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SUMMARY 
A crack model is presented for modelling magma emplacement within a shallow vertical 
dyke in a half-space which responds elastically in compression but has vanishing tensile 
strength. Realistic initial stress profiles in the solid rock are considered, corresponding 
to lithostatic and sedimentary equilibria, while the magma is assumed to possess higher 
density than the host rock and to conform to the hydrostatic pressure gradient. 
Equilibrium crack width and extension are computed for several sets of model 
parameters and, from these, uplift and gravity anomaly at the ground surface. It is 
shown that, within the model’s assumptions, narrow gravity anomalies and uplift can 
be generated, reaching 50 pgal and 1 m, respectively, provided that the dyke top is very 
shallow and its vertical extension is large enough ( - 3  km). Dyke injection is 
accompanied by increasing compression in the host rock at depth, but tensile contri- 
butions are generated at shallower depths, around the magma-filled upper portion of 
the crack, which may play an important role in driving the flow of fluids permeating 
the upper crust. If the dyke propagates to a shallow enough depth, its uppermost part 
may remain empty of magma. 
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INTRODUCTION 

Intrusion of magma inside the crust is often described in terms 
of a static tensile crack opening under the overpressure of a 
filling fluid (e.g. Pollard et al. 1983). The governing equation 
in this case is the stress balance between crack, fluid and 
host rock. 

A few cases of propagating tensile cracks have been also 
considered (e.g. Spence & Turcotte 1985; Lister 1990, 1991), 
in which the flow of magma plays an important role, and it is 
shown that the crack width and the growth speed also depend 
on fluid dynamics. The propagating problem is, however, much 
more complex since the crack equation is non-linearly coupled 
with fluid flow through the lubrication equation, so that 
analytical solutions can be obtained only under simplifying 
assumptions (self-similarity or steady state); in particular, these 
solutions are valid only in unbounded media, i.e. far from the 
Earth’s surface, and cannot be employed to infer characteristics 
of dyke injection from surface observations. We shall restrict 
our attention to static models. 

Pollard et al. (1983) have analysed a few static cases of 
vertical and oblique cracks under the Earth’s surface, address- 
ing their attention to the superficial displacement induced by 
the crack. Their solutions partially reproduce the surface 
deformation data obtained during dyke injection episodes at 

Kilauea (Hawaii) and Krafla (Iceland) volcanoes. The same 
model has been applied to recent deformation episodes on 
Mt Etna (Italy), where microgravity measurements were also 
available (Murray 1990, 1994; Rymer ef al. 1993; Budetta, 
Grimaldi & Luongo 1989, 1990). In all the cases mentioned, 
the model fails to explain the large ground subsidence (reaching 
to 20cm) observed above the presumed dyke location. The 
numerical models by Pollard et al. and by Dieterich & Decker 
(1975) provide some small subsidence along the strike of a 
nearly vertical dyke, but this is much smaller than observed 
and can be shown to depend on the small dimensions of the 
computational domain (Danesi 1994). 

It has been suggested that the failure of crack models to 
reproduce the observed subsidence is due to the non-elastic 
behaviour of the medium above the dyke, where tensile stresses 
are large, but we shall show that no subsidence is provided 
even if the medium is tensionally non-cohesive. 

It should be mentioned that the solution presented in Pollard 
& Holzhausen ( 1979) for the vertical component of displace- 
ment, while providing large central subsidence, does not vanish 
at a large distance from the dyke, where it is comparable to 
the central subsidence. This leads to the conclusion that a rigid 
body translation, which is not resolvable from the elastostatic 
equilibrium equations, is entirely responsible for it. 

Finally, previous solutions generally assume a constant 

0 1995 RAS 639 



640 M .  Bonafede and M. Olivieri 

overpressure profile inside the crack, while this profile is 
governed, in the static case, by a gradient related to the density 
contrast between fluid and host rock. 

At great depth within a basaltic crust, magma is lighter than 
the host rock, because of the higher temperature and the 
implicitly presumed uniform state and composition, but nearer 
to the surface, magma density is generally greater than the 
host volcano-sedimentary rock. This statement is confirmed 
by the positive gravity anomaly detected, for example, on 
Mt Etna, in connection with the 1989 and the 1991-1993 
eruptions (Budetta et al. 1990 Rymer et al. 1993). In the latter 
case, an elongated strip of gravity anomaly of the order of 
100 pgal was detected which anticipated by several months the 
ground deformation and the 1991-1993 eruption; such an 
anomaly would be compatible with the emplacement of magma 
within a previously empty shallow dyke, 4 m wide (i.e. Ap = 
p!).  Indeed, if we consider that the shallow layers in a volcanic 
region are mainly formed through volcano-sedimentary pro- 
cesses, such as sequences of ash falls and lava flows, we easily 
conclude that such layers can be much less dense than the 
basaltic magma, due to the larger porosity, vesicularity and 
the presence of open cracks and fissures, related to thermal 
contraction. 

Even from a fracture-mechanical point of view, it would be 
difficult to treat cases in which Ap is everywhere negative, 
since in such a case it would be impossible to stop dyke 
propagation once it started: according to the Irwing criterion, 
a tensile crack propagates when the stress intensity factor K 
is greater than a critical value K ,  (a material property), and K 
increases with increasing length of the crack if the overpressure 
is everywhere positive within it. If Ap < 0, then any crack-like 
dyke should always reach the ground surface, once started, 
since both the increasing buoyancy force and crack length 
would favour catastrophic propagation. 

