velocity-strengthening at low rates, if activated during rapid slips 

characteristic of earthquakes that penetrate into the velocity-strengthening 

regions due to stress concentrations on their fronts [93] (manuscript in 

preparation). 

 

4. Success of rate-and-state fault models in reproducing 

observed phenomena 
 

 The fault models with rate and state laws have been successfully used to 

reproduce and analyze a wide range of earthquake phenomena, including 

earthquake nucleation, stick-slip and creeping fault regions, spatio-temporal 
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slip complexities, earthquake aftershocks, and slow slip events (e.g., 

[10,11,33,34,49–54,78–84,88,90,92–130]). In this section, we give several 

examples of such modeling. 

 To study slip on a fault governed by rate-and-state laws, including 

numerical simulations of the slip evolution with time, the fault needs to be 

embedded into a representation of the surrounding medium, to couple the 

fault resistance with fault tractions that evolve due to loading as well as due 

to slip of the fault itself. Often, planar faults embedded into elastic bulk are 

considered. Even in such models, simulations of long-term slip histories 

punctuated by earthquakes are quite challenging because of the variety of 

temporal and spatial scales involved [34, 83]. Slow loading requires hundreds 

to thousands of years in simulated time and fault zone dimensions are in tens 

to hundreds of kilometers. At the same time, rapid changes in stress and slip 

rate at the propagating dynamic rupture tip occur over distances of order 

meters and times of order a small fraction of a second. It is especially 

challenging to account for all inertial effects during seismic events while 

simulating earthquake sequences. 

  One methodology for such simulations uses spectral boundary integral 

methods. It was developed first for 2D models [34], then 3D models [83], and 

then extended to problems with coupled temperature and pore pressure 

evolution [50] based on prior studies [94, 102, 104, 131]. The approach 

allows us to resolve slow aseismic slip, fast seismic slip, and the gradual 

transition between them. During earthquake rupture, all inertial effects are 

accounted for. It is accurate and efficient for simulating slip on planar faults 

embedded in homogeneous elastic media but it becomes less efficient for 

complex fault geometries and cannot be straightforwardly applied to 

problems with heterogeneous or inelastic bulk. 

 Other approaches has been proposed (e.g., [97,120,127,132–134]), which 

adopt simplified treatments of either slow tectonic loading and hence 

aseismic slip, or inertial effects during dynamic rupture, or transition between 

interseismic periods and dynamic rupture; the simplifications either allow for 

computational efficiency, or make the approaches more flexible with respect 

to fault geometries and bulk representations, or both. In particular, the quasi-

dynamic approach [97] significantly simplifies the treatment of inertial 

effects during simulated earthquakes by ignoring wave-mediated stress 

transfers; it has been widely used in earthquake studies (e.g., [88,97,99,102, 

108,109,111,129]). 

 Note that useful insights about fault slip have been obtained using spring-

slider models, e.g. some of the stability studies discussed in section 3. 

However, such models have significant limitations and should be   used     with  
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Figure 2. Properties of the fault segment used to illustrate the response of rate-and-

state faults (Figure 2 from [83]). (a) Rate-and-state friction acts on the top 24 km of 

the fault. A potentially seismogenic region of velocity-weakening properties (white) is 

surrounded by velocity-strengthening regions (yellow). Below the depth of 24 km, 

steady motion of 32 mm/year is imposed. (b) Depth dependence of friction parameters 

(a − b), a, and L in the velocity-weakening region. The effective normal stress  is 

constant and equal to 50 MPa. Note that a more realistic distribution of  would have 

smaller values closer to the free surface; near-free-surface normal stress variations do 

not affect the overall behavior in this model [83]. 

 

care. Models with one slider have only one degree of freedom and hence 

cannot represent many important effects such as the evolving size (and hence 

effective stiffness) of a slipping zone; such effects can lead to qualitative 

changes in the model behavior (e.g., [113]). Models with multiple sliders 

connected by springs typically restrict elastic interactions to nearest 

neighbors, and hence they cannot reproduce the long-range interactions 

inherent in the elastic medium. The absence of long-range interaction can 

qualitatively change the system behavior, e.g., by limiting stress 

concentration at the rupture tip and promoting rupture arrest (e.g., [97]). 

 

4.1. Rate-and-state laws as a unified description for earthquake-

producing and creeping fault segments 
 

 Let us illustrate the behavior of rate-and-state faults using the 

geometrically simple model of a rectangular steady-state velocity-weakening 

region surrounded by a velocity-strengthening area on a planar fault 

embedded into an elastic half-space (Figure 2), from the study by Lapusta 

and Liu [83]. The fault is loaded by the plate-like relative velocity of 32 

mm/year (or 10
−9

 m/s) on the deeper extension of the fault. The fault response 

is governed by the standard rate-and-state formulation (4) with the aging 

form of the state variable evolution (6), regularized at V = 0 as in (8). The 
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details of the model parameters and simulation methodology are given in 

[83].  

 As expected from stability properties of rate-and-state interfaces, the 

velocity-strengthening region steadily slips with velocities comparable to the 

plate rate, while the velocity-weakening region accumulates most of its slip 

through earthquakes. This is evident from histories of slip velocity and slip 

for two representative points (Figure 3). Point P1 from the velocity-

weakening region has slip velocity much below the loading plate rate for 

most of the simulated time, with occasional spikes to values of the order of   

1 m/s, typical for observed seismic slip (Figure 3a); this indicates long 

periods of locking with occasional earthquakes. Slip accumulation of P1 has 

the corresponding step-like nature (Figure 3c). In contrast, point P2 from the 

velocity-strengthening region has slip velocity of the order of the plate      

rate most of the time, with relatively small increases after  each  earthquake  

 

 
 

Figure 3. (a)-(b) Slip velocity and (c)-(d) slip of two fault points, one from the 

velocity-weakening region (P1) and the other from the velocity-strengthening region 

(P2) (Figure 3 from [83]). Slip velocity is plotted on the logarithmic scale. Point P1 is 

virtually locked for most of the time, with slip velocity three orders of magnitude 

below the plate rate of 10−9 m/s, but occasionally slips fast, with the maximum slip 

velocity of the order of 1 m/s. Point P2 moves with near-plate velocity for most of the 

simulated time; after each dynamic event, it has postseismic slip with the maximum 

slip velocity of the order of 10−6 m/s. 
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Figure 4. A typical earthquake cycle illustrated through snapshots of spatial slip-

velocity distribution (Figure 4 from [83]). Slip history between the 9th and 10th 

events is illustrated for L = 8 mm and h*/Wseis = 0.8. Colors represent slip velocity on 

the logarithmic scale. White and bright yellow correspond to seismic slip rates, orange 

and red correspond to aseismic slip, and black corresponds to locked portions of the 

fault. Each panel shows the time t of the snapshot in years (in the upper-right corner) 

and the corresponding time step t in seconds (at the bottom of each panel). Panels 

A-C also show the time in seconds elapsed since the time of panel A. The simulations 

reproduce dynamic events (panels A-C and K-L), postseismic slip (panels D-E), and 

the interseismic period (panel F). 

 

corresponding to postseismic slip (Figure 3b). Correspondingly, slip at P2 

increases steadily in time, with faster accumulation after each dynamic event 

(Figure 3d). 

 Typical earthquake cycles are illustrated in Figures 4 and 5 through 

snapshots of slip-velocity distribution on the fault. For the case of L = 8 mm, 

the estimate of the nucleation size (18) is h
*
 = 9 km, and hence h

*
/W = 0.8 

where W is the width of the velocity-weakening region. Such a large estimate 

predicts that most of the velocity-weakening zone should be creeping before 

an earthquake. This is exactly what the simulation shows (Figure 4). When an 

earthquake nucleates (the yellow patch in panel A), the rest of the fault, 

including the velocity-weakening region, moves with the   rates comparable to  
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Figure 5. A typical earthquake cycle for L = 4 mm (h*/Wseis = 0.4) (Figure 5 from [83]). 

Slip history between the 2nd and 3rd events is illustrated. Colors and time markings 

have the same meaning as in Figure 4. Compared with the case with L = 8 mm (Figure 

4), dynamic events in the case with L = 4 mm have smaller nucleation size, nucleate 

closer to the rheological transition (panels A, L), have more unilateral propagation, and 

develop faster rupture speeds (panels A-C). Consistently with the smaller value of 

h*/Wseis, the velocity-weakening region experiences less aseismic slip, with a large 

portion of the region still locked when a seismic event nucleates (panels   A, J-L). 

 

the imposed plate rate. The earthquake propagates bilaterally first and then 

mostly to the right (panels A-C). The seismic slip causes positive static stress 

changes in the surrounding velocity-strengthening area, which responds with 

increased aseismic slip rates that decay over time (panels D-E). This is 

postseismic slip. During the interseismic period (panel F), the velocity-

weakening region is locked, while the surrounding velocity-strengthening 

region moves with slip velocity of the order of the plate rate. That aseismic 

slip creates stress concentration at the boundary between the locked and 

slipping regions, causing slip there and hence continuously moving the 

boundary into the locked region. For L = 8 mm, the locked region almost 

disappears (panel J), consistently with the large estimate of the nucleation 

zone h
*
 = 9 km which approximates how far slow slip can penetrate into the 
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velocity-weakening region without nucleating a dynamic event. The next 

dynamic event nucleates on the right side of the seismogenic region (panel K 

of Figure 4) and propagates bilaterally first (panel L) and then mainly to the left. 

 For the smaller value of L = 4 mm, and hence for the smaller h
*
 = 4.5 km 

and h
*
/W = 0.4, the seismogenic region experiences less aseismic slip in the 

interseismic period, as expected (Figure 5). Events nucleate closer to the 

rheological transition (panel A) and propagate more unilaterally (panels      

B-C). Right after postseismic slip (panels D-E), most of the seismogenic 

region is locked and the fault behavior for both values of L is quite similar 

(panels F, Figures 4 and 5). When the next dynamic event nucleates (panels 

J-L, Figure 5), much of the velocity-weakening region remains locked. The 

nucleation size of a seismic event, defined as area of accelerating slip right 

before dynamic rupture propagation, is about 5 km (panels A and K), 

consistent with the estimate h
* 
= 4.5 km. 

 The model produces dynamic events of Mw = 6.6 with a number of realistic 

features, including stress drops of the order of 3 MPa, maximum slip velocity 

over the fault exceeding 1 m/s, and rupture speeds reaching 2.5 km/s. Each 

point which is ruptured dynamically exhibits effective stress-slip dependence 

that closely resembles linear slip-weakening laws [83, 107]. This is illustrated 

in Figure 6, which shows the behavior of three velocity-weakening points and 

  

 
 
Figure 6. The dependence of shear stress on slip for four locations on the fault with 

(a) L = 8 mm and (b) L = 4 mm (Figure 8 from [83]). In both cases, dynamic rupture 

propagates from the left side of the fault to the right side, passing the velocity-

weakening locations (-3 km, -8 km), (3 km, -8 km), (9 km, -8 km), and then 

influencing the velocity-strengthening location (18 km, -8 km) as the rupture arrests in 

the velocity-strengthening region. Zero slip for each point is chosen as the slip when 

shear stress at the point reaches its peak during the dynamic event. We see that the 

effective dependence of stress on slip is similar to linear slip-weakening friction, with 

the slip-weakening rate W b/L. The velocity-strengthening point has a smaller 

values of b than the other three points and hence a smaller slope. 
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one velocity-strengthening point. The velocity-strengthening point is located 
close to rheological transition. For all curves, the weakening slope is well-
approximated by −b/L, as expected theoretically [83,107]. For L = 8 mm, we 
find that the effective slip-weakening behavior is similar for different points 
but not identical, with the peak stress and effective slip-weakening distance 
increasing with the rupture propagation. This is because the rupture 
accelerates as it propagates along the fault, and the associated increase in 
peak slip velocity causes increases in the peak stress and effective slip-
weakening distance. For L = 4 mm, the dependence of stress on slip is nearly 
identical for the velocity-weakening points, because the rupture accelerates 
early in the event and, afterwards, the relatively homogeneous fault 
properties and conditions ensure that the rupture behavior does not change 
much as the rupture propagates along the fault. 
 This example clearly shows that rate-and-state fault models can 
reproduce a wide range of slip behaviors observed on real faults, including 
slow slip near the imposed plate rate, accelerated postseismic slip after 
dynamic events, spontaneous initiation of earthquake-producing ruptures, 
their dynamic propagation with slip rates and rupture velocities comparable 
to the ones inferred from observations, and the resulting earthquakes with 
reasonable slips and slip rates. In [83], this example was used to illustrate the 
developed methodology, to study the effect of initial prestress, and to 
compare fully dynamic and quasi-dynamic simulations. Sections 4.2-4.4 give 
examples of rate-and-state modeling that reproduces various aspects of 
specific fault behaviors in a remarkably quantitative way. 
 Note that the adopted values of parameter L of the order of millimeters in 
this section are larger than the laboratory values of the order of 1-100 
microns. This is done for numerical tractability [83], at the expense of 
increased nucleation zones. Section 4.2 continues this approach to enable 
simulations of an actual similarly sized fault segment. Sections 4.3-4.4 adopt 
laboratory values of L and succeed in explaining some intriguing 
observations about small earthquakes. 
 

