Sezione di Bologna, main banner



Livello del Mare

ultimo aggiornamento: February 09, 2026




Il cambiamento del livello del mare è un fenomeno globale che riflette variazioni nel volume degli oceani causate principalmente dal riscaldamento globale e dallo scioglimento delle calotte polari e dei ghiacciai, con un impatto significativo su società ed ecosistemi costieri, attraverso fenomeni come l'erosione, l'intrusione di acqua salata e l'aumento della frequenza e dell'intensità delle inondazioni.

Tramite l’utilizzo di dati derivati dall'altimetria satellitare e da mareografo, la Sezione svolge attività di ricerca sul cambiamento del livello del mare, mirate a descrivere le componenti a lungo termine che influenzano il livello medio del mare e a quantificare l'accelerazione del suo innalzamento.

Particolare attenzione è rivolta agli effetti del cambiamento del livello del mare sulle aree costiere, allo studio della variabilità del suo trend e alla determinazione dei suoi change points.




Articoli su Riviste Scientifiche:
26/02/2025
Multi-Temporal Relative Sea Level Rise Scenarios up to 2150 for the Venice Lagoon (Italy)

The historical City of Venice, with its lagoon, has been severely exposed to repeated marine flooding since historical times due to the combined effects of sea level rise (SLR) and land subsidence (LS) by natural and anthropogenic causes. Although the sea level change in this area has been studied for several years, no detailed flooding scenarios have yet been realized to predict the effects of the expected SLR in the coming decades on the coasts and islands of the lagoon due to global warming. From the analysis of geodetic data and climatic projections for the Shared Socioeconomic Pathways (SSP1-2.6; SSP3-7.0 and SSP5-8.5) released in the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), we estimated the rates of LS, the projected local relative sea level rise (RSLR), and the expected extent of flooded surfaces for 11 selected areas of the Venice Lagoon for the years 2050, 2100, and 2150 AD. Vertical Land Movements (VLM) were obtained from the integrated analysis of Global Navigation Satellite System (GNSS) and Interferometry Synthetic Aperture Radar (InSAR) data in the time spans of 1996–2023 and 2017–2023, respectively. The spatial distribution of VLM at 1–3 mm/yr, with maximum values up to 7 mm/yr, is driving the observed variable trend in the RSLR across the lagoon, as also shown by the analysis of the tide gauge data. This is leading to different expected flooding scenarios in the emerging sectors of the investigated area. Scenarios were projected on accurate high-resolution Digital Surface Models (DSMs) derived from LiDAR data. By 2150, over 112 km2 is at risk of flooding for the SSP1-2.6 low-emission scenario, with critical values of 139 km2 for the SSP5-8.5 high-emission scenario. In the case of extreme events of high water levels caused by the joint effects of astronomical tides, seiches, and atmospheric forcing, the RSLR in 2150 may temporarily increase up to 3.47 m above the reference level of the Punta della Salute tide gauge station. This results in up to 65% of land flooding. This extreme scenario poses the question of the future durability and effectiveness of the MoSE (Modulo Sperimentale Elettromeccanico), an artificial barrier that protects the lagoon from high tides, SLR, flooding, and storm surges up to 3 m, which could be submerged by the sea around 2100 AD as a consequence of global warming. Finally, the expected scenarios highlight the need for the local communities to improve the flood resiliency plans to mitigate the consequences of the expected RSLR by 2150 in the UNESCO site of Venice and the unique environmental area of its lagoon.

Autori: M. Anzidei, C.A. Brunori, C. Tolomei, E. Serpelloni, D. Trippanera, T. Alberti, A. Vecchio, A. Falciano, A. Bosman, G. Deli
Articolo PDF

DOI
30/03/2023
Sea-level trend variability in the Mediterranean during the 1993–2019 period

Sea-level change is one of the most concerning climate change and global warming consequences, especially impacting coastal societies and environments. The spatial and temporal variability of sea level is neither linear nor globally uniform, especially in semi-enclosed basins such as the Mediterranean Sea, which is considered a hot spot regarding expected impacts related to climate change. This study investigates sea-level trends and their variability over the Mediterranean Sea from 1993 to 2019. We use gridded sea-level anomaly products from satellite altimetry for the total observed sea level, whereas ocean temperature and salinity profiles from reanalysis were used to compute the thermosteric and halosteric effects, respectively, and the steric component of the sea level. We perform a statistical change point detection to assess the spatial and temporal significance of each trend change. The linear trend provides a clear indication of the non-steric effects as the dominant drivers over the entire period at the Mediterranean Sea scale, except for the Levantine and Aegean sub-basins, where the steric component explains the majority of the sea-level trend. The main changes in sea-level trends are detected around 1997, 2006, 2010, and 2016, associated with Northern Ionian Gyre reversal episodes, which changed the thermohaline properties and water mass redistribution over the sub-basins.

Autori: Matteo Meli, Carolina M. L. Camargo, Marco Olivieri, Aimée B. A. Slangen and Claudia Romagnoli
Articolo PDF

DOI
29/05/2015
A heuristic evaluation of long-term global sea level acceleration

In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr−1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

Autori: Giorgio Spada, Marco Olivieri, and Gaia Galassi
Articolo PDF

DOI
30/12/2020
Sea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite Altimetry

Coastal flooding and retreat are markedly enhanced by sea-level rise. Thus, it is crucial to determine the sea-level variation at the local scale to support coastal hazard assessment and related management policies. In this work we focus on sea-level change along the Emilia-Romagna coast, a highly urbanized, 130 km-long belt facing the northern Adriatic Sea, by analyzing data from three tide gauges (with data records in the last 25–10 years) and related closest grid points from CMEMS monthly gridded satellite altimetry. The results reveal that the rate of sea-level rise observed by altimetry is coherent along the coast (2.8 ± 0.5 mm/year) for the period 1993–2019 and that a negative acceleration of −0.3 ± 0.1 mm/year is present, in contrast with the global scale. Rates resulting from tide gauge time series analysis diverge from these values mainly as a consequence of a large and heterogeneous rate of subsidence in the region. Over the common timespan, altimetry and tide gauge data show very high correlation, although their comparison suffers from the short overlapping period between the two data sets. Nevertheless, their combined use allows assessment of the recent (last 25 years) sea-level change along the Emilia-Romagna coast and to discuss the role of different interacting processes in the determination of the local sea level.

Autori: Matteo Meli, Marco Olivieri and Claudia Romagnoli
Articolo PDF

DOI

La produzione scientifica completa della Sezione INGV di Bologna è consultabile tramite l'archivio istituzionale ad accesso aperto Earth-prints





Le altre aree di Ricerca del Dipartimento ambiente :
INGV_extended_logo

Contatti:
Telefono: 051 415 1411
PEC: aoo.bologna@pec.ingv.it
Privacy
Disclaimer
Codice Fiscale: 06838821004
Partita Iva: 06838821004
I contenuti pubblicati su queste pagine dall'Istituto Nazionale di Geofisica e Vulcanologia sono distribuiti sotto licenza Creative Commons Attribution 4.0 International License. © 2026