Lister (1991) employs the Irwing criterion in a steady-state 
crack model and reaches the same conclusion that, at equilib- 
rium, the upper crack tip must be within the positive Ap 
region. He shows the importance of the density stratification 
in the lithosphere and the related ‘neutral buoyancy level’ (i.e. 
the depth at which the vertical gradient of magma pressure 
becomes greater than the gradient of horizontal stress in the 
host rock). Since K ,  = 0 in a cohesionless medium, we shall 
find an even stronger constraint: the crack tip at equilibrium 
must be shallower than z,,, the depth where magma pressure 
equals the pre-injection horizontal stress in the host rock. 

According to the previous considerations, we shall address 
our attention to tensile cracks filled with magma with density 
greater than the host rock; the host rock is assumed to be 
elastically compressible but with negligible tensional strength. 
This last property of the medium is chosen for at least three 
reasons: first, because this is the only way to remove the 
unrealistic stress singularity at the crack tip; second, because 
shallow layers in a volcanic edifice, being extensively fractured, 
are unable to support significant tensional stresses; third, 
because the assumption of minimum tensile strength for the 
medium in any case provides a lower bound estimate of the 
overpressure required for dyke emplacement. 

The previous assumptions will help to explain the presence 
of non-eruptive dykes inside the crust, extensive fissuring of 
the ground which may not be accompanied by eruptive 
phenomena, and gravity variations with small amplitudes. 
Larger gravity variations (sometimes observed) could be also 

explained if the density variation within the host rock were 
significant. However, the large ground subsidence, observed in 
some instances [e.g. Murray (1994) on Etna, Kanngieser (1983) 
on Krafla] along the strike of dykes, remains unexplained by 
any vertical crack model in a homogeneous half-space; it seems 
plausible that it may be due to shear failure of shallow layers 
above the dyke, to strong vertical heterogeneities in the host 
rock or to deflation of a magma reservoir taking place in 
connection with dyke emplacement. 

DESCRIPTION O F  THE MODEL 

Loosely speaking, we can say that a vertical tensile crack 
develops in a brittle medium if the normal compressive stress 
that would act on crack walls from the interior is greater than 
that originally present in the surrounding medium. In order 
that the two tractions, from the interior and from the exterior 
of the fluid-solid interface, may balance, the crack must open 
so that the compression of the external medium contributes 
the missing amount of stress. If the crack is filled with a static 
fluid, the internal stress is given by its pressure, which decreases 
with hydrostatic gradient from the source region towards the 
surface. The external stress field, however, is not univocally 
determined, being controlled by boundary conditions, previous 
history of emplacement of shallow layers and tectonic contri- 
butions. Two extreme cases are considered in the present 
paper. In the former case the external stress field in the shallow 
layer is initially lithostatic: 

Ox, = 022 = -Po@ > (1) 

where po denotes the uniform density of the layer before dyke 
emplacement, g is gravity, the x-axis is in the horizontal 
direction, and z is vertically downwards starting from the free 
surface. The physical convention employed here is that com- 
pressive stresses are negative, (however, for ease of understand- 
ing, plots will be drawn with reverse orientation on the stress 
axes). The lithostatic case may be considered as the result of 
high-temperature emplacement, in which stress becomes 
isotropic due to the ductile flow of material which completely 
relieves any deviatoric stress. To this field we may add a 
tectonic contribution zo in the x-direction, 

0,, = 0: = T o  - pogz, (14 

where superscript ‘L‘ stands for ‘lithostatic’. 
For the latter case considered in the following, it is assumed 

that the crust is in a sedimentary-like initial state (cold 
emplacement, with no horizontal displacement), in which case 
the vertical stress is still determined by the overburden, 
azz = -pogz, while the horizontal component is 

V 
a,, = 0: = zo - -pogz,  ( W  1 - v  

where v is the Poisson ratio and superscript ‘S’ stands for 
‘sedimentary’. In normal sedimentary processes, a compressive 
thermoelastic contribution should be added to (lb) due to the 
long-term readjustment of the geotherm to the new free surface 
(e.g. Turcotte & Schubert 1982). However, in volcano-sedimen- 
tary processes the temperature of deposition is generally greater 
than the external temperature; hence, the deposited material 
would undergo short-term cooling before the long-term warm- 
ing, the overall effect of which could even result in a reversed 
thermoelastic contribution to the horizontal stress field. In the 
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following, we shall ignore the thermoelastic contribution, which 
might be included in zo. 

At the base of the dyke, at z = d, magma has a pressure p o ,  
higher than the horizontal stress ox& = d ) ,  and density 
pm > po. According to the initial considerations, the stress om 
within the dyke is isotropic and has the hydrostatic gradient 
-Prng, 

a,= -po-p,g(z -d) .  (2) 

'The presence of a pressure p o ,  greater than cXx(z = d) (in 
absolute value), at depth z = d, deserves a short digression. As 
to its origin, magma differentiation processes within a magma 
chamber, or ascent of hot (hence lighter) magma from the 
mantle are generally considered to be responsible. We may 
conceive an initial configuration for the medium in which a 
layer with density po overlays a pressurized magma source. If 
the overpressure source is 'switched on' after emplacement of 
the layer po, the stress field induced by the overpressure 
po-pmgd at the source ought to be added to ( l a )  to obtain 
the initial stress field; this might be done in a number of ways: 
for instance, if the magma source, where the overpressure 
develops, were a sphere of known radius, its stress could be 
added to the initial configuration (la) or ( lb )  employing the 
available analytical solutions (e.g. Bonafede 1990). It is plaus- 
ible, however, that only a relatively small, upper region of the 
magma source is affected by such an overpressure. We prefer 
to keep the model as simple as possible and accordingly we 
consider the source region as a lower half-crack (dashed in 
Fig. 1) where the overpressure builds up gradually from depth 
c > d  up to d, where the lower half-crack merges with the 
upper half-crack (the dyke). 