4.2. Modeling earthquake cycle at Parkfield 
 

 The rate-and-state friction framework and the simulation capabilities 

discussed in section 4.1 have been used to reproduce a range of observations 

for the Parkfield segment of the San Andreas Fault in California by Barbot, 

Lapusta, and Avouac [130]. The Parkfield segment is located between the 

locked Cholame segment to the south - the site of the 1857 Mw 7.9 Fort Tejon 

earthquake - and a creeping segment to the north which generates only small 

magnitude earthquakes. It accommodates about 35mm/yr of the relative 

displacement between the North American and Pacific plates (Figure 7). 
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 The variety and long period of available observations make this fault 

segment an ideal location for testing the potential of rate-and-state models to 

explain consistently fault slip evolution across multiple earthquake cycles. 

The Parkfield segment has experienced at least six moment-magnitude (Mw) 

6 quakes since 1857, and it was the site of the only officially recognized 

earthquake prediction experiment in the US [135]. In the late 1980s, based on 

 

 
 
Figure 7. Tectonic setting and observations of earthquake cycle at Parkfield. A) 

Paleoseismic cycles of the Mw 6 earthquakes since 1881 (with inter-event times 

between 12 and 38 yr). A seismic crisis occurred in 1992-1993, around the anticipated 

due date of the latest Mw 6 event, culminating with the Mw 4.6 1992/10 and the Mw 4.4 

1993/11 earthquakes. B)  Parkfield segment belongs to the San Andreas Fault (SAF) 

which accommodates most of the relative motion between the Pacific (PAC) and 

North-American (N-AM) plates in Central California and produces very localized 

microseismicity [139] (black dots). Deformation during the co-, post-, and 

interseismic periods is monitored by various arrays of instruments, including GPS 

(black triangles and pre-2004 velocity vectors) and broad-band seismometers (gray 

squares). Modified from Figure 1 of [130]. 
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the statistics of the previous recurrence times, the next earthquake was 

expected to strike in the early 1990s. Instead, a series of Mw 4 to 5 quakes 

populated the hypocentral area of the previous events at the predicted time. 

The Mw 6 earthquake took place in 2004, about a decade later than 

anticipated, and its epicenter was located 20 km away from the preceding 

event, at the other end of the segment. The prediction experiments prompted 

the deployment of relatively dense geodetic and seismological arrays in this 

region, enabling the observational analyses of inter-, co- and postseismic 

deformation [115,136–142].  

 The distribution of the rate-and-state properties in the Parkfield model is 

constructed based on the following observations and considerations [130]:  
 

(i) The microseismicity in the segment exhibits a stable spatio-temporal 

distribution, with streaks of earthquakes surrounding a domain devoid of 

microseismicity (Figure 8) [139, 143–145]. Slip in the two recent Mw 6 

events is inferred to occur in the domain between the two quasi-

horizontal streaks, suggesting that this area has velocity-weakening 

properties. The surrounding areas tend to creep in the interseismic period 

(Figure 8), pointing to velocity-strengthening friction. These patterns of 

creep and seismicity suggest an inherent, long-lasting, structure of 

friction properties along the segment where a velocity-weakening domain 

is surrounded by a domain of velocity-strengthening friction (Figure 8). 

The transition between the two domains generates stress concentration 

and it is a natural place for microseismicity to occur [81,113,146]. The 

fact that some of the microseismicity takes the form of repeating 

earthquakes indicates that the transition may occur over a finite region 

with an interlaced network of asperities generating smaller earthquakes; 

such smaller-scale features are not included in the model. 

(ii) The model is set up with the following uniform values for the friction 

parameters found in laboratory experiments to be typical for most rocks: 

a = 10
−2

, f0 = 0.6, and V0 = 10
−6

 m/s. The effective normal stress increases 

from  = 1 MPa near the surface to  = 130 MPa at 8 km depth. 

(iii) The value of (a − b) in the seismogenic zone is chosen to be compatible 

with the moment and recurrence times of the Mw 6 quakes, and the size 

of the seismogenic zone. In particular, the recurrence time Tr can be 

approximated as 
 

        
(24)

   

 where R is the width of the seismogenic zone, μ is the shear modulus, Vco 

is the representative coseismic slip velocity, Vinter is the representative 
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interseismic velocity, and Vr is the plate rate. Guided by expression (24),       

b = 0.014 is chosen [130], a value that falls within the range of 

experimentally observed. 

 Numerical simulations indeed verify that such parameters produce a 

series of ruptures that can reproduce the moment and average recurrence 

times of the Parkfield earthquakes, but additional considerations are 

required to explain other observations. In part, the inclusion of a narrow 

vertical band of low coupling in the middle of the seismogenic zone may 

partially explain the observation of two areas of high coseismic slip 

during the latest earthquake [115, 141, 147]. 

(iv) To reproduce the coseismic displacement of the near-field GPS stations, 

some asperities with velocity-weakening properties (a−b < 0) are placed at 

shallow depth. As evidenced by seismic inversions of the 2004 rupture 

from seismological data [141], the shallow coseismic slip may have been 

“aseismic”, i.e., it did not radiate seismic waves. This is reproduced in the 

model by ensuring that the dimension of a shallow asperity is smaller than 

the critical nucleation size (18) at that depth (Figure 9), which prevents slip 

velocity from reaching seismic speeds (defined as V > 0.1 m/s). 

(v) The amplitude of afterslip following the main shock is controlled by the 

area of stable friction and the amplitude of the stress perturbation, which 

depends on the details of the dynamic rupture. 

 The duration of the postseismic transient is inversely proportional to (a − 

b) , as predicted by simple analytical estimates [115, 117, 130] and 

observed in numerical simulations [148]. Based on the analytical 

estimates, a range of (a − b) values is chosen in the stable friction area, 

with the mean value of (a − b) = 0.005. This value is consistent with 

other estimates for Parkfield [115] and explains the GPS time series of 

postseismic transient. 

(vi) The value of the characteristic slip L is assigned to be the largest one (for 
numerical tractability) that results in a suitably small nucleation size h

*
 in 

equation (18). Values of h
*
 that are large fractions of the seismogenic 

depth result in slow slip penetrating far into the seismogenic zone, as in 
Figure 4 of section 4.1, resulting in accelerated slips closer to the middle 
of the seismogenic zone. For values of h

*
 smaller than 2 km, the 

nucleation of large ruptures spontaneously occurs in the lower corners of 
the seismogenic zone, near the locations of either the 1966 or the 2004 
hypocenters. Such h

*
 leads to L = 3 mm or lower. Note that the values of 

L should be much lower than 3 mm to reproduce the microseismicity 
occurring at the transition. Based on 2D models [81], we hypothesize that 
adopting smaller values would lead to the complexity of microseismicity 
in the transition regions coupled with Mw 6 events. 
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 The model can explain a variety of observations at Parkfield, resulting in a 

long and rich history of fault slip with spontaneous nucleation and earthquakes 

of magnitudes ranging from Mw 2 to 6. It reproduces co-, post- and interseismic 

behavior of the Parkfield segment, with most coseismic slip occurring in the 

area circumscribed by microseismicity. In particular, it provides a good match 

to the pre-, co-, and post-seismic GPS recordings for the 2004 event [130]. The 

sequence of earthquakes includes the nucleation of a rupture near the 

hypocenter of the 2004 Mw 6 event (Figure 10a), which ruptures the entire 

seismogenic zone. The rupture propagates northwards, and stops at the creeping 

segment (Figure 10b), similarly to what occurred during the 2004 Parkfield 

event. During the rupture, the shallow asperities slip but their velocity remains 

 

 
 

Figure 8. (A) Spatial distribution of fault slip and microseismicity on the SAF during 

the earthquake cycle inferred from observations. B) Aseismic creep occurs above and 

below the seismogenic zone before the 2004 Parkfield earthquake based on inversions 

of GPS data. The area between the microseismic streaks is fully coupled. The 

coseismic slip distribution of the 2004 main shock (20 cm red contours) may be 

concentrating in the domain circumscribed by background seismicity. Modified from 

Figure 1 of [130]. 
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Figure 9. Rate-and-state fault properties of the Parkfield model [130]. A) The 

distribution of velocity-weakening (lighter grey) and velocity-strengthening (darker 

grey) friction on the fault, including some shallow asperities with sizes smaller than the 

nucleation size at that depth. The variation of the nucleation size with depth is indicated 

by the black circles. Slip velocity at points indicated by small filled circles is plotted in 

Figure 11. B) The spatial distribution of friction parameter a − b, reflecting the 

conceptual model in (A). The characteristic slip L = 4mm is kept constant in this model. 

 

aseismic, below 0.1 m/s. After the coseismic rupture, the seismogenic zone 
locks (with velocities much smaller than the plate rate) and afterslip starts to 
expand around it (Figure 10c). Finally, once afterslip ceases, the stable-
friction areas of the fault creep steadily during a phase of interseismic 
loading. During that period, some creep penetrates into the seismogenic zone 
and only a part of the seismogenic area stays locked (Figure 10d). The extent 
of this creep-in is controlled by the assumed parameters, including L, and 
would be smaller for smaller values of L. Many accelerated creep episodes 
occur in the velocity-strengthening to velocity-weakening (VS/VW) 
transition zone, giving rise to a more complex spatio-temporal  pattern of slip 
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Figure 10. Model response that reproduces the entire seismic cycle at Parkfield 

(modified from Figures 2 and 4 of [130]. (A)-(D) Slip rate snapshots during a Mw 6.0 

seismic cycle, with rupture nucleating spontaneously near the 2004 earthquake 

hypocenter (A), propagating to the north and rupturing the entire seismogenic zone 

(B), and followed by a slow postseismic transient (C), with interseismic loading of the 

partially locked seismogenic zone (D). Another Mw 6 event nucleates 20 years later. 

Zero time is chosen for plotting convenience. The solid grey profiles indicate the 

contours of the cumulative slip at 0.1 m intervals. E) Vertical cross section of the slip 

evolution (red profiles are every 1 s for seismic periods and blue profiles are every     

1 yr for aseismic periods). F) Strike-parallel profile of the slip evolution showing a 

transition in the hypocenter location after 5 Mw 6 seismic events on one side. 

 

evolution in this area during the interseismic period (Figure 11). The cycle 

repeats with a recurrence time of about 20 years. 

 The model is capable of qualitatively reproducing the longer seismic 

cycle and the switch in the hypocenter location similar  to     the      2004        Parkfield  
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Figure 11. Slip velocity during several earthquake cycles in the middle of the 

seismogenic velocity-weakening (VW) zone (red line), in the velocity-strengthening 

(VS) area (blue line), and at the transition between the two domains (orange line). The 

VW point slips at seismic speed during Mw 6 events, but also experiences slow 

accelerated transients in the interseismic period. The velocity-strengthening point 

accelerates after an event, generating afterslip. The point at the transition shows a 

complex behavior in the second half of the interseismic period. The positions of the 

points are shown in Figure 9. 

 

event (Figure 10f). This means that such deviations can result from a 

spontaneous behavior of rate-and-state friction faults, after a complex sequence 

of foreshocks and smaller interseismic events. The southern and northern 

corners of the seismogenic zone are two favorable nucleation sites due to 

their location near a stress concentration at the boundary between two 

domains of stable and unstable friction. Note that the velocity strengthening 

region to the south of the seismogenic zone is included as a convenient way 

to introduce the kind of barrier effect needed to account for the repetition of 

similar events arresting in that area; the actual nature of the transition from 

the Parkfield segment to the locked segment further to the south requires 

further study. In the model, the transition from one nucleation site to the other 

occurs after a few smaller earthquakes (Mw 2-4) that can be interpreted as 
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failed nucleations of the main event. The transition is coincidental with the 

longest simulated recurrence time (  = 23.1 yr, compared to the smallest 

 = 15 yr) of the sequence (Figure 10f). 