In the volcano-sedimentary case, there may be another 
reason why p o  is greater (in absolute value) than the normal 

Figure 1. Sketch of the model the lower half-crack (dashed) is intro- 
duced to simulate a magma source region and to produce a closed 
crack. The z axis is displaced to the left to avoid overlapping of labels 
with the non-dimensional [ axis. 

stress (lb): this is related to the possible transition from 
sedimentary equilibrium prevailing in the region z < d to 
lithostatic equilibrium in the region z > d. More specifically, 
we may conceive of a model in which a sedimentary layer in 
the region 0 < z < d, with stress given by (lb), is welded at z = 
d to a half-space in the region z > d in lithostatic equilibrium, 
with density pm and isotropic stress oij = [(p, - po)gd - 
pmgz]6i j .  This stress field clearly satisfies the equilibrium 
equation, the free boundary condition at z = 0 and the conti- 
nuity condition for ozz at I" = d .  A discontinuity is then present 
in ox, at z = d. If a magma-filled crack nucleates at z = d ( - ) ,  
the overpressure is pogd - 8 ( -  15 MPa if d = 1 km, v = 0.25 
and zo = 0). Of course, the transition from sedimentary to 
lithostatic equilibrium is not sharp in real situations, and the 
above estimate must be considered as an upper bound. 

PRELIMINARIES 

The equilibrium configuration for a continuous distribution of 
tensile dislocations that open under the effect of internal 
overpressure is governed by the crack equation (e.g. Barenblatt 
1962). In a homogeneous, unbounded medium, this equation 
is a Cauchy-kernel singular integral equation (e.g. Landau & 
Lifchitz 1967). The solution in a more complex medium (a 
half-space with a free surface in our case) can be obtained 
provided that the stress field created by an elementary dislo- 
cation with constant slip is known over the dislocation surface 
(e.g. Erdogan, Gupta & Cook 1973). The solution for an 
elementary tensile dislocation in a medium composed of two 
half-spaces, welded over the surface z =0, in which elastic 
parameters, p (rigidity) and v (Poisson modulus), are discon- 
tinuous, is provided by Erdogan et al. (1973). This solution 
can be profitably employed in our framework by assuming 
that the rigidity of the upper half-space (air) vanishes; in this 
way the upper half-space becomes stress-free. Once this solu- 
tion is inserted into the crack equation, some non-singular 
terms are added to the Cauchy kernel. Solving the resulting 
integral equation, we obtain the distribution of dislocations 
necessary to attain equilibrium (next section). 

Once this distribution is known, the slip amplitude and the 
displacement field generated over the free surface will be 
computed by superposition of the displacement fields due to 
each elementary dislocation. From the slip amplitude and the 
density change within the crack, A p  = pm - po, the gravity 
anomaly can also be computed, assuming that the density of 
the host medium does not change appreciably. Displacement 
and gravity are the main observables that can be measured to 
test the model. 

The main problem we face in the above scheme is assigning 
the equilibrium position of the crack tips, which define the 
integration domain of the integral equation, i.e. the depth up 
to which magma can rise for a given set of d, pm, po and po .  
If an open conduit were available, the free surface of magma 
would reach a depth z,,, shallower than d, governed by the 
condition of hydrostatic equilibrium po - pmg(d - z-) = 0 
(see Fig. 2). If such a conduit is not available, and we neglect 
crack-induced stresses, magma would reach a depth zeq where 
its pressure equilibrates the lithostatic horizontal stress 
po - pmg(d - zeq) = pogzeq - zo (with obvious modifications in 
the sedimentary case); the pressure within the crack would be 
greater than the pre-existing external pressure 0: or o! over 
the whole depth range d < z < zcs; this would give rise to a 
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Figure2. Initial state of stress u,, in the crust, as given by the 
lithostatic profile L (eq. la) dot-dashed, the sedimentary profile S 
(eq. lb) dashed, and the hydrostatic profile in the magma (eq. 2) 
solid, for d = lo00 m, po = 2.4 x lo7 Pa, pm = 2900 kg m-3, po = 
2300 kg m-3, and r0 = 0. The depths zes and z,,, are indicated. The 
orientation of the stress axis is inverted to help interpretation in terms 
of pressure. 

singular crack-induced stress c& beyond the crack tip and to 
an ever-increasing stress intensity factor K (  p o ) .  We shall 
employ a different criterion: the equilibrium extension of the 
crack is not imposed 'a prior+', but is found as part of the 
solution by imposing the constraint that the total stress 
component ox, (including the contributions a" generated by 
the crack itself) is non-tensional and finite beyond the crack 
tip. To this end we employ a variation of the technique 
originally proposed for shear cracks by Bonafede, Dragoni & 
Boschi (1985). We shall see that in this case the magma may 
rise above the depth z,,, since the deformation produced by 
the emplacement of the dyke provides a suction (pressure 
drop) in the proximity of the crack tip. This criterion provides 
a final stress field which is continuous along the crack plane 
and can be made compatible with a pre-fractured (tensionally 
non-cohesive) medium. The relevance of such a model to 
volcanic situations is proved by the low magnitude (or even 
absence) of seismicity during some episodes of dyke emplace- 
ment (e.g. Rymer et a!. 1994). We shall see also that the upper 
crack tip may be shallower than z,,, for suitable values of p o ,  
but that in such cases the magma must remain confined below 
the depth z,,, the rest of the crack being empty (or, more 
realistically, filled with gas). This feature was recognized by 
Barenblatt (1962) and Ali, Fehler & Das (1977) but has seldom 
been taken into account in previous models of dyke 
emplacement. 

The reader who is not interested in the mathematical details 
of the solution may skip the following sections and go to 
the 'results'. 

MATHEMATICAL FORMULATION OF THE 
P R 0 B L E M 

We consider a layer of thickness d and density p o  initially 
closed up by the lithostatic stress (la). Magma then intrudes 
through a vertical crack, bringing the stress to the hydrostatic 
profile (eq. 2) over its plane. The difference a,,, - af has the 
role of 'stress drop' in shear cracks and shall be termed the 
'pressure rise' in the following (since pressure has the opposite 

sign to stress, the term 'rise' is employed as opposite to 'drop'). 
It is this pressure difference that is responsible for the formation 
of a magma-filled crack compression of the solid crust must 
take place in proximity to crack walls in order that the greater 
pressure imposed over the internal face by the fluid magma be 
balanced by normal tractions imposed over the external face 
by the solid crust. 

From eqs ( la )  and (2), the pressure that must be generated 
by compressional deformation on the external face of crack 
walls is 

P ( Z )  = - (0, - 0,") = PO + TO - pmgd + (pm - po)gz, 

d - P < z < d .  (3) 

To simplify the solution, it is useful to consider a closed 
crack: as discussed in the previous section, we extend the 
pressure-rise profile (eq. 3) to z > d ,  symmetrically with respect 
to z = d. This choice, although arbitrary, is preferred to others 
(e.g. constant overpressure within the lower half-crack in the 
region z > d )  because the overpressure in the source region, 
being due to differentiation processes, plausibly decreases 
with depth. 

Let us introduce the non-dimensional coordinates 

z - d  X Y d 
(=- < = -  q = -  a = -  e 7  P '  P '  It' 

where P is the crack half-length. Eq. (3) becomes 

P ( i )  = APO - ( P ,  - po)g4il, - 1 < i < 1 ,  (4) 

where Apo = p o  + zo - pogd is the overpressure at z = d. Under 
this parametrization the upper crack tip is at [ =  -1, its 
midpoint (where the magma pressure is p o )  is at ( = 0, its lower 
tip is at ( = + 1. 

The equilibrium crack equation for a distribution F of 
elementary tensile dislocations over a vertical plane is (from 
Ergodan et al. 1973) 

9 1 F(z') dz' + 1 1 H(z ,  z')F(z') dz' 
2741-V) z ' - z  7t 

= P(z) ,  b < z < c ,  (5) 

where 9 denotes the 'principal value' of the intergral that 
follows, b and c = d f It are the positions of crack tips, and the 
kernel H(z,  z ' )  is regular in b < z' < c: 

1 Z zz 

z' + z (2' + 2)2 (z' + 4 3  . H(z, z') = - - + 6 - - 4 - 

It is probably useful to recall here the physical meaning of 
eq. (5): a tensile crack in a half-space, defined by the dislocation 
distribution F, produces over the crack plane x = 0 a stress 
contribution c:x given by the left-hand side of eq. (5); if F can 
be chosen so as to satisfy eq. (5) in b < z < c, the total pressure 
present over the crack domain b < z < c is -ern, as given by 
the superposition of the initial pressure -c," with the crack- 
induced pressure -0:. = p ,  with p given by eq. (3). Once F is 
known, the left-hand side of eq. (5) gives the crack-induced 
stress even when z lies outside the crack domain; in this case, 
since either z < b  or z>c, the singularity of the integrand 
disappears and the principal value in front of the former 
integral may be omitted. 
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term -nf,,(() for later convenience, becomes METHOD OF SOLUTION 

It is useful to expand the pressure-rise profile (eq. 4) in 
C hebyshev polynomials of the second kind, U,,  in the following 
way (e.g. Bonafede er al. 1985): 

from which we obtain 

(7) 

Let us introduce in eqs (5) and (6) the non-dimensional 
coordinates i and = (2' - d) / f ,  and define 

Crack tips are at i = & 1 and eq. (5) is rewritten as 

Following Muskhelishvili (1953) we can split F(r) into the 
product of a singular term (1 - ("z)-i/2 times a regular function 
g ( r )  which can be expanded uniformly in Chebyshev 
polynomials of the first kind T,: 

The 'closure condition' for the crack at i = 1 requires that 
the integral of 9 over (- 1 , l )  must vanish, i.e. that = 0 (e.g. 
Bilby & Eshelby 1968). Inserting eq. (11) into eq. (10) we 
obtain 

The first integral above yields, for 
Stegun 1964) 

< 1, (e.g. Abramowitz & 

Following Belardinelli & Bonafede (1991), this yields 

where il = i + 6, i2 = 6 + 26, i3 = (12 - 1)'I2 and 6 = d/e. 
Inserting this into eq. (12) we obtain 

1 p 
2 ( l - V ) n = l  

c .flCUn-l(i) -f.(i)I -- 

Chebyshev polynomials of the second kind are a complete 
set of orthogonal functions over the interval (-1,l) if the 
measure (1 - i2)'j2 d i  is employed. Therefore, multiplying 
eq. (16) by (1 - C2)1/2Uk-l([) and integrating over (-1, I), we 
obtain 

where 6 = d / f  and ai j  is the Kronecker delta. The matrix 
elements rk,,(6) are 

rd j )  = 1' m u k - ~ ( i ) f , , ( i )  d i .  (18) 
71 - 1  

The integrals (18) have no analytic expression for arbitrary 
values of k and n; they were computed numerically employing 
Gaussian quadrature formulas. Furthermore, the system ( 17) 
for 01, is infinite and will be solved numerically after truncation 
to a suitable finite order N .  As to the truncation order, typically 
we keep it above 100, even if much smaller truncations 
generally give good results, apart from sharp features. 