 The rate-and-state modeling of the Parkfield sequence of earthquakes 

demonstrates the possibility of creating comprehensive physical models of 

fault zones that integrate geodetic and seismological observations for all 

stages of the earthquake source cycle. As computational resources and 

methods improve, more realistic fully dynamic simulations - allowing for a 

wider range of earthquakes magnitude occurring on a set of interacting faults 

- will become possible. Such simulations could in principle be used to assess 

the full range of earthquake patterns that a particular fault system might 

produce, or assimilate observation about past earthquakes and interseismic 

loading to assess future seismicity. 

 

4.3. Reproducing scaling of small repeating earthquakes 
 

 Rate-and-state models qualitatively similar to that of section 4.1 - but 

with smaller nucleation sizes - can reproduce several observations about 

small repeating earthquakes [82]. Repeating earthquakes are seismic events 

that repeatedly occur in the same location with similar seismic signal. 

Sequences of small repeating earthquakes have been found on a number of 

faults [149–155]. Since their recurrence times range from a fraction of a year 

to several years and their locations are known, small repeating earthquakes 

are an excellent observation target. This has been exploited in a number of 

studies, such as the San Andreas Fault Observatory at Depth (SAFOD) 

drilling project [156] (Figure 12). Repeating earthquakes are used to study an 

increasingly richer array of problems, from fault creeping velocities and 

postseismic slip to earthquake interaction and stress drops [149–155,157–

161]. To assimilate and properly interpret the wealth of data on small 

repeating earthquakes, it is important to construct a realistic model of their 

occurrence.  

 One of the intriguing observations about small repeating earthquakes is 

the scaling of their seismic moment M0 with the recurrence time T as 

 

                   

(25) 

 

This scaling has been first pointed out by [151] for repeating earthquakes 

along the Parkfield segment of the San Andreas fault, and it has since been 

confirmed in other tectonic environments [155]. However, a simple 

conceptual model of these events as circular ruptures, with  stress drop   
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Figure 12. Schematics of the model for simulations of small repeating earthquakes, 

such as the targets of SAFOD drilling project on the Parkfield segment of the San 

Andreas fault (Figure 1 from [82]). A segment of a vertical strike-slip fault is 

considered, which is embedded into an elastic medium and governed by rate-and-state 

friction laws. On the fault, a small, potentially seismogenic, patch with steady-state 

velocity-weakening properties (white) is surrounded by a creeping, velocity- 

strengthening segment (yellow). Outside of the simulated fault segment, steady sliding 

is imposed with the long-term slip velocity VL. The creeping (yellow) zone is chosen 

to be large enough so that the model behavior does not depend on its size. (SAFOD 

schematics courtesy of Dr. Hickman). 

 

independent of the seismic moment M0 and slip equal to VLT, where VL is the 

long-term slip velocity accommodated by the fault segment, results in     

[151, 162] 
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      (26) 
 

where μ is the shear modulus of the bulk. Note that this model assumes that 

all slip at the location of repeating earthquakes is accumulated seismically. 

The observed and theoretical scaling have different exponents as well as 

different absolute values of recurrence times, with the observed recurrence 

times being much larger than the theoretically predicted ones for moment 

magnitudes typical for small repeating earthquakes. In [151], the discrepancy 

was interpreted as an indication of the dependence of stress drop on seismic 

moment, with higher stress drops for smaller events; to fit the observed 

recurrence times, stress drops for the smallest repeating earthquakes would 

have to be as high as 2500 MPa [151]. Not only the physical basis for stress 

drops of such high values is unclear [162], but also recent seismic estimates 

of stress drops for repeating earthquakes in Parkfield [161, 163] have pointed 

to values of the order of 1 to 10 MPa, the typical range for earthquakes in 

general [164]. 

 Based on the rate-and-state view of earthquake physics, a potential 

explanation for the inadequacy of the theoretical model is its assumption of 

all slip at the location of small repeating earthquakes being seismic. An 

obvious model for a repeating earthquake sequence in a creeping segment is 

that of a steady-state velocity-weakening patch embedded into a larger 

creeping velocity strengthening region. Since velocity-weakening patches 

below the critical (nucleation) size should be completely aseismic, it is 

reasonable to assume that slightly larger patches would still have significant 

aseismic slip while also producing seismic events. The potential importance 

of aseismic slip at the location of repeating earthquakes was highlighted in 

the study by Beeler et al. [162] which used a spring-slider (one-degree-of-

freedom) model governed by a constitutive law that incorporated strain 

hardening in the interseismic period. In the model, part of the accumulated 

slip was aseismic, due to strain-hardening behavior, and the resulting scaling 

of the seismic moment with the recurrence time had a trend similar to the one 

observed. However, it was pointed [162] out that there was no experimental 

evidence for the strain-hardening law used in the model. 

 To verify the potential of rate-and-state models to explain the scaling, 

Chen and Lapusta [82] numerically studied a rate-and-state model of small 

repeating earthquakes (Figure 12), adopting parameter values typical of 

laboratory experiments, including the characteristic slip distances L of the 

order of 10-100 microns. They showed that the model indeed produces 

repeating sequences of earthquakes with magnitudes from 1 to 4; sequences 

of different magnitudes can be obtained either by varying the radius of the 
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velocity-weakening patch, or by adopting different rate-and-state parameters 

over the patch. Consistently with expectations, significant aseismic slip 

occurs on patches which are just large enough to produce seismic events 

(more than 99% of total slip is aseismic in one of the simulations). The ratio 

of aseismic to total slip decreases as the patch radius increases with respect to 

the nucleation size. 

 Remarkably, the model spontaneously reproduces the right exponent of 

the scaling between the seismic moment and the recurrence time, both (i) for 

the case of fixed rate-and-state properties and variations in the patch radius 

(Figure 13a) and (ii) when the rate-and-state parameters a, b, and the patch 

radius are all varied (Figure 13b). To reproduce the absolute values of the 

recurrence times, the loading velocity - which represents the long-term 

creeping rate in the area of small repeating earthquakes - needs to be of the 

order of 4.5 mm/yr, within the range of 4 to 35 mm/yr suggested for the 

portion of the San Andreas fault with repeating  earthquakes [165]. Moreover,  

 

 
 

Figure 13. Scaling of seismic moment M0 with recurrence time T for the simulated 

sequences of repeating earthquakes (modified from Figure 7 of [82]). (a) Simulation 

results for long-term slip velocities VL of 23 mm/yr and 4.5 mm/yr are shown as blue 

and red dots, respectively. For each VL, earthquakes of different sizes are obtained by 

varying the radius of the velocity-weakening patch; all other model parameters are the 

same. The line fit to the observations in [151] and the scaling in the simple theoretical 

model (26) are indicated by the magenta and light blue lines, respectively. The best fit 

to simulations with VL = 23 mm/yr is shown by the green line. For both values of VL, 

the observed scaling exponent is reproduced; the simulations with VL = 4.5 mm/yr 

also fit the absolute values of the recurrence times. (b) Simulation results for VL = 23 

mm/yr, L = 160 μm, and several different combinations of rate-and-state parameters a 

and b all produce the same scaling, with events of all magnitudes between Mw = 0.3 

and Mw = 3.7. VL = 23 mm/yr was used for computational efficiency. Simulations for 

different values of L also reproduce the observed scaling exponent.  
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since repeating earthquakes occur in the transition region next to the partially 

locked segment that produces occasional Mw 6.0 Parkfield earthquakes, it is 

indeed possible that the local slip rate there is lower than the overall long-

term rate of the entire creeping segment.  

 The model is also capable of reproducing the response of small repeating 

earthquakes to accelerated loading due to postseismic slip after the Mw 6 

2004 Parkfield event [119]  (Figure 14). Analysis of 34 repeating earthquake 

sequences (RES) from 1987 to 2009 at Parkfield shows that, following the 

2004 Mw 6 earthquake, many of the repeating events had greatly reduced 

recurrence intervals T that systematically increased with time after the 2004 

event. This expected behavior of the recurrence time is easily reproduced by 

the model. However, in addition to this change in timing, observations also 

point to systematic changes in seismic moment: some sequences experience 

significant increase in seismic moment due to higher loading   rates (and hence 

 

 
 

Figure 14. Response of repeating earthquakes to accelerated creep due to the 2004 

Parkfield earthquake (modified from Chen et al. [119]). Top: Observations for two 

repeating sequences. Blue colors indicate repeating earthquakes before the 2004 

event, and green to red colors indicate repeating earthquakes after the 2004 event. 

Notice that sequence h24 has larger moments for shorter recurrence times, whereas 

sequence h16 has nearly constant moments. Bottom: Results of our simulations with 

variable loading rate mimicking postseismic slip of the 2004 event. Blue and red 

indicate events before and after 2004, respectively. The model qualitatively matches 

the observed behavior, with the different dependence of the moment on the recurrence 

time for different values of r/h*. 
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shorter recurrence times), while other sequences have a small decrease. The 

latter behavior is what one would expect based on shorter recurrence time and 

laboratory-based ideas of strengthening in stationary contact (e.g., [10, 27]). 

 The rate-and-state model is capable of reproducing both behaviors, for 

different radii r of the earthquake patches as quantified by the ratio r/h
*
. 

Ratios of r/h
* 1 produce higher moments M0 for shorter recurrence times T 

(or negative M0-T slopes), whereas larger ratios of r/h
* 

yield weak positive 

slopes. Given the same nucleation size h
*
 (i.e., the same frictional 

properties and effective normal stress), smaller radii and hence smaller 

seismic moments result in negative M0-T slopes, whereas larger radii and 

hence larger moments lead to weak positive M0-T slopes, which are 

consistent with observations. In the models, such variations in seismic 

moment are caused by the fact that, for r/h
*  1, only part of the velocity-

weakening patch is ruptured seismically by the event, with most of the slip 

occurring on the patch aseismically. When the loading rate is increased, the 

creeping rate on the velocity-weakening patch is also increased, resulting in 

higher stress levels and enabling seismic events to propagate farther into 

the patch. This increase in the rupture area creates events with larger 

moments for shorter recurrence times. For larger ratios of r/h
*
, seismic 

events rupture the entire patch at all loading rates, and hence the rupture 

area does not vary appreciably. Then the expected effect based on fault 

strengthening takes over and creates ruptures with smaller moment for 

smaller recurrence times. 

 Subsequent studies [166] (manuscript in preparation) have shown that 

the scaling between the recurrence time and seismic moment is reproduced 

not only in the models with the aging form of the state variable evolution 

used in [82], but also in the models with the other common forms including 

the slip law. At the same time, there are important differences between the 

results with the different evolution laws, consistent with prior studies of 

these laws [80,84]. In particular, simulations with the slip law are more 

prone to unstable slip than those with the aging law, resulting in smaller 

nucleation sizes and lacking the type of events that rupture only a part of 

the velocity-weakening patch. The difference in the qualitative features of 

the model response between the aging and slip laws highlights the 

importance of using realistic frictional behavior. One of the phenomena not 

included in either formulation is the potential inelastic shear-induced 

dilatancy (10) [24, 51, 52, 54]. During nucleation and hence increasing slip 

rates, such dilatancy may tend to increase the pore space, lower the pore 

pressure, and hence increase the effective normal stress and frictional 

resistance, stabilizing fault slip and potentially leading to more aseismic slip. 
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Since one of the differences between the aging and slip formulations is more 

aseismic slip during nucleation in the case of the aging law, the aging law 

may actually be a good proxy for the more complex formulations that involve 

inelastic dilatancy. 

 

4.4. Rate-and-state models for aftershock sequences 
 

 One of the most robust earthquake-related observations is the occurrence 

of aftershock sequences after seismic events; the decay of aftershocks is well 

described empirically by Omori‟s law (e.g., [167]) 

 

        
(27)

 
 

where R is the aftershock rate, K, c, and p are empirical constants, with p 

equal to 1 in the law by Omori and ranging from 0.7 to 1.5 in more recent 

observations. 

 Omori‟s law of the aftershock decay can be explained by a model based 

on rate-and-state friction, as was discovered by Dieterich [98]. In the model, 

a pre-existing population of rate-and-state nucleation sites is perturbed by 

static stress changes due to the mainshock. In the population, each nucleation 

site is governed by the same rate-and-state nucleation process but time-

shifted in such a way that the population would result in a constant 

background seismicity rate if left unperturbed. After a positive static shear 

stress step, the nucleation process at each site accelerates, producing an 

increased seismicity rate (or aftershock rate) that matches Omori‟s law for a 

wide range of parameters. 