Representing the M, coefficients as a vector, eq. (17) becomes 

(i-r)a=p, (19) 
where I is the identity matrix, even components of /? vanish 
and odd components are given by 

kZ-4 ' 

(20) 

1 4(p, - p0)gf (- l)(k + 

-Ap061,kf 7T 

k odd. Inserting eq. (6) into eq. (12), the second integral, which we 
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The matrix I - r is then inverted numerically to retrieve the 
coefficients a,: 

a = (I - r)-lp (21) 

In solving eq. (21), all parameters ( p o ,  pm,  po ,  d and P )  must 
be specified. Accordingly, a is a function of these. In order to 
impose the non-singularity condition at the upper crack tip 
([ = - l) ,  po ,  pm, po and d are fixed and the extra condition is 
imposed (Bonafede et al. 1985) that 

This condition, which describes the arrest configuration of a 
crack under a stress threshold criterion, make$ the residual 
stress field finite and continuous at the upper crack tip. The 
extra condition (22) can only be satisfied if the initial stress 
field is suitably non-uniform (i.e. if negative pressure-rise 
regions exist over the crack plane) and P is chosen appropri- 
ately. Accordingly, we employ (22) as an implicit equation for 
/ to be solved numerically. We do not impose the non- 
singularity condition at the lower tip 5 = + 1, since the details 
of the crack there have no practical effect on near-surface 
quantities. In other terms, the position of the lower tip is 
imposed at z = d + P .  It should be noted that, even if the 
'pressure-rise' is continued symmetrically beyond depth d, the 
problem is non-symmetric because of the presence of the free 
surface at z = 0, which is accounted for by the matrix r. 

It is interesting to study what happens in the region between 
the crack tip and the free surface, i.e. for - 6 < [ < - 1. As 
noted after eq. (5), once the or, coefficients are known, the 
crack-induced stress component ozx over the crack plane may 
be computed as the left-hand side of (12) for [ < - 1: 

- 6 < [ < - 1 .  (23) 

In order to obtain the total stress cXx, the initial stress ( l a )  
must be added to eq. (23). 

Finally, by integrating eq. (1 1) from - 1 to [, we can find 
the slip function Au, expanded in Chebyshev polynomials: 

Au([ )  = P +c" '. Un-l([). 
n = l  n 

The displacement field produced by the crack over the free 
surface is one of the most important observables. The vertical 
displacement at z = 0, due to an elementary tensile dislocation 
at z = z' with Burger's vector B = Bi, is 

D ..z Y X  
w,(x) = - - ~ 

n (2'2 + x')' 

This expression may be obtained either from actual solution 
of the tensile dislocation problem in a half-space (Danesi 
1994), or from Davis (1983), who gives the displacement 
due to a rectangular dislocation surface, after taking the 
appropriate limits. 

For the variable-slip crack given by eq. (24), the vertical 
displacement due to elastic deformation is obtained by inte- 
gration of (25) over the crack plane, with B replaced by the 

dislocation density ( 11): 

where < = x/P. 
It should be noted that, since any crack model can be built 

from weighted superposition of elementary dislocations (e.g. 
Landau & Lifchitz 1967), from eq. (25) vanishing vertical 
displacements are obtained at x = 0 for any vertical-crack 
model in a homogeneous half-space. 

The density difference between magma and host rock, and 
the compression within the rock generated by the crack 
opening also provide a vertical body force directed downwards, 
which can be computed from Mindlin's (1936) Green's function 
solution; details are not shown here, but this gravity contri- 
bution to surface displacement can be shown to be generally 
negligible (of the order of 1 cm). 

THE GRAVITY ANOMALY 

Another important observable related to dyke intrusion is the 
gravity anomaly measured at the ground surface. ?'he gravity 
change at a point (x, y, 0) of the ground surface, due to a 
small volume dV' around the point (0, y', z'), where a density 
anomaly Ap is present, can be computed from 

G A p  dV' 
dg = z , 2  cos a 7 x2 + ( y  - y')2 + 

(27) 
Z' 

with cost(= 

where G = 6.67 x lo-" N m2 kg-2 is the gravitational 
constant. 

The volume element dV over which the density anomaly is 
present can be written as dy' dz' Au(z'). Integrating eq. (27) 
over the crack plane, we find the total gravity anomaly on the 
free surface Ag(x):  

Jx' + ( y  - y')2 + zf2' 

Introducing the usual dimensionless variables c: = (z' - d ) / t ,  
q = y / d ,  q' = y'/P, 5 = x/P and substituting Au(C) from eq. (24), 
the integration over dq' can be performed, yielding 

Of course, this result is independent of q or y, because OUT 

crack model is assumed to be in a plane-strain configuration. 
Setting i' = cos 0, we have 

6 + cos e 
5' + (6 + cos el2 X sin n0 sin 0 a%. 

If the dyke is completely filled with magma, Ap = pm - po; 
however, we shall see that in some cases a portion of the crack 
remains empty of magma and A p =  - p o  there. Note that a 
further contribution to the gravity field comes from the density 
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change in the host rock due to the contraction/dilatation of 
the medium surrounding the crack. This contribution is not 
modelled in the present paper. 

RESULTS 

We have derived in the previous sections formulae to compute 
the stress field, the crack slip and extension over the crack 
plane, the vertical displacement and the gravity anomaly on 
the free surface of a cohesionless medium, for a given set of 
Sxed parameters: the pressure p o  at the bottom of the layer, 
the rock and magma densities po and pm, the layer thickness 
d, its rigidity p and Poisson ratio v. For the sake of simplicity, 
the tectonic stress contribution zo in eq. (1) is ignored. 

Typical values for shallow volcano-sedimentary layers are 
1 .= 3 x lo9 Pa, v = 0.25, and po = 2300 kg m-3; several cases 
are considered for the remaining parameters: lithostatic (L) 
and sedimentary (S) initial states are assumed, as given by eqs 
f la) and (lb); small (d = 1 km) and large (d = 3 km) depth 
values have been employed, marked with digits ‘1’ and ‘3’, 
respectively; high (p, = 2900 kg m-3) and low (p, = 
2600 kg m-3) magma densities are considered, marked as ‘+’ 
and ‘-’, respectively. Accordingly, model [L1+] assumes: 
lithostatic initial state, d = 1 km and pm = 2900 kg m-3, model 
[S1+] assumes sedimentary equilibrium and so on. 

For each of the previous models, the problem has been 
solved for a set of values of the pressure p o ,  ranging from a 
lower bound corresponding to negative pressure rise every- 
where over O < z < d ,  to an upper bound corresponding to 
positive pressure rise over the same domain. 

In Fig. 3 the total stress component Q,, is plotted over the 
crack plane for model [Ll+]. The position of the crack tip 
can be inferred from the cusp in the stress profile. We can 
appreciate that no singularity is present at the crack tip b =  

200 - 

A 400- 
E 
r, n 

v 

Q) 

600- 

d - /, and that the total stress field is continuous there. Crack 
contributions can be better appreciated in Fig. 4(a), where the 
lithostatic profile (eq. la) is subtracted from cXx. All profiles, 
computed for increasing values of p o ,  conform to the hydro- 
static magma profile 0, (see eq. 2) from z = b = d - / to z = d,  
and decrease sharply above the crack tip. All profiles provide 
negative (i.e. compressive) total stress, apart from the dashed 
profile, which is accordingly unacceptable for a medium with 
vanishing tensional strength. We can understand easily what 
happens as p o  is increased: the crack provides a compressive 
contribution to the stress field over the depth range zeq < z < d,  
but it provides a tensile contribution over zeq < z < 0 (zeq is 
the depth where magma pressure is equal to the lithostatic 
pressure). As far as this tensile contribution does not exceed 
the lithostatic pressure at the crack tip, the total stress is 
compressive and the medium behaves elastically (thin solid 
lines in Figs 3 and 4). As p o  increases, the crack tip migrates 
towards the free surface, the lithostatic pressure at the tip 
becomes smaller and the tensile stress contribution is higher, 
because the crack length increases and the distance from the 
free surface decreases. Eventually, the total stress becomes 
positive at the crack tip, and all the way to the surface (e.g. 
the dashed lines in Figs 3 and 4): in this situation, since the 
medium is assumed to be tensionally non-cohesive, the fracture 
must reach the surface while magma remains confined below 
the depth z,,,; as long as po < pmgd the dyke is non-eruptive. 

The crack width or slip profile Au(z) is plotted in Fig. 4(b). 
Au(z) vanishes with zero derivative at the crack tip, whilst 
singular crack models would provide an infinite derivative 
there; this feature is strictly related to the non-singularity 
condition (22). It must be stressed, however, that the crack 
width is very small (less than 1 m) under the assumption of 
lithostatic equilibrium: under these circumstances, the time 
needed for solidification of magma within the dyke would be 

stress (Pa) 

Figure 3. Total stress profiles uxx (x = 0, z) over the crack plane (solid lines), for model [L1+] and a set of values for po between 2.3 x lo7 and 
2.6 x lo7 Pa. The vertical dotted line is the zero totahtress line, the dot-dashed line is the lithostatic profile, and the dashed line is a total stress 
profile that would yield tensional total stress in 0 < z < d - P and negative pressure in the magma; it is therefore unacceptable. 
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Figure 4. Crack-induced stress component u:, (panel a), slip function Au (b), vertical component of surface displacement W(x) (c) and surface 
gravity anomaly (d) for model [L1+] and values of po as in Fig. 3. The dotted line in panel (a) reproduces the zero total-stress line of Fig. 3; the 
dashed profiles are unacceptable. 

less than 3 days (e.g. Turcotte & Schubert 1982). Where the 
pressure rise is positive (i.e. from z = zeq to z = d ) ,  the crack is 
concave inwards, and where the pressure rise is negative (from 
the crack tip z = d - d‘ to z = zeq), it is concave outwards. The 
implications of this ‘suction’ region, which develops around 
the upper portion of the crack, are discussed in the next section. 

The vertical displacement W(x) on the free surface, computed 
from eq. (26), is plotted in Fig. 4(c). The shape is similar to 
those provided by Pollard et al. (1983) for an elliptical crack, 
and by Davis (1985) for a rectangular crack. Even in this case, 
however, the amount of displacement is rather small, compared 
with several observations. 

Finally, the gravity anomaly is computed from eq. (30) and 
plotted in Fig. 4(d). The anomaly is very narrow but, again, it 
is very small if compared with measurements recently carried 
out over Mount Etna; computed values are typically less than 
5 pgal above the crack, while measured peak values (after 
removing contributions ascribed to uplift) are 20 pgal (Budetta 
et al. 1989) and 100 pgal (Rymer et al. 1993). Indeed, Rymer 
et al. (1993) speculate that such a big anomaly would require 
magma emplacement within a previously empty cavity 4 m 
wide and 1 km deep. It therefore seems necessary to change 
the model parameters in order to increase Au. 