 An important ingredient in this aftershock model is the nucleation 

process and its response to static stress changes. In the model by Dieterich 

[98], the nucleation process was specified in terms of its slip-velocity 

evolution. To obtain the evolution, two simplifications in modeling 

nucleation were used: (i) Elastic interactions were described by a one-degree-

of-freedom spring-slider system and (ii) the assumption V / L  1 was used 

to simplify the rate-and-state friction formulation based on a study of 

earthquake nucleation in a continuum model [79]. These simplifications 

allowed the derivation of analytical expressions for both slip-velocity 

evolution during nucleation and the resulting aftershock rate R:  
 

      

(28)
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where r is the background seismicity rate,  is a positive shear stress 

change, , and constant stressing rate  is assumed before and 

after the stress step. The work [98] also considered scenarios with variable 

stress steps and stressing rates; a review of applications is given in [78].  

 From equation (28), this model has two parameters: 

 Figure 15 illustrates the resulting aftershock 

rates and shows that ta is related to the aftershock duration, since the 

earthquake rate becomes close to the background rate for t  ta. From (28), 

R/r = 1 for t  ta. For t  ta, exp(−t/ta)  (1 − t/ta) and from (28): 
 

         
(29) 

 

        
(30) 

 

        
(31) 

 

 Hence the model of Dieterich [98] interprets parameters K and c of 

Omori‟s law, which were originally introduced as empirical constants. The 

time interval in which the aftershock rates in this model follow the power law 

decay of aftershocks depends on the values of /( ) and ta. For times right 

after the instability, we have exp(−t/ta)  1 and R/r = exp[/( )]. This 

“plateau” or constant aftershock rate right after the mainshock is shorter for 

larger values of /  (Figure 15). 

 The approach of Dieterich [98] has been further explored in a number of 

works [168–170]. In particular, aftershock rates based on simulations in 

spring-slider systems with the full aging rate-and-state formulation were 

found to follow the results of [98] quite well, validating simplification (ii) for 

spring-slider models. 

 Since static stress changes  due to earthquakes are relatively well 

constrained, aftershock observations can be used to determine the product  

in the light of this model (e.g., [105,106,110]). For the model to be consistent 

with observations,  has to be of the order of 0.01-0.1 MPa (e.g., [106, 

171]). Larger values of , of order 1 MPa, are predicted by laboratory values 

of a (of the order of 0.01) and  comparable to overburden minus hydrostatic 

pore pressure at typical seismogenic depths (of the order of 100 MPa). If  
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Figure 15. Aftershock rates for the analytical solution of Dieterich [98] given by 
equation (28) (Figure B1 from [113]. The aftershock rate R is normalized by the 
background rate r, and the time t after the mainshock is normalized by the aftershock 
duration ta. Each curve is computed for a normalized stress step, /( ), with the 
indicated value. Adapted from Figure 2 of [98]. 

 

aftershock production is dominated by static stress triggering of preexisting 

nucleation sites as described by [98], then, at least on parts of faults where 

aftershocks nucleate, either the direct effect coefficient a is much smaller 

than in the laboratory, or effective normal stress  is abnormally low. 

 Kaneko and Lapusta [113] extended the ideas of this approach to 

continuum models. Instead of perturbing a nucleation process based on the 

analytical simplified spring-slider solution as done in [98], they created two 

plausible scenarios of earthquake nucleation in 2D continuum models. The 

first model incorporates uniform steady-state velocity-weakening friction 

properties and a weaker patch of slightly (10%) lower effective normal stress 

where the earthquakes nucleate. The second model contains a rheological 

transition from steady-state velocity-strengthening to steady-state velocity- 

weakening friction. Both are relevant to natural faults: Weaker patches may 

exist for a number of reasons including local fault non-planarity or spatial 

variations in pore pressure; observations suggest that earthquakes tend to 

cluster at inferred transitions from locked to creeping regions (e.g., 

[143,144]) which create stress concentrations that promote earthquake 

nucleation. Nucleation processes in these models are obtained by simulating 

spontaneously occurring earthquake sequences under slow, tectonic-like 

loading following an approach similar to sections 4.1-4.3 but in 2D [34] 

(Figure 16). 
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Figure 16. Examples of earthquake sequences simulated (A) in the model with a 

weaker patch and (B) in the model with rheological transition (Figure 3 from [113]). 

Solid lines show slip accumulation every 2 years. Dashed lines are intended to capture 

dynamic events and are plotted every 0.01 seconds during the simulated earthquakes. 

The nucleation process of a representative earthquake is indicated by a rectangle in 

both panels. 

 

 Numerical study of the response of the obtained nucleation processes to 

static stress perturbations have revealed several interesting findings. First, the 

nucleation size of the earthquakes triggered by the static stress change can be 

much smaller (Figure 17), which implies that the nucleation size depends on 

the loading history [80]. Second, positive static stress change can delay the 

upcoming earthquake instead of making it occur sooner (Figure 18, panels B, 

C, I). The positive static stress change does accelerate the slip in the 

nucleation zone but the acceleration results in an aseismic transient slip event 

instead of an earthquake. The transient relieves the stress in the nucleation 

location, slowing the progression of the nucleation and hence delaying the 

following seismic event. Such a response occurs for the nucleation sites at the 

rheological transitions.  

 The results of the numerical perturbation analysis have been converted 

into aftershock rates following the procedure of Dieterich [98]. By perturbing 

the simulation at various times before an earthquake (or various times to 

instability) and considering the resulting response (and, in particular, 

determining the new, perturbed time to instability), the relation between the 

unperturbed and perturbed times to instability can be numerically established. 

From this information, one can construct the aftershock rates for a population 

of such nucleation sites that would result in a uniform background rate if left 

unperturbed. 
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Figure 17. Dependence of nucleation processes on loading history (part of Figure 6 

from [113]. (A) Unperturbed nucleation process in a model with a weaker patch. (B) 

The same nucleation process but perturbed with  = 3.0 MPa one year before the 

original instability. The dashed lines in (A) and (B) are plotted every 0.01 seconds 

staring with 0.05 seconds before the onset of instability as defined in [113]. The first 5 

lines cluster, indicating the spatial extent of the nucleation zone. The nucleation sizes 

in these two cases differ by an order of magnitude. 

 

 Overall, aftershock rates based on the nucleation processes at weaker 

patches behave similarly to the theoretical finding (28) based on spring-slider 

models, with some notable deviations. In particular, aftershock rates are 

affected by normal-stress heterogeneity in the nucleation zone. 

 Aftershock rates based on the nucleation processes at rheological 

transitions behave quite differently, producing pronounced peaks and seismic 

quiescence (Figure 18, panel E). This is consistent with the complex behavior 

in which positive stress steps sometimes delay nucleation of seismic events 

by inducing aseismic transients, as already discussed. Interestingly, 

superposition of such complex aftershock responses for spatially variable 

stress changes (Figure 19a) results in Omori‟s law for a period of time 

followed by seismic quiescence (Figure 19b). Such behavior was observed at 

the base of the seismogenic zone near the 1984 Morgan Hill earthquake 

(Figure 19c). Note that the resulting aftershock rate is much higher than the 

one based on spring-slider model; such higher rates would result in  closer 

to the laboratory values. 

 Kaneko and Lapusta [113] linked the computed aftershock rates to the 

unperturbed slip-velocity evolution in the nucleation zone and constructed 

simplified analytical scenarios that explain some features of the response.  

 The qualitative differences between the two continuum nucleation 

models suggest that much remains to be learned about the aftershock 

response of rate-and-state faults to static        stress   changes. In part, such   response 
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Figure 18. Response to static stress steps in the model with rheological transition 

(based on Figures 9 and 10 of [113]). (A)-(C): Solid lines show the unperturbed 

evolution of maximum slip velocity within a part of the velocity-weakening region 

that contains the nucleation zone. Times of the stress perturbation are given on the top 

of each panel and marked by „×‟. Red dashed lines indicate the resulting perturbed 

behavior. (D),(I): The effect of stress perturbations on the pattern of slip 

accumulation. Panel E: Comparison between the aftershock rate based on the 

continuum model (solid dotted line) and the analytical expression (28) based on 

spring-slider models (dashed line). Note that a positive shear stress step can delay the 

timing of the subsequent earthquake by inducing an aseismic transient (panels B, C, 

I); in panel I, the transient is indicated by the tip of an arrow. Such complex behavior 

results in the complex aftershock rate response (panel (E). 

 

may depend on the conditions under which nucleation tends to occur on 

natural faults and may be different from predictions based on spring-slider 

models [113].  

 Given that rate and state friction laws have been successfully used to 

reproduce and explain a number of earthquake phenomena and that 

mainshocks cause static stress changes, it is reasonable to assume that at least 

some, and perhaps most, of aftershocks are caused by static triggering of rate-

and-state nucleation processes. At the same time, a number of studies have 

proposed models of aftershocks based entirely on other mechanisms. These 

include increased loading rate due to aseismic processes such as postseismic 

slip (e.g., [173, 174]) or relaxation of the viscoelastic lower crust (e.g., [175]); 

pore fluid motion and induced variations in fault strength (e.g., [176, 177]); 

triggering due to dynamic stress changes (e.g.,    [178–180]); and  evolution   of 



Nadia Lapusta & Sylvain Barbot  194 

 
 
Figure 19. (a) Model for estimating aftershock rates due to a population of nucleation 

sites located along a segment of rheological transition perturbed by a mainshock 

asperity (based on Figures 11 and 12 of [113]). Due to the distance from the asperity, 

the nucleation sites along the segment experience a non-uniform stress step. (b) The 

resulting aftershock response. It reproduces Omori‟s law in a limited time period 

followed by seismic quiescence. Note that this response is a combination of complex 

non-monotonic responses of the type shown in Figure 18E. The aftershock rate based 

on [98], for the same friction and stress parameters, is shown by the dashed line. The 

slope of t−1 is plotted for reference. This model produces Omori‟s law in a limited 

time period followed by seismic quiescence. For the period of the power-law decay of 

aftershocks, this model produces much higher aftershock rates than predicted by the 

model of [98]. (c) From [172], courtesy of Y. Tian. The observed seismicity rate vs. 

time for a cluster of the 1984 Morgan Hill aftershocks that occurred at a depth 

appropriate for rheological transition. The multiplet approximately followed Omori‟s 

law, but seismicity terminated about one year after the Morgan Hill earthquake. This 

behavior is qualitatively similar to that of the computed aftershock rates in (b).  

 

viscoelastic damage rheology due to sudden increase in strain (e.g., [181]). 

The approach of [113] presented here can be used to study the combined 

effect of two or more mechanisms on aftershock rates. Such combined 

models would help investigate the relative importance of different aftershock-

producing mechanisms. 
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5. Insights from rate-and-state models and future challenges 
 

 One of the main insights emerging from the ability of rate-and-state 

models to reproduce a broad range of fault slip observations is that 

laboratory-based rate-and-state formulations truly capture the basics of the 

fault-zone friction response. The exciting but sobering news is that even that 

basic response appears to be far from simple. However, this should not be 

surprising given the complexity of the observed fault behaviors which range 

from earthquakes, to creep with the plate rate, to many phenomena in 

between, such as transient slow slip events at the base of many seismogenic 

zones (e.g., [182]). Furthermore, fault slip is characterized by substantial 

complexity and variations; e.g., earthquakes in the same area often vary in 

their characteristics and spatial extent (e.g., [183]).  

 Much of this complexity can be explained within the standard (Dieterich-

Ruina) rate-and-state models due to their rich stability properties (section 3) 

combined with the interactive nature of long range elastic interactions and 

inherent nonlinearity of frictional response (sections 4.1-4.4). Models that 

incorporate spatial variability in rate-and-state properties, even with quite 

basic patterns, tend to produce complex responses representative of real faults 

[101, 108, 111, 122, 130]. A study with two velocity-weakening fault 

segments separated by a velocity-strengthening patch [122] showed that the 

resulting long-term behavior of the model can be quite complex, with seismic 

events sometimes rupturing only one of the segments and sometimes both. 