One possibility of obtaining a larger Au is to increase the 
pressure rise, other things being equal. This cannot be 
accomplished in a cohesionless medium with a lithostatic 
initial profile since tensional stresses are obtained if po is 
increased further (the dashed lines in Fig. 4), but it can be 

done in the [Sl +] model, where a sedimentary initial stress 
state is assumed. 

The solution technique is the same as in the lithostatic case, 
apart from the ‘pressure-rise’ profile (eq. 3), which is now 
substituted by 

P ( Z )  = --(om - 4) = P o  + To  - pmgd + pm - -__ v ,  po gz. ( 1-v / 

(31) 

This simply amounts to replacing po in eq. (3) with the effective 
density pb = (v/l - v)po. The pressure po necessary to open the 
crack is smaller than in the lithostatic case. Of course, the xed 
density difference pm - po must still appear in the equation for 
the gravity anomaly (eq. 29). 

Results are shown in Figs 5 and 6. In this case, the dyke is 
still confined to great depth when a tensile total stress develops 
(dashed lines) in the proximity of the upper tip. The crack in 
model [Sl +] is wider than in [Ll+], but the vertical displace- 
ment and the gravity anomaly are still too small compared 
with the observations mentioned, due to the greater distance 
from the surface. 

However, in the dashed profiles of model [Sl t] the totd 
stress above the crack tip reverts to negative values going 
towards the surface; hence, the crack will not open to the 
surface as in model [Ll+]. Can the crack tip be shallower 
than z,,? What should be the crack configuration if this 
happens? Even if we were to allow positive stress values in the 
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stress (Pa) 

Figure 5. As Fig. 3, but for a sedimentary initial-stress profile (model [Sl+]) and values of po between 9 and 15 MPa. The dashed profile is 
unacceptable. The thick solid profile is acceptable and provides a void open crack between the crack tip (indicated by an arrow) and the depth 
z,,, (the inset shows the total stress in the uppermost region, magnified 10 times). 
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Figure 6. As Fig. 4, but for a sedimentary initial-stress profile (model [Sl 
with upper tip shallower than zmx. 

1 

+I). The uppermost solid profiles correspond to the partially void crack 
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Figure 7. As Fig. 4, for d = 3 km (model [L3 +I). 

solid medium (thus dismissing the cohesionless assumption), 
the portion of the crack above z,,, cannot be filled with 
magma since the hydrostatic gradient would bring the absolute 
pressure to negative values (dashed line in Fig. 5), and a 
negative pressure is meaningless. The upper portion of the 
crack (above z,,,) must be empty (or filled with gas), in the 
same way as the upper part of the glass tube in a mercury 
barometer remains empty. Accordingly, the absolute pressure 
within the crack subdomain z < z,, must vanish (neglecting 
gas pressure). This requires an obvious modification to eq. (2) 
to provide vanishing pressure values when z<z,,, .  The 
resulting configuration is shown by the thick line in Fig. 5. In 
this configuration, of course, the density anomaly Ap, to be 
employed in computing the gravity change in eq. (28), is 
pm - p o  only if d < z < zmax, but it is - p 0  if zmax < z < d - d. 
The results shown in Figs 5 and 6 show that the total stress is 
negative (i.e. compressive) above the crack tip, but that it 
becomes positive again in the proximity of the free surface. 
Accordingly, in a cohesionless medium, open fissures must 
develop over the ground surface, which are mechanically 
related but not connected with the dyke. With this extension 
of model [Sl +], the crack tip can be very shallow; however, 
the vertical displacement and the gravity anomaly (Fig. 6) are 
still too low with respect to several observations, due to the 
extreme narrowing of the crack width in the proximity of 
the tip. 

Another way of increasing the values of ground deformation 
and gravity anomaly is to increase the vertical extension of 
the dyke. Fig. 7 shows the results for model [L3+]. In this 
case the crack width can be greater than 15 m, and the uplift 

width (m) 
60 

f 

8 40 i - 
r - 

* r po 

0 
-20 -1 0 0 10 20 

distance (Km) 

and gravity anomaly can reach values comparable with obser- 
vations on Mt Etna. Figs 8 and 9 show results for model 
[S3+]: compared with model [L3+], lower values are 
obtained for both the uplift and the gravity anomaly, as long 
as the crack tip is confined at deeper than z,,,. However, if 
the configuration with crack tip shallower than zmax (thick line 
in Fig. 8) is computed, according to the considerations already 
made for model [Sl+], we see that the computed vertical 
displacement and gravity anomaly become comparable to 
some observations (uppermost solid lines in Fig. 9). 

In Figs 10 and 11, results are shown for models [ L3 -1 and 
[S3 -1, in which the magma density is taken as 2600 kg m-3; 
the uplift can be as high as 50 cm but the gravity anomaly is 
less than 10 pgal. 

DISCUSSION A N D  CONCLUSIONS 

Gravity anomalies and vertical surface displacements related 
to dyke intrusion are two independent constraints on their 
common source. Any physically sound model of dyke injection 
should be able to reproduce both observations simultaneously. 
In a crack model, the pressure-rise profile within the dyke is 
the main factor responsible for both, since it governs the 
opening width of the crack and this in turn determines the 
deformation field and the mass input. If the host rock is 
assumed to be cohesionless, i.e. it is unable to sustain tensional 
tractions, the vertical extension of the crack can be also 
computed from the pressure rise and the problem is completely 
specified once the initial state of stress, the depth of dyke 
injection and the densities of rock and magma are given. 
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Figure 8. Total-stress profiles cXx (x = 0, z) over the crack plane (solid lines), for model [S3 +] and a set of values for po between 2.5 x lo7 and 
4.5 x lo7 Pa. The vertical dotted line is the zero total-stress line, and the dot-dashed line is the initial sedimentary profile; the dashed line is 
unacceptable. The thick solid profile is acceptable and provides a void open crack between the crack tip (indicated by an arrow) and the depth 
z,, (the inset shows the total stress in the uppermost region, magnified 10 times). 
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Figure 9. As Fig. 4, for model [S3 +]. Profiles computed for crack tips shallower than z,,, are shown (uppermost solid lines). 
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Figure 10. As Fig. 4, for d = 3 km and pm = 2600 kg m-3  (model [L3 -1). 

In model [L1+] the initial stress is lithostatic, the depth of 
injection is 1 km and the density difference is 600 kg m-3. In 
this case the opening width of the crack is too small to 
reproduce the displacement field and the gravity anomaly 
observed on Mt Etna by Murray (1994) and Rymer et al. 
(1993). We then considered other possibilities, such as a 
sedimentary initial state (model [Sl +]) and a deeper injection 
level (models [L3 +], [S3 +I), which yield larger values for 
the crack width, uplift and gravity changes. The main result is 
that uplift values comparable to observations (up to 1 m) can 
be obtained, while gravity changes as large as 100 pgal are 
difficult to reproduce. However, in the computation of gravity 
anomalies we have neglected the density changes within the 
host rock, which are due to the non-vanishing trace of the 
strain tensor induced by crack opening. We assumed that this 
contribution was negligible, since rocks are nearly incompress- 
ible, but this is strictly the case only if v = 1/2. The unsatisfac- 
tory results obtained in modelling large gravity changes compel 
one to reconsider this assumption according to the following 
gross argument: if the host rock displacement caused by dyke 
injection were to vanish within a negligibly short distance from 
the crack plane, the excess mass responsible for the gravity 
change would be pm dV' instead of Ap dV' in eq. (27), and the 
gravity changes shown in Figs 4-9 should be multiplied by a 
factor pm/(pm-po)-4.8, and those in Figs 10 and 11 by a 
factor -8.7. Of course a correct computation of the gravity 
change must take into account the fact that not only com- 
pressions but also dilatations are present in the medium and 
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that rock deformation is expected to be spread laterally over 
a large region, comparable to crack length. 

If we dismiss the assumption of negligible tensile strength, 
and allow infinite stress at the crack tip, as is the case for 
classical crack models with constant, positive pressure rise 
Ap,, we might increase Apo above the hydrostatic limit 
(p, - p,)gd without giving rise to an eruption, since in such a 
case the crack length 8 is no longer controlled by the pressure 
rise alone, the condition for crack propagation being deter- 
mined by the stress intensity factor K becoming greater than 
a critical value K, .  Such a model, in which the medium is 
assumed to possess a significant tensile strength, might be 
suitable to describe dyke injection up to a depth where it 
meets a competent layer. Since, however, K is an increasing 
function of both 8 and Apo, once the critical value for propa- 
gation is achieved, we should expect a large shallow earthquake 
followed by catastrophic crack propagation to the surface. 

On the other hand, the solutions for a cohesionless medium 
provide results which can be important in several respects in 
understanding observations related to dyke intrusion. For 
instance, the 7 km long, non-eruptive fracture observed on the 
south flank of Mount Etna during the 1989 eruption (which 
took place on the eastern flank) may be explained in terms of 
an elongated fissure system related but not connected to a 
buried dyke. The lack of significant seismic activity (at least in 
the first days) is an indication of little cohesion of the host 
rock, while the lack of any visible degassing activity along this 
fracture may also be explained in terms of (i) the lack of any 
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Figure 11. As Fig. 4, but for a sedimentary initial stress profile, d = 3 km and pm = 2600 kg m-3 (model [S3 -1). 

connection between the magma-filled dyke and surface fissures 
discussed in connection with Figs 5 and 6, and (ii) the suction 
(pressure drop) provided by the present model in the proximity 
of the crack tip (i.e. over 0 I z 2 zeq, Fig. 2), which drives an 
inflow of fluids from the surrounding regions. 

Another important role that can be played by the suction 
region is when a high-permeability aquifer is present along the 
dyke path; in such a case, hydro-magmatic interaction would 
be possible since the water would be at a higher pressure 
(possibly, the lithostatic value) than the magma over all the 
depth range 0 < z < zeq and in particular over the crack domain 
from the tip depth d - 8 to z-. In singular crack models with 
positive pressure rise, the inflow condition is attained only 
above the crack tip, never adjacent to the magma-filled domain. 

Finally, several of the points considered above need to be 
discussed and investigated with greater care in future work. 
We have already said this about the gravity change, and the 
need to compute in a rigorous way the density change in the 
host rock. Another limitation of the present model is its static 
approach the hydrostatic stress profiles for magma within the 
dyke are realistic only if magma is still. Speaking of dyke 
propagation as we did in the previous sections is therefore 
appropriate only for slow propagation, since otherwise a 
pressure gradient in excess of the hydrostatic value should be 
taken into account to overcome the viscous drag at crack 
walls, and the variable crack section would significantly affect 
the flow itself (see, e.g., Spence & Turcotte 1985). Furthermore, 
magma density has been taken as uniform at every depth, 
while its ascent towards the surface is generally accompanied 
by a density decrease (e.g. Kushiro 1980) related to fraction- 

ation, differentiation and release of volatiles producing gas 
bubbles. Finally, thermally activated processes (e.g. visco- 
elasticity) in the host rock surrounding the magma-filled crack 
should be taken into account and might help in explaining the 
time lag between gravity changes and ground displacement 
(Rymer et al. 1994). 

These problems will possibly be addressed in future papers. 
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