The probability that the seismic event would propagate through the velocity-

strengthening patch and span both patches is linked to a non-dimensional 

parameter that incorporates properties of velocity-weakening and velocity 

strengthening patches [122]. Incorporation of a shallow velocity-

strengthening fault layer motivated by laboratory measurements leads to 

shallow coseismic slip deficit [114] which is observed on natural faults [184]; 

to match the extent of the observed deficit, incorporation of off-fault inelastic 

processes may be required [128]. Such shallow velocity-strengthening layers 

also suppress transition of rupture to supershear speeds at the free surface 

[114] which would otherwise be quite common on weakening interfaces 

embedded into elastic medium [121]. (Note that supershear rupture 

propagation have been inferred from observations (e.g., [185]) and observed 

in experiments [186] but subshear strike-slip ruptures are more common 

[187]). Models with regions of high characteristic slip L or elevated pore 

pressure p at the base of the seismogenic zone - both of which result in large 

values of the nucleation scale (section 3) - are capable of reproducing 

transient slow slip events [88, 90]. In another model of slow slip events 

[112], the steady-state dependence of friction on slip rate is varied, changing 
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from velocity-weakening to velocity-strengthening with increasing slip rates, 

as motivated by some experiments. 

 Models of earthquake sequences and fault creep enabled by the rate-and-

state formulations have led to a number of general insights. One of them is 

the importance of assuming self-consistent initial conditions in dynamic 

rupture simulations, in which features of the simulated earthquakes depend 

both on the fault friction (or strength) and on the assumed initial stress 

distribution (e.g., [18,188]). The two distributions - of fault strength and 

stress - are typically assumed independently, but on natural faults they are 

linked by stress redistribution due to prior slip. Such redistribution is 

captured by the long-term simulations of rate-and-state fault models [83, 

125]. For example, in a dynamic rupture simulation, one might model a local 

asperity by higher resistance due to higher normal stress, but assume constant 

shear prestress; the breakage of such stronger asperity can then lead to a 

supershear burst [188]. However, simulations of several earthquake cycles in 

such model reveal that, in the longer history of the fault, the shear stress 

becomes higher at the asperity as well, substantially reducing its effect on 

dynamic rupture and eliminating supershear transition for the parameters 

studied [83]. 

 Another insight is that seismic and aseismic slip can occur in the same 

region of the fault at different times. This is because velocity-weakening 

regions can both creep in areas of the order of nucleation sizes and also 

support seismic slip. Whether a given area of the velocity-weakening region 

is experiencing seismic or aseismic slip at any given time depends on its 

current stress and state conditions, which are the result of all prior slip in that 

and other fault locations and some external factors (such as stress 

perturbations from neighboring fault segments or fluid flow). In section 4, 

two interesting consequences of such behavior were discussed: (a) In a model 

of small repeating earthquakes (section 4.3; [82]), a large fraction of slip in 

the earthquake-producing patches can be aseismic, resulting in the observed 

scaling of seismic moment with the recurrence time; (b) When a rate-and-

state nucleation site is perturbed by a favorable stress change, of the kind that 

should speed up the upcoming earthquake, the seismic event can be delayed 

instead due to the resulting aseismic transient slip (section 4.4; [113]). Such 

non-obvious effects would be further amplified in models with additional 

ingredients such as dilatancy. 

 Rate-and-state models also reveal the special importance of rheological 

transitions from velocity-weakening to velocity-strengthening behavior, 

which provide faults with places of stress concentration. Presence of such 

rheological boundaries on natural faults has ample laboratory and 

observational evidence (e.g., [10, 25, 28, 143, 144, 189, 190]), suggesting 
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that slowly moving, velocity-strengthening regions exist above (at shallow 

depths, 0-3 km) and below locked regions. The stress concentration on such 

rheological boundaries promotes earthquake nucleation and clustering of 

small events [34,81,130]. It can help earthquake propagation by providing a 

highly-stressed region, to the point of promoting supershear transition, 

especially in the presence of fault heterogeneity [191,192]. 

 Models of earthquake sequences that include full inertial effects during 

dynamic events [34, 83] have been used to assess the results of the so-called 

quasi-dynamic models that have been widely used for simulating fault slip 

(e.g., [88,97,99,102,108,109,111,129]). In the quasi-dynamic methods, the 

time-dependent process of wave-mediated stress transfers is ignored, with 

only the static stress changes incorporated at each time step. That leads, in 

part, to substantially decreased stress concentrations in front of propagating 

ruptures. Some consequences of using quasi-dynamic models include 

substantially lower slip rates, rupture speeds, and overall slips during seismic 

events [34, 83]. While earthquake sequence patterns in rate-and-state models 

with relatively simple property distributions are similar for fully dynamic and 

quasi-dynamic models [34, 83], there are qualitative differences between 

them, including different locations of earthquake nucleation. Finally, quasi-

dynamic models cannot reproduce any phenomena that requires accurate 

representation of inertial effects, such as the formation of slip pulses due to 

enhanced velocity weakening [49,193] or supershear transition [186]. 

 While the standard, Dieterich-Ruina rate-and-state formulations (4-6) 

have been quite instructive and useful in understanding fault behavior, more 

complex laws are needed to account for a fuller range of laboratory 

observations as discussed in section 2.2. In particular, two effects related to 

pore pressure variations - dilatancy and thermal pressurization of pore fluids - 

have been well established in the laboratory (section 2.2) and demonstrated to 

have important qualitative effects on fault responses in models. Dilatancy 

during accelerating shear motion - and the associated potential decrease in 

pore pressure - is a stabilizing factor [51] (section 3) which enables rate-and-

state fault models with dilatancy to reproduce a number of observations about 

transient slow slip [53,54]. Slow slip events in such models can be viewed as 

protracted nucleation processes, just like in the standard rate-and-state 

models, and the assumption of low effective normal stress (and hence 

elevated pore pressure) is still required, but the slow slip events can be 

produced for small, laboratory-like values of the characteristic slip L of the 

order of microns [54]. As slip velocities increase, thermal pressurization of 

pore fluids (section 2.2) may become important at slip rates as low as 10
−4

 

m/s [54] and promote instability, provided the shear zone is narrow enough 

and impermeable enough. 
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 Thermal pressurization of pore fluids, flash heating (section 2.2), and 

several other potential coseismic weakening mechanisms (e.g., [57]) may 

dramatically affect the fault resistance during seismic slip and hence affect 

the entire earthquake cycle. For example, models that incorporate flash 

heating and thermal pressurization allow fault operation under lower shear 

stresses than the ones implied by the low-velocity friction, promote short-

duration pulse-like modes of earthquake slip, and match the observed 

increase of the apparent fracture (or breakdown) energy with slip (e.g., [49, 

50, 59]). A number of issues related to these processes require further 

investigation. For example, mechanisms based on pore pressure variations are 

strongly affected by the permeability of the surrounding medium. If the fluid 

can flow in and out of the shearing layer sufficiently freely, shear heating 

(and dilatancy) would not have much of an effect. The permeability values 

reported for compressive stresses relevant to seismogenic depths are low 

enough to make pore pressurization quite efficient (e.g., [59, 74]). However, 

it has not yet been fully explored how permeability would be affected by 

strong dynamic stress variations at the rupture front which are bound to 

damage the surrounding material. Spatial variations of poroelastic properties 

such as permeability can have dominating effect on long-term and short-term 

model behavior (e.g., [50]), and it is important to explore the effect of 

plausible variations with time. 

 In general, off-fault properties and processes have significant effect on 

fault slip, and the investigation of the full range of such effects is just 

beginning. Most fault slip models, especially those of earthquake cycles and 

long-term fault slip, have used linear elastic media for tractability and 

simplicity. While long-range elastic interactions are certainly key to the 

realistic model response, inelastic processes such as fault damage (e.g., [116, 

181, 194, 195]) may not only change permeability but directly affect rupture 

propagation by consuming energy and modifying wave-propagation 

properties in the vicinity of the fault. A related issue is that of local fault non-

planarity (e.g., [116, 124, 196]), which interacts with fault slip to potentially 

produce substantial stress variations that could dramatically affect fault slip 

and off-fault damage; the extent of such effects would depend on the scale 

and amplitude of the non-planarity.  

 Another important issue is the structure and composition of the shearing 

layers and their variation in space and time. Narrow, near-zero shear zones of 

the kind that have been found in some studies of exhumed faults [197] 

support the notion of extreme localization of shear at seismogenic depths and 

justify the procedure of applying laws based on small-scale laboratory 

experiments to fault-scale phenomena. However, the degree of localization 

and hence the width of the shearing zone may vary on faults, most obviously 
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with depth due to increasing confinement but also perhaps more generally 

with different rock compositions and slipping histories. A hint of such 

complexity is given by the fault structure at the San Andreas Fault 

Observatory at Depth (SAFOD) drilling site, which features two shear zones 

within a broader zone (of the order of 100 meters) of altered properties with 

respect to the surrounding medium [198]. Such a complex structure may be 

due to the relatively shallow depth (3 km) and the fact that the fault is 

creeping in that area, but it is intriguing nonetheless. Furthermore, 

experimental studies on the rock samples from SAFOD suggest that the 

frictional response of the fault there is dictated by the presence of weak 

minerals over a very narrow width, and not by the frictional properties of the 

surrounding material [44]. The structure and composition of the fault zone 

can depend on chemical processes, which can induce both healing and 

weakening. For example, chemical decomposition due to shear heating 

during rapid slips has been shown to release pore fluids such as CO2 and 

promote fault weakening due to pore pressurization [70], while leaving an 

altered material behind. On the flip side, chemical processes during long 

interseismic periods should result in healing, perhaps in a manner 

heterogeneous over the fault [199]. 

 The issue of the width and response of the shearing zone is also quite 

important below the so-called seismogenic zone. Do faults, at least the ones 

which are mature and represent major plate boundaries, have deeper fault 

extensions, e.g., relatively narrow zones of shear that extend below the so-

called brittle-ductile transition? Several observations suggest that the answer 

is yes, including localized post-seismic slip [123,142,200] and seismic 

tremors found below the seismogenic zone [201]. 

 If so, then laboratory studies under the relevant temperature and pressure 

conditions indicate that such zones should be mostly velocity-strengthening 

and hence creep under the slow loading. Such creep with the long-term fault 

slip rate is one of common forms of incorporating loading into simulations of 

long-term fault slip [34, 50, 83, 94, 97]. However, if much of the deformation 

below the fault is more broadly distributed [123, 142, 200], the fault loading 

may have different character which would be important to explore; this may 

be especially important for models with interacting faults. 

 In summary, the developments in rate-and-state fault modeling have been 

quite exciting. The laboratory-based models have succeeded in reproducing a 

wide range of fault slip phenomena, both qualitatively and quantitatively. 

Rapid advances in experiments, theories, observations, and computational 

methods are increasing the number of fault slip studies based on materials 

science of rock deformation, where each fault constitutive parameter has a 

physical meaning and can be measured in the lab or in the field, at least in 
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principle. This opens a tantalizing possibility of statistically predictive 

physics-based modeling, in which model parameters are informed by all 

available laboratory and field observations, a suite of simulations is 

conducted which spans the range of parameter uncertainty, and a range of 

potential fault behaviors is uncovered. Such modeling output can then 

contribute to our understanding of seismic hazard. However, much remains to 

be done toward that goal. The number of the potentially relevant physical 

phenomena and associated parameters is relatively large as already discussed, 

including rate-and-state effects, dilatancy, shear heating, fluid flow, a number 

of potential coseismic weakening mechanisms, local fault non-planarity, and 

damage processes in the bulk. The current modeling work is moving toward 

establishing the dominant and/or combined effects of several mechanisms, a 

must if we are to reduce the number of physically motivated parameters to a 

manageable number. Most importantly, we need both more measurements 

related to natural faults at a range of depths (which means drilling) and more 

laboratory experiments on natural fault samples under relevant temperature/ 

stress/pore-pressure conditions. 
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Abstract. There are multiple lines of evidences discovered over 

the last couple of decades for the coseismic weakening of a fault 

which is much more drastic than what is predicted from the 

conventional friction laws verified at low slip rates. Such 

weakening undoubtedly affects the dynamic rupture propagation in 

various ways. For example, coseismic weakening considered in a 

framework of rate-weakening has been shown to play an important 

role in determining the manner of dynamic rupture propagation 

(crack-like versus pulse-like rupture) given a pre-stress level. 

Moreover in the sequence of earthquakes, the pre-stress is affected 

by the coseismic frictional resistance. In this article, some of the 

recent studies on the significance of high velocity friction shall be 

reviewed briefly.    

 

1. Introduction 
 

 The frictional constitutive law of fault rocks is one of the main 

ingredients in considering dynamic rupture propagation during an earthquake, 

and thus actively being studied experimentally,  theoretically, numerically,  
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and by field observations. The fault behavior is called “frictional” if the shear 

resistance τ is roughly proportional to the effective normal stress σe:  
 

ef f p           (1) 

 

where f is the friction coefficient, σ is the total compressional normal stress 

on the fault, and p is the pore pressure. There are so many studies on how τ 

varies during an earthquake, and one of the recent prominent experimental 

discoveries include ramarkable reduction of τ (weakening) at coseismic slip 

rates (> 0.1 m/s), sometimes referred to as “high slip rates” or “high velocity” 

[e.g., 1]. This article presents how such weakening affects the dynamic 

rupture propagation and its sequences.  

 Section 2 is devoted to describe the significance of the weakening at high 

slip rates in comparison with the typical observation of τ at lower slip rates. 

In order to say if the weakening is significance or not in terms of 

elastodynamics, one should compare the weakening rate, decrease in τ per 

unit increase in the slip rate V, of a fault with a characteristic weakening rate 

from elastodynamics. Section 3 describes such a comparison based on an 

assumption that the weakening is considered as a rate-weakening; there is a 

decreasing function τ(V). The effect of the significant rate-weakening is 

demonstrated by explaining some of the proposed criteria [2, 3] which 

determine the manner (crack-like vs. pulse-like) of rupture propagation [4].  

 The weakening at the coseismic slip rate affects not only coseismic, but 

also interseismic fault behaviors such as the level of the shear stress at which 

a fault operates. Section 4 presents a brief review of a recent study [5] which 

explicitly present this point by considering a coseismic increase in p due to 

frictional heating (thermal pressurization of pore fluid) in a simulation of 

sequence of earthquakes.  

 

2. Evidences of weakening of a fault at coseismic slip rates 
 

 Byerlee [6] compiled the data of friction experiments for variety of rocks, 

and concluded that the peak value of the frictional resistance τpeak, which is 

attained near the onset of sliding, is independent of the rock type with 

exception of clay minerals. At a compressional effective normal stress σe 

below 200 MPa, τpeak is given by 0.85σe with significant scattering of the data 

points, and at a higher normal stress, τpeak is given by 50MPa + 0.6σe. Thus, 

the peak friction coefficient fpeak ranges from 0.6 to 0.85 independently of the 

rock type. This is so-called Byerlee’s law. This notion agrees with field 

observations such as the state of stress measured at boreholes [e.g., 7]. 
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 An earthquake occurs as a result of acceleration of relative motion (slip) 

on an active fault and its propagation. Then, the dependency of the sliding 

frictional resistance τ or the friction coefficient f (= τ / σe) on the speed of the 

relative motion (slip rate) V or, more generally, the governing equation of τ is 

of great importance in considering the earthquake generation process. 

Dieterich [8, 9] investigated the dependency of fpeak on the time of the 

stationary contact and the evolution of f after a sudden change in V. fpeak and f 

respectively depend on the contact time and V rather modestly; an e-fold 

increase in the contact time or V causes a change in f by on the order of 0.01 

or smaller. Those experiments are typically carried out below 1 mm/s. 

Therefore, Byerlee’s law holds for the sliding frictional resistance τ as well as 

for τpeak for a wide range of σe and V for variety of rocks. The value of f from 

0.6 to 0.85 (typically 0.7) has been referred to as a standard value of the 

friction coefficient of the rock. Note that during a large earthquake, an active 

fault slips at a slip rate on the order of 0.1 to 10 m/s. The experimental 

dataset which bases Byerlee’s law does not include experiments at such high 

slip rates.  

 Given a characteristic value of f (~0.7) and a long-term slip rate of an 

active fault, one can calculate the frictional heating and the distribution of the 

heat flux at the surface. Lachenbruch and Sass [10] compared such theoretical 

prediction with measured heat flux along the San Andreas fault, California, 

and concluded that there is no detectable evidence of frictional heating. This 

observation suggests that the rate of frictional heating is much smaller than 

what is expected from the Byerlee’s law if σe at the depth is assumed to be 

derived from lithostatic and hydrostatic stress condition. This issue is 

sometimes called as “heat flow paradox”, and the explanation for it has been 

one of the major tasks during last decades.  

 There are multiple lines of evidences for low frictional heating during 

coseismic slip. After 1999 Chi-Chi, Taiwan, Earthquake (Mw 7.6), for 

example, 2 direct measurements of temperature anomaly in bore holes which 

penetrate the Chelungpu fault, a source fault of Chi-Chi Earthquake, at about 

300 m and 1100 m in depth revealed that f during coseismic slip is about 0.1 

if σe is given by the lithostatic and hydrostatic condition [11, 12]. d’Alessio et 

al. [13] studied exhumed San Gabriel fault, California, and concluded that 

there is no evidence for frictional heating recorded as thermal healing of 

fission tracks, and estimated that f must be below 0.4 for an earthquake which 

produces 4 m of slip.  

 Ancient earthquakes accompanied by high slip rates and resulting 

frictional heating can be recorded geologically as pseudotachylyte, melted 

and quenched glassy rock [e.g., 14]. Similar fused rocks are sometimes found 

in large landslides, and Erismann et al. [15] explained the occurrence of such 
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rocks as a result of frictional melting by producing pumice by friction 

experiments at a slip rate about 10 m/s. They reported that the averaged 

friction coefficient decreases with increasing normal stress from about 1 to as 

low as 0.17. There are many following studies producing pseudotachlyte in 

high velocity friction experiments [1, 16-25] as well as recent theoretical and 

numerical studies trying to formulate the shear resistance during fault motion 

[26-28]. Most of them reported much smaller f than characteristic value of 

Byerlee’s law especially at high normal stress, suggesting that melt 

lubrication is one of the strong candidates explaining the low frictional 

heating to some extent.  

 Pseudotachylyte is, however, rather rarely observed along exhumed 

faults which used to be located at a seismically active depth. Sibson [29] 

explained the scarcity of pseudotachylyte by hydro-thermal effects. Because 

the thermal expansivity of water is much larger than that of rocks, frictional 

heating causes an increase in the pore pressure in the shear zone and thus a 

decrease in σe and τ (see Eq. (1)) if the surrounding rock is impermeable 

enough so that it can confine the pressurized fluid efficiently. This 

mechanism is called thermal pressurization of pore fluid. It has been 

extensively studied mainly theoretically and numerically in terms of fault 

constitutive law, frictional instability, dynamic rupture propagation, and 

sequence of earthquakes [e.g., 3, 5, 29-46]. If a fault slips at a constant V 

forever with a finite value of f and if the onset of melting is neglected, then 

the shear resistance ultimately decays to zero with a length scale for slip 

depending on the hydrothermal properties and slip rate. Rempel and Rice 

[41] derived a condition for impossibility of onset of melting.  

 Tsutsumi and Shimamoto [1] conducted friction experiments for gabbro 

at V which ranges from about 5 cm/s to 1.3 m/s at σe = 1.5 MPa, and revealed 

that f dramatically decreases even without the generation of a melt layer and 

without any confinement of pore fluid (air); f is around 0.8 at 5 cm/s and 0.5 

at 0.55 m/s. Later experimental studies have reconfirmed this observation for 

many different kinds of rocks in variety of experimental conditions (Figure 1, 

modified from Wibberley et al. [47]). The weakening is explained by 

different mechanisms for different rock types and different experimental 

conditions, such as localized temperature rise at the true area of contact (flash 

heating) [40, 48], macroscopic temperature rise and intrinsic temperature-

weakening effect [49], formation of silica gel for SiO2-rich rocks [50], 

thermal decomposition of minerals and associated increase in pore pressure 

and/or generation of weak material (for example for coal [51], calcite [52], 

siderite [53], kaolinite [54], and gypsum [55]), and so on. Di Toro et al. [56] 

showed that the heat-induced weakening mechanisms can be distinguished by 

plotting the steady-state friction as a function of frictional power density. 
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Figure 1. Experimentally observed friction coefficient f at low to high slip rates. 

Figure from Wibberley et al. [47]. 

 

 Natural faults are not simple in terms of mineral composition, structure, 

and temperature-pressure and chemical conditions. Thus it is difficult to 

determine a physico-chemical mechanism which dominantly affects τ during 

dynamic rupture in a general case. But whatever the mechanism might be, it 

is likely that the shear resistance of a fault during coseismic slip is much 

smaller than what is predicted by Byerlee’s law and an ambient effective 

normal stress based on lithostatic and hydrostatic stress state. With some 

exceptional materials which has low friction coefficient at low slip rates (e.g., 

graphite [58]), there is a large difference between the shear resistances at low 

(< 1 mm/s) and coseismic (> 0.1 m/s) slip rates. This difference is associated 

with a much more remarkable rate-weakening than what is observed at the 

low slip rates (see Figure 1) if the assumption that the shear resistance τ is a 

function of the slip rate V is appropriate.  

 It should be emphasized that at this point, the significance of the rate-

weakening is defined in comparison with the conventional notion on the 

frictional resistance at low slip rates, and not relevant to the dynamic rupture 

process. In the next section, significance of the rate-weakening is discussed 

from the point of view of elastodynamics. 

 

3. Significant rate-weakening in terms of elastodynamics 
 

 In the last section, significance of the rate-weakening at high slip rates   

is discussed in comparison with the frictional behavior at low slip rates            

(< 1 mm/s). In order to say that the absolute value of the slope of rate-
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weakening [stress/velocity] is large or small in a context of dynamic rupture 

propagation, we need to consider nondimensionalization and normalization in 

a proper manner. In this section, a measure of rate-weakening is discussed in 

a dynamic rupture process. 

 Let us consider a rate-weakening frictional constitutive law of a fault,  
 

( ) for 0 ; / 0V V d dV  .         (2) 

 

Cochard and Magariaga [58] conducted numerical simulations of dynamic 

rupture propagation for a rate-weakening fault. Many following studies [e.g., 

2, 3, 58-60] employed remarkable rate-weakening by embedding it into 

friction laws which have one or more internal variables (state variables) and 

regularize Eq. (2). In those cases, the friction law can be written as  
 

( , )V θ            (3) 

 

where θ is the state variables which is a vector in general and evolves to a 

steady-state value θss(V) if V is fixed. The rate-weakening then means  
 

( ) ( , ( )) ; / 0ss ss ssV V V d dVθ  .         (4) 

 

Note that Rice et al. [61] proved that purely rate-weakening law can cause 

mathematical ill-posedness; there is no solution when Eq. (2) is coupled with 

elastodynamics if the rate-weakening is significant in a sense discussed in 

this section. Even though the regularization using a state variable is required 

in solving dynamic rupture problems, the notion of rate-weakening is still 

useful in discussing the results from those numerical studies as shown later.  

 τss(V) is usually assumed to be rather simple, having a value consistent 

with Byerlee’s law at V close to zero, much lower values at coseismic value 

of V, and a transition between them (see Figure 1) corresponding to a 

maximum value of -dτss/dV,  
 

max( / )ssd dV  .                                      (5) 

 

For example, Rice [40] explained the experimentally observed weakening 

before the onset of melting by flash heating, and proposed a friction law, 
 

 
LV e w

ss ss e w
LV w w e w

f V V

f V
f f f V V

V

       (6) 



Significance of high velocity friction in dynamic rupture process 215 

where fss is the steady-state friction coefficient, fLV is the steady-state friction 

coefficient at low slip rates, Vw is the slip rate at which the weakening at high 

slip rate becomes efficient, and fw is the friction coefficient at high enough 

slip rates (Figure 2). In this case, the maximum slope of the rate weakening is 

achieved at V = Vw: 
 

( )LV w w
e

w

f V f

V
 .          (7) 

 

A question is how to evaluate χ in terms of elastodynamics.  

 The dynamic rupture process is often considered as a problem dealing 

with an interaction between a boundary (fault) on which a rupture propagates 

and surrounding elastic medium with inertial effects. χ is a quantity having a 

dimension of [stress/velocity], and there is a scale for it given by 

elastodynamics. Elastodynamics has 3 physical properties, shear modulus μ, 

Poisson’s ratio ν, and density ρ. Then (μρ)1/2 = ρcs = μ/cs (acoustic impedance 

of s-wave) is a characteristic value of the medium having a dimension of 

[stress/velocity], where cs is the s-wave speed which is equal to (μ/ρ)1/2. 

Therefore, it is reasonable to measure χ nondimensionalized by a quantity 

which is proportional to the impedance. 

 Let us consider a planer fault embedded in a linearly elastic full space 

which is homogeneous. The comparison of χ and the shear acoustic 

impedance is most visible in a boundary integral expression for the traction 

on the fault, τ [e.g., 58, 62-65], 
 

0( , ) ( , ) [ ; , ] ( , )t t t tτ r τ r φ V r η V r  ,        (8) 

 

where r is the position vector which spans on the fault, t is time, τ0 is the 

traction on the fault if there is no slip on the fault, φ is a convolution term 

which depends on the history of the jump in the particle velocity across the 

fault V. If a unit normal vector to the fault is denoted as n and the other 

Cartesian basis vectors are as p1 and p2, then a second rank tensor η can be 

written as,   
 

1 1 2 2 1 1 2 222 2 2 2 22

p ps s

s ss

c cc c

c cc
η nn p p p p nn p p p p  ,     (9) 

 

where cp is the p-wave speed and ρcp is the acoustic impedance of p-wave. 

The third term in Eq. (8) is called as the radiation damping term [66]. In a   2-

dimensional problem without allowing opening of a fault, we have only to 

consider one component of Eq. (8) in the shear direction,  
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Figure 2. Friction coefficient fss as a function of slip rate V predicted by Eq. (6) which 

accounts for flash heating of microscopic asperities [40]. 
 

 

0( , ) ( , ) [ ; , ] ( , ) ; 
2 s

x t x t V x t V x t
c

 ,     (10) 

 

where x is the spatial coordinate along the fault. η shall be chosen as the scale 

having the dimension of [stress/velocity]. The radiation damping term takes 

care of the instantaneous effect between V and τ. This term can be understood 

as a linear interpolation between stress-free and glued boundary conditions. 

Note that if the fault is a surface of constant stress (i.e., τ = τ0 where τ0 is 

constant with time) and the “stress wave” υ is propagates on the fault, then 

the propagating distribution of the slip rate V is proportional to υ as discussed 

by Brune [67].  

 In order to satisfy the boundary condition on the fault, Eqs. (2) or (3) and 

(10) must be satisfied simultaneously. For simplicity, we use the concept of 

pure rate-weakening in the discussion here assuming that the state evolution 

is rapid enough compared with the evolution of υ. The significance of χ/η is 

evident as indicated in Figure 3. Let us consider a loading history υ(t) at a 

certain point on a fault such that the point on the fault is initially locked       

(V = 0), ruptured and slipped at coseismic slip rate, and decelerated and re-

locked at the final condition. For illustration purpose, the initial and final 

value of φ us chosen to be equal to each other in Figure 3. As υ varies 

continuously with time t, χ/η < 1 results in continuous change in V (Figure 

3a) while χ/η < 1 causes abrupt jumps in V (Figure 3b) as discussed by 

Cochard and Madariaga [58]. When a point on the fault stop sliding as          

υ decreases, χ/η < 1 causes an efficient brake which is turned on at V = Vpulse,  
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Figure 3. Trajectories of (V, τ) at a point on a fault which is governed by a purely 

rate-weakening friction law. The convolutional term φ increases to a peak value and 

decreases to the initial value for simplicity. (a) The case with χ/η < 1; the rate-

weakening is not significant in terms of elastodynamics. (b) The case with χ/η > 1; the 

rate-weakening is significant in terms of elastodynamics. Significant rate-weakening 

defined by χ/η > 1 causes efficient break at the deceleration at V = Vpulse.  

 

the slip rate at which τss(V) and the line which has a slope of -η fit 

tangentially as shown in Figure 3b. With a rate- and state-dependent friction 

law, at this point, the trajectory of (V, τ) diverges from τss(V), and V starts 

decreasing towards zero at τ much smaller than τss(V) unless a loading is 

applied by incoming wave to this point (i.e., an increase in υ) [e.g., 3]. This 
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behavior causes a qualitative difference in the manner of dynamic rupture 

propagation. 

 

3.1. Self-healing pulse-like rupture due to significant rate-

weakening 
 

 Heaton [4] have revealed that many earthquakes occur in a self-healing 

pulse-like manner rather than a crack-like manner; slip on a fault propagates 

as a localized pulse of slip rate which has a rupture front and a healing front 

(Figure 4). The efficient brake due to the significant rate-weakening in terms 

of elastodynamics, χ/η > 1, plays an important role in determining whether a 

rupture propagates in crack-like or a pulse-like manners [2,3,58-60, 68-70]. 

Note that there are other mechanisms proposed which cause the generation of 

the pulse-like rupture propagation such as a contrast in material properties 

across the fault [e.g., 71], and arrest waves from fault edges or from 

heterogeneity along the fault [e.g., 72-75], but those mechanisms will not be 

discussed here. In following subsections, some of the proposed criteria 

determining the manner of rupture propagation shall be presented which help 

understanding of the transition between crack-like and pulse-like ruptures and 

significance of the coseismic weakening.  

 

 
 
Figure 4. A schematic diagram showing a crack-like (upper) a pulse-like (lower) 

ruptures.  
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3.1.1. Impossibility of crack-like rupture at low background shear 

stress  
 

 Zheng and Rice [2] derived a sufficient condition for non-existence of 

crack-like ruptures. Please see their paper for detailed derivation. For a planer 

fault, the functional term υ in Eq. (10) satisfies  
 

( , ) 0x t dx  .         (11) 

 

Note that the rupture is a process of re-distribution of shear stress on a fault, 

and not a process of stress drop if one considers the entire system such as an 

infinitely long fault in a two-dimensional problem. Zheng and Rice [2] 

mathematically proved the following. Suppose there is an expanding crack-

like rupture Srupt(t) which has a symmetry around x = 0. Then the shear stress 

is concentrated outside it Sout(t),  
 

( )

( , ) 0

outS t

x t dx  .        (12) 

 

Eqs. (11) and (12) immediately yield  
 

( )

( , ) 0

inS t

x t dx  .                       (13) 

 

The spatial integral of Eq. (10) inside Srupt(t) is then expressed as 
 

0

( ) ( )

( ) 0

rupt ruptS t S t

V dx dx  .                     (14) 

 

 Assuming that τ = τss(V), if  
 

( ) ( ) 0 fot all 0ss bV V V ,                      (15) 

 

where τb is background shear stress, then it is impossible for Eq. (14) to be 

satisfied. Therefore, a crack-like rupture can not exist at such a low τb. Note 

that τb is the spatial average of τ0 inside Srupt, and approaches to the spatial 

average of τ0 over the entire fault as the hypothetical crack-like rupture 

expands.  

 This theorem rigorously gives a sufficient condition for the non-existence 

of the crack-like rupture. Let us define a critical shear stress value, τpulse, 
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which is defined by the intersection of V = 0 and  a line having the slope of -η 

which tangentially fit to τss(V) (Figure 3b). Then Eq. (15) is equivalent to  
 

b pulse
.         (16) 

 

If the background shear stress τb is smaller than τpulse, then an expanding 

crack-like rupture is impossible.  

 If a rupture is initiated by a compact over-stressed region which has high 

τ0, the ruptures is crack-like just after its initiation, and it may undergo a 

transition to a pulse-like rupture or be arrested. Those transitions can 

understood through this theorem. τb, a spatial average of τ0 over Srupt, will 

decrease with Srupt expands. Even if τb is larger than τpulse while Srupt is small and 

thus a crack-like rupture is possible while the rupture is small, τb can become 

smaller than τpulse for large enough hypothetical ruptured area. In this case, the 

rupture must become pulse-like or arrested before it expands to such a size.   

 Zheng and Rice [2] conducted numerical simulations with a rate- and 

state-dependent friction law and verified that this theorem works even if there 

are process zones within which the purely rate-weakening law is not a good 

approximation. Also, they showed that pulse-like ruptures exist at a τb larger 

than, but close enough to τpulse. Similar results have been obtained by 

following studies [e.g., 3, 70, 71].  

 

3.1.2. Condition in terms of dynamic stress drop 
 

 Noda et al., [3] have conducted dynamic rupture simulations accounting 

for flash heating (Eq. (6)) for two-dimensional anti-plane cases, and 

explained the critical value of the background shear stress τb between pulse-

like and crack-like ruptures by considering a first-order approximation of the 

friction law in a necessary and sufficient manner.  

 The idealization of the friction law is the following. The shear resistance 

during coseismic sliding, V > Vpulse, is not significantly dependent on V. 

Therefore, the frictional resistance at this slip rate regime could be regarded 

as constant at τd (Figure 5a). On the other hand, the value of τss in the slip rate 

regime where the rate-weakening is significant does not matter much. In fact, 

in the purely rate-weakening case, τss at slip rates where |dτss/dV| > η does not 

affect the solution at all (Figure 3b). There is a slip rate (Vpulse) at which the 

efficient braking on the fault slip takes place (Figure 5a) between those two 

regimes. In this idealized friction law, 0 < V < Vpulse is a forbidden range for 

the slip rate.  

 Let us hypothetically consider a singular anti-plane crack expanding  

self-similar mannerly. The shear stress is initially uniform        at τb, and    a ruptured  
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Figure 5. (a) Idealized friction law used in discussing the criterion between crack-like 

and pulse-like ruptures. At high enough slip rate V > Vpulse, the rate-weakening is not 

significant and thus the shear stress is idealized as a constant. (b) A possible self-

similar crack-like rupture. V∞ > Vpulse. (c) A self-similar crack-like rupture which is 

impossible because of the forbidden slip rate range, 0 < V < Vpulse. 
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region propagates bilaterally by a constant rupture speed Vr in which the 

shear stress is uniformly equal to the kinetic frictional resistance, τd = τb + Δτ. 

The corresponding slip rate distribution is [76, 77] 
 

2
Re

1 ( / )

r r

s r

V V
V F

c x V t

 ,      (17) 

 

where F(Vr/cs) is a nondimensional factor on the order of unity for realistic 

Vr/cs (Figure 5b). This solution is valid if the range of V does not intersect 

with the forbidden slip rate range (0, Vpulse). At a point on the fault except      

x = 0, V is zero before the rupture reaches there, infinitely large at the rupture 

front, and decrease towards a certain value V∞ which is given by 
 

lim r
r

t
s

V
V V F V

c
.       (18) 

 

If the fault is governed by the idealized friction law (Figure 5a), this 

hypothetical crack-like rupture is possible if and only if Vpulse, ≤ V∞ (Figure 

5b and c). Noda et al. [3] discussed their numerical results along this line 

after a rough estimate of F(Vr/cs)·Vr/cs and Δτ. 

 Let us consider the comparison with the condition by Zheng and Rice [2] 

in the idealized friction law discussed in this section (Figure 5a). The 

threshold of τb for impossibility of the crack-like rupture, τpulse, is given by 
 

pulse d pulseV  ,        (19) 

 

where τd is the shear resistance at V > Vpulse. The critical value of τb, τbc 

obtained from Vpulse = V∞ is given by  
 

1

2 r r r

bc d pulse d pulse

s s s

V V V
V F V

c c c
 .    (20) 

 

The critical value of the dynamic stress drop -Δτ is given by ηVpulseΞ(Vr/cs).  

Figure 6 shows Ξ(Vr/cs) > 1, indicating τbc > τpulse. Therefore, the criterion by 

Noda et al. [3], which is necessary and sufficient, is consistent with and more 

restrictive than that by Zheng and Rice [2] in this specific problem although 

the former requires idealization in order to be applied to a general case which 

causes ambiguity. 

 It should be emphasized that the critical value of -Δτ, ηVpulseΞ(Vr/cs) 

could be constrained from physical properties of the fault and surrounding 
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Figure 6. Plot of a function Ξ (Eq. 20) as a function of normalized rupture speed 

Vr/cs.  

 

medium, based on an assumption on the rupture speed. In the case 

numerically studied by Noda et al. [3], Vpulse = 1.5 m/s (at σe = 126 MPa 

corresponding to 7 km depth) and η = μ/2cs = 5 MPa(m/s)-1. For a rupture 

which propagates at a speed about Vr/cs ~ 0.8, Ξ(Vr/cs) is about 2 (Figure 6) 

and then the critical value of -Δτ becomes about 15 MPa. This estimation 

explains their numerical results very well (see appendix C in their paper).  

 

4. Effect of coseismic weakening on the long-tem fault 

behavior 
 

 In the previous section, the effect of coseismic weakening on dynamic 

rupture is discussed with the background shear stress as one of the 

parameters. However, the background shear stress or a pre-stress before each 

dynamic event is determined through the history of the fault behavior which 

includes sequence of earthquakes and interseismic fault motion. 

Undoubtedly, the coseismic weakening affects the shear stress right after an 

earthquake, during the following interseismic period, and the pre-stress 

before the next dynamic event. Therefore, the drastic coseismic weakening 

probably affects the characteristics of the long-term fault behavior such as the 

overall stress level at which the active fault operates. This section presents a 

review of a recent study by Noda and Lapusta [5] which investigated the 

effect of coseismic increase in the pore pressure p due to frictional heating 

(thermal pressurization of pore fluid) in a sequence of earthquakes.  
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4.1. Hydrothermal effects on frictional resistance  
 

 In Section 3, the weakening at coseismic slip rates has been discussed in 

a framework of rate-weakening, a decreasing function τ(V) or τss(V). There 

are many possible fault constitutive laws which do not have those 

straightforward approximations by functions of V but produce weakening at 

coseismic slip rates. Among them, thermal pressurization of pore fluid is 

discussed in this section. This mechanism is one of the best studied 

weakening mechanisms   [e.g., 3, 5, 29-46]. 

 Figure 7 is a schematic diagram of thermal pressurization of pore fluid. 

Rapid sliding of a fault during an earthquake produces frictional heating 

which causes an increase in the temperature T by the fault. If the surrounding 

fault rock which is porous material is saturated with water, both rock and 

water try to expand thermally. The thermal expansion coefficient of water is 

much larger than that of rocks [e.g., 40, 41]. If the rock is not permeable 

enough, the pressurized water is confined near the shear zone and fluid 

pressure p increases locally, causing a decrease in the effective normal stress 

σe and thus dynamic weakening during an earthquake (see Eq. (1)).  

 Thermal pressurization of pore fluid is often modeled by considering 

diffusion of T and p normal to the fault with source terms corresponding to 

frictional heating [e.g., 30],  

 
2

2th

T T

t cy
 ,        (21) 

 

 
 
Figure 7. Schematic diagram showing the process of thermal pressurization of pore 

fluid. This figure is from Noda and Lapusta [5]. 
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2

2hy

p p T

t ty
 ,                                   (22) 

 

where y is the spatial coordinate normal to the fault, αth and αhy are thermal 

and hydraulic diffusivities, respectively, ρc is the specific heat capacity of the 

medium, Λ is the increase in p per unit increase in T under undrained 

condition, and ω is distribution of frictional heat generation which satisfies 
 

0
( )

y
dy V p fV        (23) 

 

if all of the dissipated energy by frictional resistance turns into heat. The 

hydraulic diffusivity αhy is given by k/ηwβ where k is permeability of the rock, 

ηw is water viscosity, and β is storage capacity. Note that the nonlinear terms 

such as convection and heat generation due to pressurizing the fluid are 

neglected here. For the full formulation, see Mase and Smith [32]. For 

materials with low enough permeability (k < 10-16 m2), the convective term is 

not important [30, 32, 33]. Vredevoogd et al. [78] conducted numerical 

simulations that included all terms in the conservation equations [32], and 

demonstrated that the nonlinear terms may be safely neglected. 

 Among the physical properties which appear in Eqs. (21) and (22), the 

hydraulic diffusivity αhy has the largest variation for orders of magnitude, 

depending on the rock types, effective mean stress, chemistry of pore water, 

and so on [e.g., 36, 79-88]. Thermal pressurization is efficient for mature 

faults with well-developed fault core which has low k and thus αhy.  Figure 8 

(Figure 11 in Wibberley and Shimamoto [85]) shows an example of the 

internal and permeability structures of mature faults (Median Tectonic Line, 

Southwest Japan, as an example studied by Wibberley and Shimamoto [85]). 

Fracturing of an intact rock (e.g., mylonites and metapelitic schist in Figure 8) 

remarkably increases permeability k and thus αhy locally. As cataclastic 

deformation accumulates towards the fault core, the fault rock becomes 

granulated (fault gouge), and then grain size reduction due to further 

cataclastic deformation causes a decrease in the permeability near the central 

slipping plane in Figure 8 which is also called as “principal slip surface” [40]. 

Mature faults which host large earthquakes have material with low 

permeability by the principal slip surface where coseismic shear strain is 

localized.  

 The width of the distribution of shear strain rate w plays an important 

role in thermal pressurization. The amplitude of heat generation density is  
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Figure 8. An example of (a) internal and (b) permeability structure in the mature fault 

zone (Median Tectonic Line, Southwest Japan as an example). This figure is Figure 

11 in Wibberley and Shimamoto [85]. Permeability was measured with nitrogen as a 

pore fluid at different confining pressure, 50 MPa, 100 MPa, and 200 MPa, with 20 

MPa of pore pressure.  

 

inversely proportional to w, and the system can be approximated by adiabatic 

and/or undrained limits if the diffusion lengths of T and/or p are much smaller 

than w. Observation of the exhumed fault and drilled fault core [89-92], and 

samples after rotary shear friction experiments [92, 93] suggest that the shear 

deformation localizes within a very thin layer typically sub-millimeters thick 

which are often recognized as the layer of preferred orientation of platy 

minerals.  

 Rice [40] derived an analytic solution to Eqs. (21) and (22) at fixed V and 

f for a shear zone localized to a mathematical plane,  

 

( ) ( )Dp fV y         (24) 
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where δD is Dirac’s delta function. The analytic solution for the frictional 

resistance is written as 
 

0

* *

( ) exp erfcp f
L L

,                     (25) 

 

where σ is the total normal stress, p0 is the initial pore pressure, δ is slip on 

the fault, and  L* is a length scale given by 

 
2

2

* 2

4 hy thc
L

f V
.                     (26) 

 

 For a range of realistic set of parameters, Rice [40] estimated L* as 2 to 

50 mm at coseismic slip rates. Figure 9 shows the evolution of τ predicted by 

Eq. (25) (modified from Figure 3 in Rice [40]). It should be emphasized that 

the apparent length scale of the displacement required for weakening of the 

fault depends on the final slip of the event. Rice [40] successfully explained 

the dependency of the seismic fracture energy, the area below τ as a function 

of slip and above the final value of τ, on the size of the earthquake [94] using 

those stress-reduction curves in Figure 9. The frictional resistance keeps 

decreasing towards zero as the fault slips at a constant V. Although it is true 

that the weakening due to thermal pressurization is more efficient at higher V 

(i.e., L* decreases with V), the concept of rate-weakening becomes 

ambiguous. 

 Andrews [34] conducted dynamic rupture simulation with slip-

weakening friction law for f and thermal pressurization which produced 

crack-like ruptures, and pointed out that efficient thermal pressurization 

produces nearly complete stress drop.  

 

 
 
Figure 9. Figure 3 in Rice [40]. Analytic solution to thermal pressurization with a 

deformation localized on a mathematical plane, Eq (25), is plotted with different 

horizontal scales. Apparently, the slip required for the weakening of a fault is always a 

good fraction of the total slip.  



Hiroyuki Noda 228 

4.2. Effect of coseismic weakening on the sequence of earthquakes 
 

 Noda and Lapusta [5] developed a suitable methodology to implement 

Eq. (21) and (22) in a calculation of sequence of earthquakes which accounts 

for full inertial effect in coseismic periods and long-term tectonic loading 

[64, 65], and examined the effect of coseismic weakening. This subsection 

presents a brief review of their study. For detailed methodology and results, 

please refer to their paper. 

 They considered a fault which is governed by a rate- and state-dependent 

law, 
 

1 0 0
0 0 0

0

ln( / )
sinh exp ln( / ) ln( / )

2

f b V LV
f a f a V V b V L

V a
.   (27) 

 

The sinh-1 regularization is important only if the shear stress on the fault 

becomes so small that f is close to or smaller than a. For the physical basis of 

this regularization, see Nakatani [95] and Rice et al. [61]. f0 is the steady-state 

friction coefficient at a reference slip rate V = V0, a and b are nondimensional 

constants representing the magnitude of the direct and evolutional effect, and 

L is the characteristic slip displacement of the state evolution, 

 

1 ( )  ;    ( )ss ss

d V V L
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.    (28) 

 

 The geometry of the fault studied by Noda and Lapusta [5] is shown in 

Figure 10. 2 square patches of potentially different hydraulic diffusivity αhy 

are placed in a rate-weakening (a = 0.01, b = 0.014) region embedded in a 

rate-strengthening (a = 0.01, b = 0) region. The fault is loaded by a creeping 

at a constant rate Vpl near the periodic boundaries. αhy can be heterogeneous 

on natural faults depending on the local lithology as shown by experimental 

measurements by Tanikawa and Shimamoto [88] for the Chelungpu fault, 

Taiwan, a source fault of 1999 Chi-Chi earthquake. Because of restricted 

computational resources, Noda and Lapusta [5] used rather thick (w = 1 cm) 

shear zone to make the rupture front numerically resolvable.  

 Distributions of cumulative slip and shear stress along the mid-depth (z = 

0 in Figure 10) is shown in Figures 11 and 12, respectively. Figure 11a, 11b, 

12a, 12b represent cases with same αhy in both of the patches and the region 

between them. In these uniform cases, the earthquakes span the whole 

seismogenic region. This is partly because the nucleation size is not very small 

compared with the size of the seismogenic zone. The size of the      nucleation can 
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Figure 10. A geometrical setting of the fault studied by Noda and Lapusta [5]. This 

figure is modified from Figure 3 in Noda and Lapusta [5]. 

 

be recognized by the length of penetration of a creeping region which has 

high shear stress in Figure 12. Lapusta and Rice [96] showed that small 

nucleation size causes occurrence of frequent small earthquakes near the 

transition between seismogenic and aseismic regions. If the earthquake cycle 

is simple having only one event which spans the model, more efficient 

thermal pressurization causes longer recurrence interval and larger slip for 

each event as indicated by a spring-slider-dashpot model [97].  

 If there is spatial heterogeneity in the efficiency of thermal 

pressurization, the sequence of the earthquake becomes complex. The region 

with efficient dynamic weakening slips a lot when it ruptures. Thus, such a 

region cannot rupture in every event, and the slip deficit in the other patch is 

filled by more frequent and smaller events (Figure 11c). The vertical orange 

streaks in Figure 12c around x = 5 to 10 km is the stress concentration in 

front of the arrested earthquakes in the middle of low pre-stress region which 

is a result of previous earthquakes.  

 What is striking in Figure 12 is that the interseismic shear stress 

distribution is determined by the distribution of coseismic shear resistance 

except in the region of nucleation and around arrested rupture fronts. High 

velocity friction plays an important role in dynamic rupture propagation and,  
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Figure 11. Cumulative slip distribution at the mid-depth (z = 0 in Figure 10). Gray 

lines are plotted every 10 years, showing interseismic slip accumulation mainly 

outside the seismogenic region. Black lines are plottded every 1 sec during 

earthquakes. hy  and hy+ are hydraulic diffusivities in the left and right patches, 

respectively. Thermal pressurization is (a) not efficient in both of the patches, (b) 

efficient in both of the patches, and (c) efficient only in the right patch. This figure is 

modified from Figure 5 and 7b in Noda and Lapusta [5]. 
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Figure 12. Spatio-temporal distribution of shear stress at the mid-depth (z = 0 in 

Figure 10). Ambient effective normal stress is 30 MPa and f0 = 0.6 with V0 = 10-6 m/s 

so that yellow to orange color corresponds to the steady-state frictional resistance at 

low slip rates. Interseismic shear stress is controlled by the coseismic frictional 

resistance of the fault. Thermal pressurization is (a) not efficient in both of the 

patches, (b) efficient in both of the patches, and (c) efficient only in the right patch. 

This figure is modified from Figure 9 and 10b in Noda and Lapusta [5]. 
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as its result, in determining the distribution of interseismic shear stress and 

thus pre-stress before the following dynamic events.  

 

5. Summary  
 

 In this article, recent studies on the significance of high velocity friction 

on the dynamic rupture and its sequence are reviewed. There are multiple 

lines of evidences which support that the frictional resistance of a fault is 

much smaller than what is predicted by the Byerlee’s law and lithostatic and 

hydrostatic stress condition. Especially, many experimental studies suggest a 

remarkable weakening of a fault at coseismic slip rates. In section 3, the 

meaning of significant rate-weakening is clarified in terms of elastodynamics, 

and reviewed some of the studies on the manner (crack-like versus pulse-like) 

of dynamic rupture propagation in which the significance of rate-weakening 

plays a central role. Coseismic weakening undoubtedly affects the shear stress 

distribution right after an earthquake, interseismic shear stress distribution, 

and then the pre-stress before the following events. In section 4, a study on 

the effect of coseismic weakening on the sequence of earthquakes is 

presented which employs thermal pressurization of pore fluid. Fault 

constitutive law at coseismic slip rates is important not only in considering 

the characteristics of individual earthquake event, but also in understanding 

the long-term fault behavior such as the long-term shear stress under which a 

fault operates.  
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